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Preface 
 
 
This disk contains the proceedings of the 33rd annual NASA Aerospace Battery Workshop, 
hosted by the Marshall Space Flight Center on November 14-16, 2000.  The workshop was 
attended by scientists and engineers from various agencies of the U.S. Government, aerospace 
contractors, and battery manufacturers, as well as international participation in like kind from a 
number of countries around the world. 
 
The subjects covered included lithium-ion, nickel-hydrogen, and silver-zinc technologies. 



Introduction 
 
 
The NASA Aerospace Battery Workshop is an annual event hosted by the Marshall Space Flight 
Center.  The workshop is sponsored by the NASA Aerospace Flight Battery Systems Program, 
which is managed out of NASA Glenn Research Center and receives support in the form of 
overall objectives, guidelines, and funding from Code R, NASA Headquarters. 
 
The 2000 Workshop was held on three consecutive days and was divided into five sessions.  The 
first day consisted of a General Session and a Focused Session (Status of Aerospace Battery 
Technology Heading into the 21st Century).  The second day consisted of a short Nickel-
Hydrogen Session followed by a Lithium / Lithium-Ion Session.  The third and final day was a 
second Focused Session dealing with Lithium-Ion Cell and Battery Safety. 
 
On a personal note, I would like to take this opportunity to thank all of the many people that 
contributed to the organization and production of this workshop: 
 
 

The NASA Aerospace Flight Battery Systems Program, for their financial support as 
well as their input during the initial planning stages of the workshop; 
 
Holiday Inn – Research Park, for doing an outstanding job in providing an ideal setting 
for this workshop and for the hospitality that was shown to all who attended; 
 
Joe Stockel, National Reconnaissance Office, and Rao Surampudi and Kumar 
Bugga, Jet Propulsion Laboratory, for organizing and conducting this year’s focused 
sessions. 
 
Marshall Space Flight Center employees, for their help in registering attendees, 
handling the audience microphones, and flipping transparencies during the workshop. 

 
Finally, I want to thank all of you that attended and/or prepared and delivered presentations for 
this workshop.  You were the key to the success of this workshop. 
 
 
       Jeff Brewer 
       NASA Marshall Space Flight Center 
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Effects of AEA Cell-Bypass-Switch Closure on Charged EOS-Aqua NiH2 Cell

Objectives

• Verify the Performance of AEA Cell Bypass
Protection Device (CBPD) under simulated
EOS- Aqua/Aura flight hardware configuration

• Assess the Safety of the hardware under an
inadvertent firing of CBPD switch, as well as the
closing of CBPD switch under simulated high cell
impedance

• Confirm that the mode of operation of CBPD
switch is the formation of a continuous low
impedance path (a homogeneous low melting
point alloy)
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Effects of AEA Cell-Bypass-Switch Closure on Charged EOS-Aqua NiH2 Cell

EOS-Aqua Flight Hardware

• Battery Cells:
– Eagle-Picher 160 Ah NiH2  (RNH 160-3)
– Size:  ~ 12cm Diameter

~ 32cm overall Height
– Weight:  ~ 4.3kg

• Cell-Bypass-Switch:
– AEA Technology

Cell Bypass Protection Device (CBPD)
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Effects of AEA Cell-Bypass-Switch Closure on Charged EOS-Aqua NiH2 Cell

AEA Hardware Tested

• A total of five (5) CBPDs were tested using
the charged EOS Cell

– Three FLIGHT devices
(F01, F02 and F03)

– Two ENGINEERING MODEL devices
(EM01 & EM02)

• The two types of CBPDs are basically the
same, with a change in separator and minor
outer dimension changes
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Effects of AEA Cell-Bypass-Switch Closure on Charged EOS-Aqua NiH2 Cell

AEA Bypass Switch Schematic

FLIGHT CBPD

NOTE: Tested devices have 6 series diodes
in charge path (not 4 as shown)
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Effects of AEA Cell-Bypass-Switch Closure on Charged EOS-Aqua NiH2 Cell

AEA Cell-Bypass-Switch Spec

TRW spec for Aqua

90 grams

Icharge ~ 75A

R ~ 500 microOhms
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Effects of AEA Cell-Bypass-Switch Closure on Charged EOS-Aqua NiH2 Cell

Tests Performed

• Test#1:  CBPD F01
Activated with heatgun
 Switch-axis  ~45° from Horizontal

• Tests #2 & 3:  CBPD EM01 & EM02
Activated through charge diodes
 Switch -axis Vertical

• Test#4:  CBPD F02
Activated through charge diodes
 Switch-axis Horizontal (launch orientation)

• Test#5:  CBPD F03
same as Test#4, with added 50 mΩ 
resistance in current path
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Effects of AEA Cell-Bypass-Switch Closure on Charged EOS-Aqua NiH2 Cell

R ≈ 0.08mΩ
(4.3 inches of #2 awg wire

+ terminals)

R  ≈ 0.17mΩ
(11 inches of #2 awg wire

+ terminals)

AEA
CBPD

EPI
NiH2
Cell

T

T

T

T

T

V

V

T
V

V

~

Test #1 setup
(switch activated with heatgun)

~
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Effects of AEA Cell-Bypass-Switch Closure on Charged EOS-Aqua NiH2 Cell

Test #1

First application of heatgun
Heatgun repositioned for

 second application
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Effects of AEA Cell-Bypass-Switch Closure on Charged EOS-Aqua NiH2 Cell

Test #1  Scope Traces
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(0.5V/div)

600A

1200A

1800A

2400A

0A

600A

1200A

1800A

2400A

0A

600A

1200A

1800A

2400A

0A

Cell Current
(600A/div)

Cell Voltage
(0.5V/div)

Cell Current
(600A/div)

Cell Voltage
(0.5V/div)

Time (1ms/div) Time (1ms/div) Time (1ms/div)



2000 NASA Aerospace Battery Workshop 11
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Test #1 Data
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Effects of AEA Cell-Bypass-Switch Closure on Charged EOS-Aqua NiH2 Cell

10A

AEA
CBPD

EPI
NiH2
Cell

T

T

T

T

T

V

V

T
V

V

~

Test #2 thru 5 setup
(switch activated through diodes)

~

R ≈ 0.08mΩ*
(4.3 inches of #2 awg wire

+ terminals)

R  ≈ 0.17mΩ
(11 inches of #2 awg wire

+ terminals)

*increased by 50mΩ for Test #5
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Effects of AEA Cell-Bypass-Switch Closure on Charged EOS-Aqua NiH2 Cell

Test #2

Engineering Model CBPD
after test

CBPD opened after test.

DISCHARGE side (not activated)

CHARGE side
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Effects of AEA Cell-Bypass-Switch Closure on Charged EOS-Aqua NiH2 Cell

Test #2 & 3  Scope Traces

Cell Current
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Effects of AEA Cell-Bypass-Switch Closure on Charged EOS-Aqua NiH2 Cell

Test #4

CBPD in launch orientation.

