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Abstract

We describe an extension of the Markov decision process model in
which a continuous time dimension is included in the state space.
This allows for the representation and exact solution of a wide
range of problems in which transitions or rewards vary over time.
We examine problems based on route planning with public trans-
portation and telescope observation scheduling.

1 Introduction

Imagine trying to plan a route from home to work that minimizes expected time.
One approach is to use a tool such as “Mapquest”, which annotates maps with
information about estimated driving time, then applies a standard graph-search
algorithm to produce a shortest route. Even if driving times arc stochastic, the an-
notations can be expected times, so this presents no additional challenge. However,
consider what happens if we would like to include public transportation in our route
planning. Buses, trains, and subways vary in their expected travel time according to
the time of day: buses and subways come more frequently during rush hour; trains
leave on or close to scheduled departure times. In fact, even highway driving times
vary with time of day, with heavier traffic and longer travel times during rush hour.

To formalize this problem, we require a model that includes both stochastic actions,
as in a Markov decision process (MDP), and actions with time-dependent stochastic
durations. There are a number of models that include some of these attributes:

e Directed graphs with shortest path algorithms [2]: State transitions are deter-
ministic; action durations are time independent (deterministic or stochastic).

e Stochastic Time Dependent Networks (STDNs) [6]: State transitions are deter-
ministic; action durations are stochastic and can be time dependent.

e Markov decision processes (MDPs) [5): State transitions arc stochastic; action
durations are deterministic.

o Semi-Markov decision processes (SMDPs) [5]: State transitions are stochastic;
action durations are stochastic, but not time dependent.

In this paper, we introduce the Time-Dependent MDP (rMDP) model, which gener-
alizes all these models by including both stochastic state transitions and stochastic,



time-dependent action durations. At a high level, a TMDP is a special continuous-
state MDP [5; 4] consisting of states with both a discrete component and a real-valued
time component: (z,t) € X x R.

With absolute time as part of the state space, we can model a rich set of domain ob-
jectives including minimizing expected time, maximizing the probability of making
a deadline, or maximizing the dollar reward of a path subject to a time deadline.
In fact, using the time dimension to represent other one-dimensional quantities,
TMDPs support planning with non-linear utilities [3] (e.g., risk-aversion), or with a
continuous resource such as battery life or money.

We define T™DPs and express their Bellman cquations in a functional form that
gives, at each state z, the one-step lookahead value at (z,t) for all times in parallel
(Section 2). We usc the term time-value function to denote a mapping from real-
valued times to real-valied future reward. With appropriate restrictions on the form
of the stochastic state-time transition function and reward function. we guarantee
that the optimal time-value function at cach state is a piecewise lincar function of
time, which can be represented exactly and computed by value iteration (Section 3).
We conclude with empirical results on two domains {Section 4).

2 General model
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Figure 1: An illustrative route-planning examplc TMDP.

Figure 1 depicts a small route-planning example that illustrates several distinguish-
ing features of the TMDP model. The start state z, corresponds to being at home.
From here, two actions are available: a1, taking the 8am train (a scheduled action);
and ag, driving to work via highway then backroads (may be done at any time).

Action a; has two possible outcomes, represented by gy and pp. Outcome i
(“Missed the 8am train”) is active after 7:50am, whereas outcome po (“Caught the
train”) is active until 7:50am; this is governed by the likelihood functions Ly and L
in the model. These outcomes cause deterministic transitions to states z; and 3,
respectively, but take varying amounts of time. Time distributions in a TMDP may
be cither “relative” (REL) or “absolute” (ABS). In the case of catching the train
(p2), the distribution is absolute: the arrival time (shown in P,) has mean 9:45am
no matter what time before 7:50am the action was initiated. (Boarding the train
carlicr does not allow us to arrive at our destination earlier!) However, missing the
train and returning to xp; has a relative distribution: it deterministically takes 15
minutes from our starting time (distribution P;) to return home.

The outcomes for driving (az) are u3 and gs. Outcome pz (“Highway  rush hour”)



is active with probability 1 during the interval 8am 9am, and with smaller proba-
bility outside that interval, as shown by Lz. Outcome pg (“Highway — off peak”)
is complementary. Duration distributions Ps and P, both relative to the initiation
time, show that driving times during rush hour are on average longer than those off
peak. Statc zs is reached in cither case.

From state z2, only one action is available, as. The corresponding outcome ps
(“Drive on backroad”) is insensitive to time of day and results in a deterministic
transition to state zz with duration 1 hour. The reward function for arriving at
work is +1 before 11am and falls linearly to zero between 1lam and noon.

The solution to a TMDP such as this is a policy mapping state-time pairs (z,1) to
actions so as to maximize expected future reward. As is standard in MDP methods,
our approach finds this policy via the value function V. We represent the value
function of a TMDP as a sct of time-valuc functions, one per state: V;(t) gives the
optimal expected future reward from state z; at time ¢. In our example of Figure 1,
the time-value functions for z3 and z, arc shown as Vi and V. Because of the
deterministic one-hour delay of ps, Vs is identical to Vi shifted back one hour. This
wholesale shifting of time-value functions is exploited by our solution algorithm.

