

$$
\begin{aligned}
& \text { Les Johnson } \\
& \text { Robert Jankovsky } \\
& \text { John Brophy } \\
& \text { Mike Patterson } \\
& \text { Mike Houts } \\
& \text { David Plachta } \\
& \text { Steve Tucker } \\
& \text { Kirk Sorensen } \\
& \text { Jason Vaughn } \\
& \text { Richard Powell } \\
& \text { Humphrey Price } \\
& \text { Dennis Gallagher }
\end{aligned}
$$

"ST Day 2000: Reducing Risk for the Next Generations" - ASTP

High percentage of projected launches to Low-earth Orbit (LEO) will require upper stages.

- More than 70\% go to Geosynchronous Orbit (GEO) or higher.

Under current total mission cost caps, more ambitious science missions require improvements in propulsion technologies.

- DS-1 enabled by NSTAR solar electric ion propulsion.
- Future planned missions require 2 to 3 times more Delta V.
- Rendezvous and return missions will require similar investm systems and aerocapture technologies.

Per current studies, human exploration missions to Mars, in-space transportation costs are projected to be higher than earth-to-orbit costs. - Affordable in-space transportation is enabling for human exploration missions (lighter weight systems, shorter trip time).

- In-situ propellants offer significant potential to reduce mission costs.

New opportunities to explore beyond the outer planets will require unparalleled technology advancement and invention.

"ST
"ST Day 2000: Reducing Risk for the Next Generations" - ASTP
In-Space Investment Rationale

Cryogenic Fluid

Management

Advance CFM systems to enable ong term storage of cryogens in space

In-Space