Charge diode string connection
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Effects of AEA Cell-Bypass-Switch Closure on Charged EOS-Aqua NiH2 Cell

Test #4  Scope Trace

Cell Current
(600A/div)
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Effects of AEA Cell-Bypass-Switch Closure on Charged EOS-Aqua NiH2 Cell

Test #4 Data
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Effects of AEA Cell-Bypass-Switch Closure on Charged EOS-Aqua NiH2 Cell

Test #5

50 mΩ resistance added to positive current path
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Effects of AEA Cell-Bypass-Switch Closure on Charged EOS-Aqua NiH2 Cell

Test #5 Data (with added 50mΩ)
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Effects of AEA Cell-Bypass-Switch Closure on Charged EOS-Aqua NiH2 Cell

Scope traces for Tests #1 thru 4

Test #1 (F01) Test #1 (F01) Test #1 (F01)

Test #2 (EM01) Test #3 (EM02) Test #4 (F02)

Cell Current
(600A/div)

Cell Voltage
(0.5V/div)

600A

1200A

1800A

2400A

0A
Cell Current
(600A/div)

Cell Voltage
(0.5V/div)

600A

1200A

1800A

2400A

0A
Cell Current
(600A/div)

Cell Voltage
(0.5V/div)

600A

1200A

1800A

2400A

0A

Cell Current
(600A/div)

Cell Voltage
(0.5V/div)

600A

1200A

1800A

2400A

0A Cell Current
(600A/div)

Cell Voltage
(0.5V/div)

600A

1200A

1800A

2400A

0ACell Current
(600A/div)

Cell Voltage
(0.5V/div)

600A

1200A

1800A

2400A

0A

Time (1ms/div) Time (1ms/div) Time (1ms/div)

Time (1ms/div) Time (1ms/div) Time (1ms/div)
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Effects of AEA Cell-Bypass-Switch Closure on Charged EOS-Aqua NiH2 Cell

Test Summary
Test # CBPD # Result 

1 F01 

- Seven distinct current bursts were recorded 
- Switch failed to provide continuous short even 
   after heating to near 300°C 
- It is expected that both charge and discharge 
    switches were activated by the high temperature 

2 EM01 
- One distinct current burst was recorded 
- Switch failed to provide continuous short 

3 EM02 
- One distinct current burst was recorded 
- Switch failed to provide continuous short 

4 F02 

- One distinct current burst was recorded 
- Switch temperature was maintained over three 
    minutes past the event, and switch still failed to 
    provide continuous short 

5 F03 
- With 50 milliohms added to the current path, switch 
    closed as expected, and maintained low impedance 
    after diode current was removed and switch cooled 
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Effects of AEA Cell-Bypass-Switch Closure on Charged EOS-Aqua NiH2 Cell

Conclusions
• The nominal performance of AEA CBPD under simulated EOS-

Aqua/Aura flight hardware configuration has been demonstrated.

• There is no evidence of cell rupture or excessive heat production
during or after CBPD switch activation under simulated high cell
impedance (open-circuit cell failure mode).

• Inadvertent CBPD switch activation with a charged cell (low
impedance path) intermittently closes and opens up the switch,
therefore the device may or may not provide protection against
future open-circuit cell failure.
Further testing with switches F01 and F02 may provide clarification.

• The formation of a continuous low impedance path
(a homogeneous low melting point alloy), has been confirmed -
which is the expected mode of operation.
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Effects of AEA Cell-Bypass-Switch Closure on Charged EOS-Aqua NiH2 Cell

Further Work

• DPA of F03 (the only device to operate and carry
continuous current) is in progress to confirm the
formation of a stable, low impedance path

• Retest of F01 and F02 using added 50mΩ resistance is
planned, with DPAs to follow
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n Introduction – History of cellophane and sausage 
casing model cell studies.

n Objective – Reduce number of layers of separation on 
cathode while maintaining cell performance.

n Experimental – Five cell sets of thirteen cells each.  
Eight cycle life and five wet life.  Periodic cell removal 
for design performance analysis.
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n Cell Separation Configurations;
ü Set 1 – Reference standard set – six layer of 1-mil untreated Flexel clear 

cellophane provided by Yardney Technical Products (YTP), cathode wrap.
ü Set 2 – Reference standard set – six layers of 1-mil Flexel cellophane silver-treated  

(C-19) by YTP, cathode wrap.
ü Set 11 – Double layer SC set – one layer of 1-mil tubular SC followed by one layer 

of 2-mil PVA, followed by two layers of 2.3-mil SC from split SC tubing, cathode 
wrap.

ü Set 12 – Single layer SC set – one layer of 1-mil tubular SC followed by one layer 
of 2-mil PVA, followed by one layer of 2.3-mil SC from split SC tubing, cathode 
wrap.  Cells were shimmed with cell case plastic to provide constant internal stack 
pressure vs. set 1.

ü Set 13 – Split wrap set – three layers of 1-mil Flexel cellophane silver-treated (C-
19) by YTP, cathode wrap, plus three layers anode wrap.  (The anodes were 
wrapped in a split L-configuration to seal the bottom of the anodes.)
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split wrap.
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The Set 1 cells shorted
out beginning at the 6th
month, while no cells in
Sets 2 and 13 shorted at
all, so the discharge 
capacity averages do 
not reflect the actual
performance adequately.
Sets 2 and 13 were 
actually superior to 
Set 1, overall.
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Moltech’s Mission

• To be the leader in
Energy Storage
Products

Moltech Corporate Offices, Tucson, ArizonaMoltech Corporate Offices, Tucson, Arizona



Corporate Structure

Sistemas de Baterias, SA de CV
(Mexico)

Moltech Power Systems (Asia), LTD.
(Hong Kong)

Moltech Power Systems SA
(France)

Moltech Power Systems GMBH
(Germany)

Moltech Power Systems AB
(Sweden)

Moltech Power Systems (UK), Inc.
(Arizona)

Moltech Power Systems, Inc.
(Florida)

Moltech Corporation
(Delaware)



Moltech Corporation History

1988      Founded by Dr. Terje Skotheim as a spin-off from the 
     Brookhaven National Laboratory

1994      First venture capital funding

1995      Signed development agreements with Ericsson, Atlas-
     Copco and Electrolux

1998-99     Development of Lithium Sulfur (Li-S ) sample cells



Moltech Power Systems History

1962       General Electric begins NiCd business in Gainesville, FL

1987       Gates Rubber acquires GE rechargeable business

1993       Eveready acquires Gates Nickel rechargeable business

Apr 99       Eveready decides to sell Energizer Power Systems (EPS)