The TMDP model also allows a notion of “dawdling” in a state. This mecans the
IMDP agent can remain in a state for as long as desired at a reward rate of K(z,t)
per unit time before choosing an action. This makes it possible, for example, for an
agent to wait at home for rush hour to end before driving to work.

Formally, a TMDP consists of the following components:

X discrete state space
A discrete action space
M discrete sct of outcomes, cach of the form p = (z},, Ty, P):
z), € X: the resulting state
T, € {aBs,REL}: specifies the type of the resulting time distribution
P,(t') (if T, = ABS): pdf over absolute arrival times of x
P,(8) (if T, = REL): pdf over durations of
L L{pjz,t,a) is the likelihood of outcome u given state x, time t, action a
R R(u,t,8) is the reward for outcome y at time ¢ with duration ¢
K K(z,t) is the reward rate for “dawdling” in state z at time ¢.

We can define the optimal value function for a TMDP in terms of thesc quantitics
with the following Bellman equations:

tl

V(z,t) = sup (/ K(z,8)ds+V(x,t')) value function (allowing dawdling)
>t Je

Viz,t) = max Q(z,t,a) value function (immediate action)
a€

Q(z,t,a) = Z L{ulz,a,t)-Up,t) expected  value over outcomes

pneM

Uit [, Put) [R(ut,t' —t)+V(z),t")]dt" (if T, = ABS)

(w.t) 1 Pt~ )[R(m,t,¢ — ) + V(@ t))dt'  (if T, = REL).

These equations follow straightforwardly from viewing the TMDP as an undiscountec
continuous-time MDP. Note that the calenlations of U(y, ¢) are convolutions of the
result-time pdf P with the lookahead value R + V. In the next section, we discuss
a concrete way of representing and manipulating the continuous quantities that
appear in these equations.



3 Model with piecewise linear value functions

In the general model, the time-value functions for each state can be arbitrarily
complex and therefore impossible to represent exactly. In this section. we show how
to restrict the model to allow value functions to be manipulated exactly.

For cach state, we represent its time-value function V;(t) as a piccewise linear func-
tion of time. V;(t) is thus represented by a data structure consisting of a set of
distinct times called breakpoints and, for each pair of consecutive breakpoints, the
cquation of a line defined over the corresponding interval.

Why are piecewise linear functions an appropriate representation? Linear time-
value functions provide an exact representation for minimum-time problems. Piece-
wise time-value functions provide closure under the “max” operator.

Rewards must be constrained to be piecewise linear functions of start and arrival
times and action durations. We write R(u,t,8) = Ry(u,t) + Ro(p, t +6) + Ryl 5)
where R,, R,, and Ry are piecewise linear functions of start time, arrival time,
and duration, respectively. In addition, the dawdling reward K and the outcome
probability function L must be piecewise constant.

The most significant restriction needed for exact computation is that arrival and
duration pdfs be discrete. This ensures closure under convolutions. In contrast,
convolving a piecewise constant pdf (e.g., a uniform distribution) with a piecewise
lincar time-value function would in general produce a piecewisce quadratic time-
value function; further convolutions increase the degree with each itcration of value
iteration. In Section 5 below we discuss how to relax this restriction.

Given the restrictions just mentioned, all the operations used in the Bellman equa-
tions from Section 2 namely, addition, multiplication, integration, supremum.
maximization, and convolution—can be implemented exactly. The running time
of cach opcration is lincar in the representation size of the time-value functions
involved. Seeding the process with an initial piecewise linear time-value function,
we can carry out value iteration until convergence. In general, the running time
from one iteration to the next can increase, as the number of linear “pieces” being
manipulated grows; however, the representations grow only as complex as necessary
to represent the value function V' exactly.

4 Experimental domains

We present results on two domains: transportation planning and telescope schedul-
ing. For comparison, we also implemented the natural alternative to the piecewise-
linear technique: discretizing the time dimension and solving the problem as a stan-
dard Mpp. To apply the MDP method, three additional inputs must be specified:
an earliest starting time, latest finishing time, and bin width. Since this paper’s
focns is on exact computations, we chose a discretization level corresponding to the
resolution necessary for exact solution by the MDP at its grid points. An advantage
of the MDP is that it is by construction acyclic, so it can be solved by just one sweep
of standard value iteration, working backwards in time. The TMDP’s advantage is
that it directly manipulates entire linear segments of the time-value functions.

