

- Technology Goals and Objectives - Mitigate risk
- Technology Goals and Objectives
- Mitigate risk
- Identify problem areas early
- Develop alternative designs
- Demonstrate manufacturing feasibility at subscale level
- Establish vehicle to evaluate component design fixes during FSD
- Increase Technology Readiness Level
- Demonstrate component designs at subscale level
• time- and cost-effective
- Validate design tools
- Evaluate/demonstrate peripheral technologies
\quad • valves, sensors for health monitoring, etc.
- Improve combustion device designs
- Use and validate advanced analytical models for more precise
\quad prediction of design margins
- Explore innovative designs
- Prove scaling methodology
- Reduce full-scale development time
Background
- Combustion Devices are major contributor to engine reliability transient operation
- Main combustion chamber and injector Nozzle

Full flow staged combustion (FFSC) cycle is initial testbed focus - prominent in STAS results
- eliminates interpropellant seals and oxidizer heat exchanger
- reduces turbine inlet temperatures
Testbed addresses major concerns with FFSC cycle
- oxidizer-rich preburner
- high propellant temperatures at main combustion chamber inlet
• lack of practical experience with cycle
- Testbed provides timely information for program decisions
Space Transportation Technology Workshop - 2nd Generation Propulsion
${ }^{6}$

0
0
0
0
0
0
0

Status

- Task Plan generated and submitted
- Develop alternative designs and design optimization algorithm
- Test initial configuration in ‘ 02
- Test alternative configurations in ‘ 03
- Point of Contact