Nov 99       Moltech acquires Energizer Power Systems and Energizer
      acquires equity in Moltech



Moltech Operating Structure

Tucson, Arizona
Lithium-Sulfur R & D

Employees 60

Employees 675 Newcastle-Under-Lyme, UK
European Marketing & Sales
Battery Design and Assembly

Employees 70

Hong Kong
Asian Marketing & Sales

Employees 70

Lithium-Sulfur R & D

Gainesville, Florida
Corporate Headquarters

North & South American Marketing & Sales
NiCd / NiMH / Li-S Cell Manufacturing

NiCd / NiMH R & D
Intelligent Electronics

Development

Battery Design & Assembly

Juarez, Mexico
Battery Design & Assembly

NiCd / NiMH Cell Formation and Test
Employees 1400
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Product Attributes
Rechargeable Li-S Cells

• 2 x Specific Energy vs Li-Ion
• Lightweight (lithium & sulfur)
• Rate capability exceeds Li-Ion
• Environmentally benign
• Low Material Costs

    Technology can be applied to:

• Primary Batteries
• Supercapacitors



Li-S Adapted Products

Mobile PhonesMobile Phones
2.0 – 2.5 Amps2.0 – 2.5 Amps Laptop ComputersLaptop Computers

3.5 – 6.0 Amps3.5 – 6.0 Amps

Cordless Grass TrimmerCordless Grass Trimmer
14 Amps14 Amps Cordless DrillCordless Drill

20 – 30 Amps20 – 30 Amps
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Metalized Thin Film

Lithium Anode

Separator/Electrolyte

Sulfur Containing Cathode

Metalized Thin Film

Cell Construction
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Low Manufacturing Costs

$0.00

$0.05

$0.10

$0.15

$0.20

$0.25

$0.30

$0.35

$0.40

$0.45

$0.50

Sanyo Li-ion
22488- .674 Ah

Sony Polymer
36743- .65 Ah

Moltech- 3 Ah
Vertical Int.

Moltech- 3 Ah
Generation X

Packaging
Electrolyte
Separator
Cathode
Anode 



Specific Energy Comparisons

0

50

100

150

200

250

300

Ni-Cd Ni-MH Li-Ion (liquid) Li-Ion (polymer) Moltech 1st
Generation
Sampling

Wh/kg



Product Requirements for
Second Generation

Li-S
•  Cycle life to reach 300 at 80% of rated capacity
•  Specific energy to 300 WH/Kg
•  Volumetric energy to 400 WH/L
•  Self-discharge <5%/month
•  70% of ambient capacity @ 1C at -10° C
•  90% of rated capacity at 3C at 25° C
•  80% of rated capacity at 5C at 25° C
•  All safety requirements met



Active Materials Transformation Diagram
           SSolubleoluble                                                                     CathodeCathode
S         LiS         Li22SS88        Li        Li22 S S44                Li                Li22 S S22           Li           Li22  S  S     (1)(1)  DischargeDischarge

SS          LiLi22 S S88        Li        Li22 S S44                Li                Li22 S S22           Li           Li2 2  S S      (2)  Charge(2)  Charge

                                                    SeparatorSeparator
Diffusion/ Migration     (3)Diffusion/ Migration     (3)

                                                                                    AnodeAnode
SS        LiLi22 S S88       Li       Li22 S S44               Li               Li22 S S22      Li      Li22 S       S      (4)(4)    Charge andCharge and

Li        LiLi        Li+     Discharge (5)                                                 Discharge     Discharge (5)                                                 Discharge

Li        LiLi        Li+     Charge      (6)     Charge      (6)

(1) (5) Discharge               (4+5) (3)      Self-discharge(1) (5) Discharge               (4+5) (3)      Self-discharge

(2) (6) Charge                    (4+5) (3) (2) Over-charge protection : Shuttle current(2) (6) Charge                    (4+5) (3) (2) Over-charge protection : Shuttle current



Internal Shuttle Protection
Charge Current

Li2 SX

Li2 SX-1 Cathode
Li

e-

e-

Shuttle Current



Overcharge protection - Shuttle current diagramOvercharge protection - Shuttle current diagram
 S      LiS      Li22 S S88     Li     Li22  S  S44                                                                 Cathode                                                                 Cathode

S      LiS      Li2 S S8    Li    Li2  S  S4          Li          Li2 S S2        Li        Li2 S S                                 Anode                              Anode

Li     LiLi     Li+

Total CurrentTotal Current

Cycle L   Cycle L   VoltageVoltage

              Shuttle current       ~ 0.05 mA/cmShuttle current       ~ 0.05 mA/cm22

              Charge efficiency     95 - 98%Charge efficiency     95 - 98%

 Cycle H Cycle H        VoltageVoltage                       2.35 - 2.60 V2.35 - 2.60 V

        Shuttle Current          0.1 - 0.2 mA/cmShuttle Current          0.1 - 0.2 mA/cm22

             Charge efficiency      40 - 60% Charge efficiency      40 - 60%

Charge currentCharge current
Shuttle currentShuttle current  

H L



Typical Performance
Discharge Capacity vs Cycle Number
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Typical Performance
 GSM Discharge Profile
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UL 1642 Safety Test Results on Lithium Sulfur Cells
No Safety Circuitry - Bare Cells

Test UL 1 Cycle 50 Cycles 100 Cycles 150 Cycles

Required? Passed Failed Passed Failed Passed Failed Passed Failed

Short Circuit  (60°C) Yes 5 0 3 0 3 0

Forced Discharge (.8Ax2.5h) No 5 0

Forced Discharge (.2Ax12.5h) Yes 3 0 3 0

Free Fall Yes 5 0 3 0 3 0

Flaming Particles (Fire Exposure) Yes 5 0 3 0 5 0

Projectile Test ( Fire Exposure) Yes 5 0 3 0 5 0

Crush Yes 5 0 3 0 3 0

Impact Yes 5 0 3 0 3 0

Nail Penetration No 5 0 3 0

Overcharge (0.8A) No 5 0

Overcharge (0.2A) Yes 6 0 5 0

Thermal Exposure (Ramped) Yes 0 5 5 0 5 0

Thermal Exposure (Preheated
Oven)

No 0 5

High Rate Charge (2.4A) No 4 1*

High Rate Charge (.6Ax3.5h) Yes 5 0 4 3* 5 1*

* These failures could be interaction between cells and test equipment.