4.1 Transportation planning

Figure 2 illustrates an example TMDP for optimizing a commute from San Francisco
to NASA Ames. The 14 discrete states model both location and observed traffic
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Figure 2: The San Francisco to Ames commuting example

Q-functions at state 10 ("US101 & Bayshore / heavy traffic”)

T

action 0 ("driv'e to Ames"') ——

121 action 1 ("drive to Bayshore station”) --—----—

optimal value Q(x,a)

02 1 1 1 L 1
6 7 8 9 10 1 12
Optimal policy over time at state 10

g ' action 0 ("driv'e to Ames"') E—
£ action 1 (“drive to Bayshore station") -----—
2 ol I
=
2 T e -
B
© . ) . . L

6 7 8 ] 10 11 12

Figure 3: The optimal Q-value functions and policy at state #10.



conditions: shaded and unshaded circles represent heavy and light traffic, respec-
tively. Observed transition times and traffic conditions are stochastic, and depend
on both the time and traffic conditions at the originating location. At states 5,
6, 11, and 12, the “catch the train” action induces an absolute arrival distribution
reflecting the train schedules.

The domain objective is to arrive at Ames by 9:00am. We impose a linear penalty
for arriving between 9 and noon, and an infinite penalty for arriving after noon.
There are also linear penalties on the number of minutes spent driving in light
traffic, driving in heavy traffic, and riding on the train; the coefficients of these
penalties can be adjusted to reflect the commuter’s tastes.

Figure 3 presents the optimal time-value functions and policy for state #10,
“JS101&Bayshore / heavy traffic.” There are two actions from this state, cor-
responding to driving directly to Ames and driving to the train station to wait for
the next train. Driving to the train station is preferred (has higher QQ-value) at
times that are close—but not too close!—to the departure times of the train.

The full domain is solved in well under a second by both solvers (see Table 1). The
optimal time-value functions in the solution comprise a total of 651 linear segments.

4.2 Telescope observation scheduling

Next, we consider the problem of scheduling astronomical targets for a telescope to
maximize the scientific return of one night'’s viewing [1]. We are given N possible
targets with associated coordinates, scientific value, and time window of visibility.
Of course, we can view only one target at a time. We assume that the reward of
an observation is proportional to the duration of viewing the target. Acquiring a
target requires two steps of stochastic duration: moving the telescope, taking time
roughly proportional to the distance traveled; and calibrating it on the new target.

Previous approaches have dealt with this stochasticity heuristically, using a just-in-
case scheduling approach [1]. Here, we model the stochasticity directly within the
TMDP framework. The TMDP has N + 1 states (corresponding to the N observations
and “off") and N actions per state (corresponding to what to observe next). The

. Model | Value V= Runtime
Domain Solver . )
states | sweeps pieces (secs)

SF-Commute  piecewise VI 14 13 651 0.2
exact grid VI 5054 1 5054 0.1

Telescope-10 piecewise VI 11 5 186 0.1
exact grid V1 14,311 1 14,311 1.3

Telescope-25  piecewise VI 26 6 716 1.8
exact grid vi 33,826 1 33,826 7.4

Telescope-50  piecewise V1 51 6 1252 6.3
exact grid vI 66,351 1 66,351 34.5

Telescope-100  piecewise VI 101 4 2711 17.9
exact grid vi 131,300 1 131,300 154.1

Table 1: Summary of results. The three rightmost columns measure solution com-
plexity in terms of the number of sweeps of value iteration before convergence;
the number of distinct “pieces” or values in the optimal value function V= and
the running time. Running times are the median of five runs on an UltraSparc 11

(296MHz CPU, 256Mb RAM).



dawdling reward rate K(x,t) encodes the scientific value of observing z at time ¢;
that value is 0 at times when zx is not visible. Relative duration distributions encode
the inter-target distances and stochastic calibration times on each transition.

We generated random target lists of sizes N=10, 25, 50, and 100. Visibility windows
were constrained to be within a 13-hour night, specified with 0.01-hour precision.
Thus, representing the exact solution with a grid required 1301 time bins per state.
Table 1 shows comparative results of the piccewise-lincar and grid-based solvers.

5 Conclusions

In sum, we have presented a new stochastic model for time-dependent MDPs
(tmMDPs), discussed applications, and shown that dynamic programming with piece-
wise linear time-value functions can produce optimal policies efficiently. In initial
comparisons with the alternative method of discretizing the time dimension, the
TMDP approach was empirically faster, used significantly less memory, and solved
the problem exactly over continuous t € R rather than just at grid points.

In our exact computation model, the requirement of discrete duration distributions
scems particularly restrictive. We are currently investigating a way of using our
exact algorithm to gencrate upper and lower bounds on the optimal solution for
the case of arbitrary pdfs. This may allow the system to produce an optimal or
provably near-optimal policy without having to identify all the twists and turns in
the optimal time-value functions. Perhaps the most important advantage of the
piecewise linear representation will turn out to be its amenability to bounding and
approximation methods. We hope that such advances will cnable the solution of
city-sized route planning, more realistic telescope scheduling, and other practical
time-dependent stochastic problems.
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