Nail Penetration
Safety Cell 0181039 - 14
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Core Intellectual Property

• Li-Sulfur Chemistry and Materials

• Advanced Materials and Processing

• Thin Film Technology

• Product Design and Manufacturing



Patent Portfolio Status

• 140 Patents & Applications

• Cover all aspects of materials, product
design & manufacturing

• Control of Intellectual Property

• Protection in major battery markets



Battery Patents

• Organo-sulfur polymers
• Cathode compositions
• New separator technology
• Electrolyte compositions
• Anode stabilization and cycleability
• Cell design and engineering
• Cell assembly and manufacturing processes



Moltech Corporation
Li-S Commercialization

• Technology Research & Engineering Development
- Tucson, AZ

• Production infrastructure in Gainesville, FL
- Buildings
- Land
- Equipment
- People

• UL Certified Test Laboratory
- Gainesville, FL

• Electronics Design & Development Laboratory

- Gainesville, FL



• Battery Pack Design & Development
Laboratory
- Gainesville, FL

• Battery Pack Assembly
– Juarez, Mexico
– Hong Kong
– UK
– Malaysia

• Global Marketing/Sales Force

Moltech Corporation
Li-S Commercialization



Summary
• Technology advancement from 150 cycles @ 50% rated

capacity to 200 cycles@ 80% of rated capacity from January
2000 to September 2000.

• Current Status of development represents 40% of potential
for cycle life and energy densities.

• Chemistry today shows safety performance compatible with
commercialization.

• Moltech Corporation has all infrastructure required for
commercialization.
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GEO AND LEO LIFE TEST RESULTS ON VES140 
SAFT Li-Ion

Y. Borthomieu, J.P. Planchat

Defense and Space Division
SAFT POITIERS
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SAFT Li-Ion Cell

tAGENDA

oVES140 Cell Design
oQualification Status
oCalendar Effect Results 
oLife Test Results
oConclusions
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Lithium-Ion Advantages for Space Applications
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Li-Ion  cells in parallel
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Exothermique en décharge
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Voltages is function of intercalated 
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Li0.85Ni(1-Y)MYO2+3C Ö Li0.35Ni(1-Y)MYO2+0.5LiC6

Voltages is function of intercalated 
Lithium ions

Li0.85Ni(1-Y)MYO2+3C Ö Li0.35Ni(1-Y)MYO2+0.5LiC6

Low impact of Temperature on OCVLow impact of Temperature on OCV

Paralleling Li-Ion cells is OK Paralleling Li-Ion cells is OK 
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VES 140 S Cell design

1116 +/- 25 g

1074 +/- 25 g

Space : VES 140 SSpace : VES 140 S

Electric CarElectric Car
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Qualification Program

t GEO real time life test
t GEO Accelerated life test
t BOL Qualification 
t Calendar Test
t LEO Accelerated life test
t LEO real time life test

Qualification GEO

Qualification LEO
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Qualification

t Qualification Review the 21st June 00 with CNES, ESA 
ASTRIUM and ASPI :
o Electrical tests
oMechanical tests
oAbuse tests

l « overcharge » : charge up to 4.5 V
l « overdischarge »
l short circuit
l high temperature test
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Energy versus EOCV

Energy versus UEOCV; Charge 9 A, Disch 17.5 A, T = + 20 °C

E = 167,75xU - 537,35

100,00

110,00

120,00

130,00

140,00

150,00

160,00

3,85 3,90 3,95 4,00 4,05 4,10 4,15

UEOCV (V)

E
ne

rg
y

(W
h)

Average Minimum 
Guaranteed



2000 NASA Aerospace Battery Workshop : November 14-16, 2000 File : O/DDE/ST/power/s2208-00.ppt Page -9

Energy versus I discharge

Energy versus  I Disch; Charge 15 A, Disch I cte, T = + 20 °C

E = -6,9497Ln(I) + 174,67
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Energy versus Power

Energy versus discharge Power; Charge 15 A , T=+20°C

E = -8,653Ln(P) + 181,01
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Energy versus discharge temperature

Energy versus discharge temperature; I Disch= 22A

E = 26,87Ln(T) + 63,17
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Sine Vibrations

t Vibrations performed on 3 cells :
o charged at 3.8 V

Sweep rate, 2 octave / min, in OX and OZ.

Frequency Level
5 to 24 Hz + 11 mm  

24 to 100 Hz 25 g
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Random Vibrations
OZ axe level (3 min): OX & OY axe level (6 min):

Frequency Level Frequency Level
20 to 100 Hz +6 dB/Oct 20 to 100 Hz + 3 dB/Oct
100 to 800 Hz 0.5 g²/Hz 100 to 150 Hz 0.3 g²/Hz

800 to 1100 Hz slope 150 to 200 Hz slope
1100 to 1500 Hz 2 g²/Hz 200 to 300 Hz 3 g²/Hz
1500 to 2000 Hz -6 dB/Oct 300 to 400 Hz slope

400 to 900 Hz 0.8g²/Hz
900 to 1000 Hz slope

1000 to 1100 Hz 2g²/Hz
1100 to 2000 Hz - 9 dB/Oct

Global 44.34 gRms Global 45.32. gRms

e

0,01

0 ,1

1

1 0

10 100 1 000 10 000

0,0 1

0 ,1

1

1 0

1 0 10 0 1000 10000

No modification on resonance frequency > 140 hz
No voltage evolution during test

No change on energy and integrity (DPA)
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Self Discharge
% available Energy versus storage time
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Peak Discharge

t 150 Amps (2 secondes)

t 500 Amps (1 seconde)

30 min 60 min 93 min
Cell voltage
UEOC = 4.0V 3.348 3.172 2.864
Cell voltage
UEOC = 3.8V 3.168 2.887

30 min 60 min 93 min
Cell voltage
UEOC = 4.0V 2.784 2.593  

C/2 discharge
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Overcharge 25 amps @ 4.5 V
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Overdischarge
Charge 15.5A EOCV 4.0V, Discharge 20A EODV -0.8V
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Short circuit

SHORT-CIRCUIT    R = 3 mOhms
Cell L 369, U EOC = 4,10 V
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SHORT-CIRCUIT    R = 3 mOhms
Cell L 369, U EOC = 4,10 V
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Radiation Test 

Discharge Capacity (Ah) versus radiation exposure
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Crush Test

1 ton pressure on 6 mm diameter rod 

No leak, no shortNo leak, no short
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Calendar Test Plan

t Test Plan

o Storage Temperature 
l From 0°C to 60°C

o EOCV
l From 3.70 V to  4.10V

oConditions 
l OCV and floating
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Nickel based alloy specificities

Li NiOLi NiO22 Li Li 0.35 0.35 NiONiO22

Li Li 0.85 0.85 NiONiO22

FirstFirst chargecharge

CyclingCycling @ 60°C@ 60°C

Cycling
@ ambient T

CyclingCycling
@ @ ambientambient TT

Lithium reserve = 12% within negative electrodeLithium Lithium reservereserve = 12% = 12% withinwithin negativenegative electrodeelectrode



2000 NASA Aerospace Battery Workshop : November 14-16, 2000 File : O/DDE/ST/power/s2208-00.ppt Page -23

3.8V ,30°C, Floating
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3.70V ,10°C, OCV

energy 3.7V 10°C OCV
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Calendar Effect
Capacity Loss due to Calendar Effect vs Temperature
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Cycling Test

t TEST CONDITIONS
oGEO Cycling

l From 60 to 85%  DOD
l EOCV from  4.00V  to 4.1V
l Charge current from 4 to 12 Amps
l >30 cells in test

o LEO Cycling
l From 10 to 40%  DOD
l EOCV from 3.80V to 3.90V
l 16 to 70 cycles per day
l >40 cells in test
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Accelerated 80 % DOD GEO cycling

EODV : 3S 2P
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Accelerated 85 % DOD GEO cycling
UEODV at cycle 23 and Energy versus nb seasons
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GEO Life tests
        SYNTHESIS OF GEO TESTING ON SAFT CELLS

Cell Version Test DOD Nb Cells Tested Nb Seasons             Fading
Performed Measured  @15 years

Prototype Semi accelerated 2c/day +PPS 40% 6 S Module 18 15% 25%

Prototype Constant (charge C/5, disch : C/1.5) 60% 1 42 (1960 cycl) 17% 12%

Stentor Semi accelerated 2c/day +PPS 40% 6 S Module 32 8% 8%

Stentor Accelerated 80% 2S2P Module 30 11% 11%

VES140 0 Accelerated 80% 3S2P Module 36 3% 2.5%

VES140 0 Semi accelerated 85% 3S2P Module 18 0% -

VES140 0 Accelerated 70% 2 cells 16 (710 cycles) 1.0% 3.0%
60% 4 cells 16 (706 cycles) 1.0% 2.9%

15 YEARS GEO FADING ENERGY <3%
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Accelerated LEO Cycling : 20 % DOD, 3.9 V
End of discharge voltage 

y = -1E-06x + 3.5849
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Accelerated LEO Cycling : 20 % DOD, 3.9 V
Energy at 4.0V
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Real LEO Cycling : 30 % DOD, 3.8 V
VEOD (V) Real cycling 30 %
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Real LEO Cycling : 30 % DOD, 3.8 V
ENERGY @ 4.00V & 3.80V
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LEO BATTERY DESIGN
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Conclusion

t VES 140 S cell :
oQualified by ESA, CNES, ASTRIUM and ASPI
oWeight  <1142g
oDimensions : Diameter 54, length 250 mm
oMin Guaranteed Energy>132 Wh (Average 140 Wh) @  4.10 V

oCalendar Effect t=X2.e(6680/T-20.24)+X.e(6989/T-20.59)

oCycling law N=1.5*106*e-0.0846*DOD

l 18 equivalent GEO years results at 80 % DOD  (< 3 % fading)
l 10.000 LEO cycles at 30 % DOD
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Conclusion (Cont ’d)

oNegative Excess (Lithium) : 12%
o Self discharge < 3 mA 
o Impédance <3 mOhm @ 20 et 60% DOD
oAir Transportation Autorization   N° 903-99
oActual Industrial Line Capability :32 cells per day

VES 140 S qualified for Space use
Will fly on Stentor

>18 years GEO life test 80 % DOD 
>2 years LEO life test 30 % DOD

VES 140 S qualified for Space use
Will fly on Stentor

>18 years GEO life test 80 % DOD 
>2 years LEO life test 30 % DOD
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High Specific Energy NiH2 Batteries for GEO Satellites
Y. Borthomieu*, M.Fabre**

* Defense and Space Division  SAFT POITIERS
** Alcatel Space Industries CANNES
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NiH2 Battery for GEO

tAGENDA

oQualification Status
oCell modifications 
oBattery changes
oConclusions
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Qualification Status

tDevelopment started in 91
tBased on VHS design
tQualification acquired in November 93
o3.5 inches cells
o12 to 32 cells per battery
o50 to 104 Ah
oAdaptation to AN cells in 95
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Qualification Status

tBattery concept :
oCell equipped with tubular aluminum sleeve
oAluminum base-plate with alveolus
oFrom 12 to 32 cells
oIndividual by-pass system
oTwo redundant heater circuits
oCells equipped with strain gages
oThermistor and connectors
oAluminum or Copper wiring
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NiH2 Battery for GEO

Cell

Sleeve

Kapton spacers

Glue

Base-Plate Alveolus
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NiH2 Battery for GEO

tMain characteristics
o Specific energy : 48 Wh/kg for 27 cells of 63 Ah
oWeight ratio cell/battery : 82 %
oVolume : 61*44*21 cm3  (2.4*1.7*0.82 inch3) for 27 

cells battery
oDOD max : 80 % with one failed cell
o Thermal gradient (in failed case conditions) : 

Ù Maximum Internal cell : 2.5 °C
Ù Maximum Between 2 cells : 9 °C

oVibration : qualification up to 20 G both sine and random
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NiH2 Battery for GEO

t PROGRAMS 
Satellite Battery Type Nb Battery per

Satellite
Status

ARABSAT 2A 27*50 VHS 4+1 QM Launched
ARABSAT 2B 27*50 VHS 4 Launched

ARTEMIS 23*60 VHS 2+1QM Delivered
INDOSTAR

(CAKRAWARTA)
22*52AN 2+2 IM Launched

SINOSAT 27*56AN 4 Launched
SIRIUS 2 A 27*63AN 4 including 1 PFM Launched
SIRIUS 2 B 27*63AN 4 Launched on

EutelsatW4
ARABSAT 3A FM1 27*71AN 4 including 1 PFM Launched
ATLANTIC BIRD 2 27*71AN 4 in manufacturing

HISPASAT1C 27*63AN 4 Launched
EURASIASAT 27*93AN 4 including 1 PFM Delivered

ATLANTIC BIRD 1 23*97AN 2 In manufacturing
HOT BIRD 6 27*101AN 4 including 1PFM In Design

STELLAT 27*93AN 4 In Design
GE12 27*89AN 4 In Design

32 Batteries in operation32 Batteries in operation
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NiH2 Battery for GEO 

t To Improve specific energy at battery level :

o Increase cell specific energy

oOptimize battery mounting
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NiH2 Cell  

Stack of electrodes

Core

INCONEL 718 Vessel =0.74mm

Terminal

Belleville washers
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900 psi

End Plates

Tabs
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NiH2 Cell change 1 

t Reduction bottom dome length

900 PSI
k=3.2

1000 PSI
k=2.8

Already use on 4.5”
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NiH2 Cell change 1

t Impact of bottom dome length reduction:

oAt cell level for AN 101 :
l 2.5 % Weight reduction over 2 294 g

oAt battery level for 9 kW satellite with 4 packs of  
27AN101 :
l 2.2 % Weight reduction over 291.6 kg 
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NiH2 Cell change 2 

t Transfert from top dome cyclindrical part to bottom dome

Reduction of
tabs length



2000 NASA Aerospace Battery Workshop : November 14-16, 2000 File : O/DDE/ST/power/s2266-00.ppt Page -13

NiH2 Cell change 2 

t Impact of transfering top dome cyclindrical part to 
bottom dome

oAt cell level for AN 101 :
l 5.8 % Weight reduction over2 236 g

oAt battery level for 9 kW satellite with 4 packs of  
27AN101 :
l 4 % Weight reduction over285 kg
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NiH2 Cell change 3 

t Decrease of width and/or thickness of tabs

o Tabs were oversized considering current
l Criteria : voltage drop less than 45 mV at C rate

oAt cell level for AN 101 :
l 2 % Weight reduction over2 105 g

oAt battery level for 9 kW satellite with 4 packs of  
27AN101 :
l 1.7 % Weight reduction over274 kg
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NiH2 Cell changes 

t Change 1 and 2 have been used for Eurasiasat batteries
o Life test performed to validate the change

l 4 cells tested
l Semi-accelerated conditions :

– charge C/10 k=1.15 + Trickle charge C/100
– discharge C/1.5, 72 min, 80 % DOD
– 2 cycles per day
– no solstice

t Change 3 is using on current programs
o Life test will be performed on HB6 
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Eurasiasat life test
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Battery change 1

t Use of the Aluminum wiring instead of Copper

oQualification acquired in 96

oUse of the ESA rules forderating

oWeight saving at battery level for 9 kW : 
l 2.2 % over 280 kg
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Battery change 2

t Charge management modification :

oDecrease of the charge temperature from 0 °C to -10 °C
l Increase of the delivered capacity 

oWeight saving at battery level for 9 kW : 
l 3 % over 274 kg

o Is planned to be used on Hot Bird 6
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Battery Performances 

t By performing ASPI test : 
oOne orbital cycle 80 % DOD 
oRecharge k=1.15 and discharge  C/1.5 down to 1 V

FIRST DESIGN WITH ALUMINUM WIRING

C Ah T °C Weight (kg)      Sp En (Wh/kg)

t Sirius II : AN63     65.2         0 °C             186                      47.3

t Arabsat 3 : AN71    72          0 °C             204 47.6
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Battery Performances : Arabsat 3 A
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Battery Performances : Arabsat 3 A
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Battery Performances
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Battery Performances 

DESIGN WITH CHANGES 1 and 2 AT CELL LEVEL 

(MOP and Upper Stack)
ALUMINUM WIRING

C Ah T °C Weight (kg)      Sp En (Wh/kg)

t Eurasiasat : AN93    99     -2.5 °C            255 51

MORE THAN 8 % SPECIFIC ENERGY INCREASE 
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CONCLUSION

t First phase of improvement done on EURASIASAT (changes 
on MOP and upper stack)
o weight gain over the prediction (8 % over 6 %)

t Second phase in validation on current programs, Hot Bird 6, 
(changes on tabs, charge management ) will give 5 % weight 
gain more to reach

53 Wh/kg at battery level



1

LITHIUM ION DD CELLS 

EVALUATION FOR SPACE APPLICATION

HAIYAN CROFT

BOB STANIEWICZ

SAFT R&D CENTER
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OVERVIEW

l CHEMISTRY

l CHARACTERIZATION OF DD CELLS

l HOW ACCELERATED TESTING IS PERFORMED

l CALENDAR RESULTS

l TESTING RESULT AND PREDICTED CYCLE LIFE
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CHEMISTRY

l CHEMISTRY

Ø POSITIVE MATERIAL: LiNi1-x-yCoxMyO2

Ø NEGATIVE IS ADMIXTURE OF TWO GRAPHITES WITH NON-PVDF BINDER

l CAPACITY: 9.2 AH

l ENERGY DENSITY: 135 WH/KG
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HARDWARE

l STAINLESS STEEL HARDWARE

l CELL DIMENSION: CYLINDRIAL

l CELL OD 32 MM  OR 1.32 IN

l CELL HEIGHT 122MM OR 4.8 IN

l MULTIMPLE TABS ON ELECTRODES

l CELL WEIGHT: 250 GRAMS
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CHARACTERIZATION

Discharge Rate characterization at 23oC
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CHARACTERIZATION
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CHARACTERIZATION
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Ø LEO AND GEO CYCLING DEMONSTRATING  PERFORMANCES 
FOR PLANETARY AND INTERPLANETARY APPLICATIONS

DEPTH OF CYCLES ACHIEVED RESULTS
DISCHARGE TO DATE

30% 10,000 PREDICTED FOR 40K CYCLES

60% 1500
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ACCELERATED TESTING 
METHODS

WE JUDGED WHAT MIGHT BE REASONABLE, ACCELERATED TRADE-OFFS OF 

TIME AND CURRENT TO ACCOMPLISH CYCLE DEMONSTRATION

GEO – ACCELERATION IS STRAIGHTFORWARD:
WE ADOPTED 1.2 HOURS FOR DISCHARGE

4.8 HOURS FOR CHARGE

THE DISCHARGE IS AT A CONSTANT DOD RATHER THAN A TRUE SEASON WITH 
THE WELL-KNOW PARABOLIC ECLIPSE DURATION

LEO – ACCELERATION REQUIRES A CAREFUL BALANCE OF SHORTEN TIME 
AND CURRENT INCREASE

CYCLES/DAY CURRENT (A) TIME (M)
30% DOD 28.7 DIS  10 15.12

CHG 5.25 35
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LEO TESTING

ACCELERATED TIMES AND
CURRENT

SLOW DOWN 1.5 CYCLES
TO TYPICAL ORBIT

TIME OF 105 MIN

48.5 CYCLES

1.5 CYCLES

DIAGNOSTICS:
1.  FULL SOC CAPACITY
2.   RESIDUAL CAPACITY AT E.O.C.V.
3. IMPEDANCE

EVERY 500 CYCLES

10 TIMES

SLOWING DOWN TO REAL TIME ORBIT RATES OF 105 MIN. EVERY 50 CYCLES IS ESSENTIAL SO THAT 
E.O.D.V. REFLECTS TRUE ORBIT CONDITIONS
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LEO TESTING

DD Cells LEO 30% DOD @ 250C Discharge Capacity
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LEO TESTING

DD Cells Internal Resistance 
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LEO TESTING

DD cells LEO test - 30% DOD  EODV @ 25C
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LEO TESTING

DD Cells LEO 30% DOD @ 250C Energy
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CYCLE LIFE EXTRAPOLATION

PROTOTYPE DD CELLS (B.O.L. = 30 Wh)

*NOT CORRECTED FOR CALENDAR LIFE

29.91,500.0011150060

21.840,000.00020612,00030

E.O.M. Energy*
Wh 25oC

Typical Req.
For Cycles

Wh Fade
Rate @ 4V
% Per Cycle

Cycles
Achieved

Depth Of 
Discharge
%
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ACCELERATED GEO
AT CONSTANT DOD

DIAGNOSTICS
1.  FULL SOC CAPACITY
2.  RESIDUAL CAPACITY AT 

E.O.C.V.
3.  IMPEDANCE

EVERY 50 CYCLES

50 TIMES

GEO TESTING
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GEO TESTING

DD Cells GEO 60% DOD @ 25C    Discharge Capacity  
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8 DD cells w ith 9 Ah nominal capacity
Diagnostics w ere performed every 50 cycles
Curves show n are the capacity @4.0V during 
diagnostics 

Accelerated Cycles:
Discharge @ 4.5A for 1.2 Hr or 5.4Ah
Charge for 4.8 Hr w ith 3.85V limit
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GEO TESTING

DD Cells GEO 60% DOD @ 25C    Internal Resistance  
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GEO TESTING

DD Cells - 60% DOD GEO Test 
End of Discharge Voltage @ 25C

2.5

2.7

2.9

3.1

3.3

3.5

3.7

3.9

4.1

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Cycle No.

E
O

D
V

Average V Loss
7.1E-05 V / Cycle



20

GEO TESTING

DD GEO 60% DOD @ 25C Energy  
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8 DD cells w ith 9 Ah nominal capacity
Diagnostics w ere performed every 50 cycles
Curves show n are the Energy @4.0V and 
3.85V during diagnostics 

Average Wh Loss
1.1E-03 Wh / Cycle

Average Wh Loss
1.1E-03 Wh / Cycle

Accelerated Cycles:
Discharge @ 4.5A for 1.2 Hr or 5.4Ah
Charge for 4.8 Hr w ith 3.85V limit
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CALENDAR LIFE

Cell Fading Mechanisms

Loss of lithium due to continuous SEI layer build up –
parabolic function where fading rate decreases with time

Degradation of active material properties – probably linear 
loss of capacity and impedance growth
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CALENDAR LIFE

Capacity measurement conducted at ambient temperature

Cells stored on open circuit at 50% SOC in 45oC and 60oC, 
which is reasonable since a cycling cell is on average at 
50% SOC

Diagnostic tests performed every month for impedance and 
capacity
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Calendar Life Projection

Capacity Expected Life of the Battery
Loss Updated for 32 weeks of data and normalized for temperature

Years 1 3 5 7 10 12 14 15

Months 12 36 60 84 120 144 168 180

15oC 2.91% 3.63% 4.35% 5.07% 6.15% 6.87% 7.59% 7.95%

25oC 3.44% 5.21% 6.99% 8.77% 11.43% 13.21% 14.98% 15.87%

Equations
Capacity Loss-Temperature %Loss = 8*107*e-7.5734*x

relationships where x=1000/K
used for projecting the loss of capacity

Linear loss of capacity %Loss = A + B*(# of months)
after the 3rd month  where A = 2.55% and B = 0.03% for 15oC

 where A = 2.55% and B = 0.074% for 25oC

CALENDAR LIFE
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CYCLE LIFE EXTRAPOLATION

CORRECTED FOR CALENDAR LIFE (8 YEARS FOR LEO; 15 YEARS GEO)

29.9- 4.49 = 25.41,500.0011150060

21.8 - 2.6 = 19.140,000.00070412,00030

E.O.L. Energy*
Wh 25oC

Typical Req.
For Cycles

Wh Fade
Rate @ 4V
% Per Cycle

Cycles
Achieved

Depth Of 
Discharge
%
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Li-ion Battery Cell Balancing 
Requirements

NASA Aerospace Battery Workshop
Huntsville, Alabama
November 14, 2000 

Mark J. Isaacson and Vincent L. Teofilo
Lockheed Martin Space Systems

Sunnyvale, CA 94089
mark.isaacson@lmco.com
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Outline

• Advanced Technology Program (ATP)

• LI-ion Battery Management Requirements and 

Strategies

• Li-ion Battery Management Architectures

• Li-ion Cell Balancing Requirements for Portable 

Electronics Applications

• Summary
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Li-Ion Batteries

• High Energy Density and Specific Energy
• Long Cycle Life.
• Established Manufacturing Infrastructure for portable 

electronics.
• Battery/cell manufacturers developing Li-ion for satellite 

application.
• Sensitive to over-charge and over-discharge.
⇒ Battery Management Electronics for Portable Electronics 

and Aerospace applications?
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ATP Testing
• ATP Program Testing

– LMSS focus is on cell characterization for evaluating charge balancing 

requirements

• Ultralife (UBI) Cells

– 700 mAmp-hour (nominal)

– made on production line

– graphitic anode

– LiNi1-xCoxO2 cathode

– polymer-gel electrolyte

• A note on statistics

– test sample size must be sufficiently large to reach definitive conclusions

– only a few cells have been tested here to provide direction

– UBI will supply additional data
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Li-ion Battery Management Strategies

• Battery Level Voltage Monitoring
• Cell Level Voltage Monitoring
• Dissipative Cell Level Voltage Management
• Non-Dissipative Cell Level Voltage Management
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Battery Level Voltage Monitoring

• Battery voltage is monitored.
• Cell voltages are not measured.
• Switched from Constant Current to Constant Voltage 

charge when Maximum Battery Voltage is reached.
• Battery voltage is maintained within specified limits.
• Cells voltages may exceed specified limits (I.e. be over-

charged or over-discharged.) depending on cell-to-cell 
variations.

• Simple, inexpensive. 
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Cell Level Voltage Monitoring

• Cell voltages are monitored.
• Switched from Constant Current to Constant Voltage 

charge when first cell reaches Maximum Cell Voltage.
• Cell voltages are all maintained within specified limits.
• Cell state-of-charge is not actively managed.
• Battery capacity limited by lowest cell capacity.
• Minimum level of voltage management in commercial 

portable electronics.
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Dissipative Cell Level Voltage Management

• Voltages of individual cells are monitored.
• State-of-charge of individual cells is actively managed by 

bypassing current around cells through a dissipative 
element such as a resistor.

• Voltage of all cells are maintained within specified limits.
• Operates only during charge.
• Battery capacity is limited by that of lowest capacity cell 

but all cells can be charged to maximum capacity. 
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Non-Dissipative Cell Level Voltage Management

• Voltages of individual cells are monitored.
• State-of-charge of individual cells is managed by 

transferring energy from cell to cell via a “nondissipative” 
element such as a capacitor.

• Voltage of all cells are maintained within specified limits.
• Can operates during both charge and discharge.
• Battery capacity is not limited by lowest capacity cell.
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Li-ion Battery Charge Control Architectures

• Dissipative
– Resistive Equalization
– Analog Shunt Equalization

• Non-dissipative
– Switched Capacitor Equalization
– Resonant Equalization
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Resistive Equalization
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Analog Shunt Equalization
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Constant
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Switched Capacitor Equalization
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Resonant Equalization
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Switched
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Excessive Cell Voltage

Balancer
Drive
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Charging Charged
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Portable Li-Ion Battery Management 
System Implementation
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Desirable Features of Portable Electronics 
Batteries

• Maximum Discharge Run Time

• Minimum Charge Time
• Increased Cycle Life

⇒ Application requirements for portable electronics differ from those 

of Aerospace
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Testing Sequence

• Beginning-of-Life (BOL) Tests

– capacity characterization

– DC resistance

– self-discharge balance

• Cycling

• End-of-Life (EOL) Tests

– capacity characterization

– DC resistance

– self-discharge balance
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BOL Capacity Characterization
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Table 2
Beginning-of-Life Cell Discharge Capacities

Discharge Capacity (Amp-hours)Cell
0.14 Amps 0.35 Amps 0.7 Amps

U59 0.7411 0.7136 0.6879
U60 0.7405 0.7132 0.6857
U62 0.7419 0.7150 0.6898
U92 0.7366 0.7086 0.6833
U96 0.7402 0.7127 0.6810
U99 0.7406 0.7127 0.6792

Statistics
(All Cells)

Mean, Ah 0.7402 0.7126 0.6845
SD, Ah 0.0018 0.0022 0.0041
SE, % 0.2484 0.3018 0.5948

Statistics
(w/o Cell U92)

Mean, Ah 0.7409 0.7134 0.6847
SD, Ah 0.0007 0.0010 0.0045
SE, % 0.0898 0.1332 0.6580

Test Description
• C, C/2, C/5 discharges
• 20oC
• 4.15 V max, 3.0 V min

Test Results
• Tight capacity distribution.  (Similar to 

Japanese manufacturers.)
• Wider capacity distribution at high 

discharge rates
• Cell U092 developed electrolyte leak 

because of improper handling
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BOL DC Resistance Test Procedure
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Test Description
• Charge and discharge at 350 

mA (C/2).
• 30-minute OC at 75%, 50%, 

25%, and 0% SOC on discharge 
and 25%, 50%, 75% and 10% 
SOC on charge.

• Polarization divided into two 
components, ?5s and ?30m based 
on AC impedance tests.

• ?5s is dominated by faradaic 
resistance and ESR.

• ?30m is dominated by 
concentration polarization. 
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BOL DC Resistance Test Results

Test Description
• Cell polarization 50-60 mV.
• Standard deviation (1-3 mV) and standard error (5-10%) are 

small.

Table 3
Beginning-of-Life Cell Polarization

Cell Polarization (mV)
(All values are negative but the sign has been omitted.)

Cell

?5s ?30m Total Polarization
U59 24.8 30.2 55.0
U60 24.8 30.3 55.1
U62 25.1 31.4 56.5
U96 26.4 34.3 60.7
U99 23.9 36.6 60.5

Statistics
(excluding Cell U92)

Mean, mV 25.1 34.1 59.2
SD, mV 1.3 2.6 2.4
SE, % 5.0 7.6 4.0
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Equilibrium Voltages for Cells in Series with 
Unequal Self Discharge Rates
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Test Results
• EOL voltage dispersion less 

than BOL voltage dispersion.
• Consistent with decrease in self 

discharge as cells age because 
of increase in internal resistance 
of cells. 

BOL Self Discharge Balancing Results

4.142

4.144

4.146

4.148

4.150

4.152

4.154

0 5 10 15 20 25 30 35 40

Time (days)

C
el

l 
V

o
lt

ag
e 

(v
o

lt
s)

Cell U059

Cell U093

Cell U062



NASA Aerospace Battery Workshop-25

Cell Cycling
• Three cells (U059, U062, U096) placed on cycle test

– Test Regimen (100% DOD)

• Constant current charge at C/2 to 4.15 V.

• Constant voltage charge at 4.15 V to C/20.

• Constant current discharge at C.

– Test regimen similar to that used for portable electronics

• All cells cycles for an equal time

• Cells with lower capacity completed more cycles than those with a 
higher capacity

• Capacity characterization, DC resistance and self-discharge 
balance experiment repeated at end of cycle test to obtain end-of-
life data (EOL)

• Cell-to-cell interactions in batteries?
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Test Results
• Cell capacities decrease as cells 

age.
• Cell capacity distribution 

increases as cells age.
• Capacity distribution is still 

relatively tight at EOL as well as 
at BOL.

• No evidence of need for 
balancing electronics.

Table 2
Beginning-of-Life Cell Discharge Capacities

Discharge Capacity (Amp-hours)Cell
0.14 Amps 0.35 Amps 0.7 Amps

U59 0.7411 0.7136 0.6879
U60 0.7405 0.7132 0.6857
U62 0.7419 0.7150 0.6898
U92 0.7366 0.7086 0.6833
U96 0.7402 0.7127 0.6810
U99 0.7406 0.7127 0.6792

Statistics
(All Cells)

Mean, Ah 0.7402 0.7126 0.6845
SD, Ah 0.0018 0.0022 0.0041
SE, % 0.2484 0.3018 0.5948

Statistics
(w/o Cell U92)

Mean, Ah 0.7409 0.7134 0.6847
SD, Ah 0.0007 0.0010 0.0045
SE, % 0.0898 0.1332 0.6580

Table 1
End-of-Life Cell Discharge Capacities

Discharge Capacity (Amp-hours)Cell
0.14 Amps 0.35 Amps 0.7 Amps

U59 0.6063 (1) 0.574
U60 - - -
U62 0.5794 0.6049 0.5695
U92 - - --
U96 0.616 0.5856 0.5538
U99 - - -

Statistics
Mean, Ah 0.6006 0.5953 0.5658
SD, Ah 0.0190 0.0136 0.0106
SE, % 3.1573 2.2927 1.8744

Comparison of EOL and BOL Discharge Capacities



NASA Aerospace Battery Workshop-27

Comparison of EOL and BOL DC Resistance Data

Test Results
• Cell internal resistances 

increase as cells age.
• Cell internal resistance 

distribution increases as cells 
age.

• Internal resistance distribution 
is still relatively tight at EOL.

• No evidence of need for 
balancing electronics.

Table 3
End of Life Cell Polarization

Cell Polarization (mV)
(All values are negative but the sign has been omitted.)

Cell

?5s ?30m Total Polarization
U59 33.0 77.9 110.9
U62 31.7 79.4 111.1
U96 35.7 87.0 122.7

Statistics
Mean, mV 33.5 81.4 114.9

SD, mV 2.0 4.9 6.8
SE, % 6.1 6.0 5.9

Table 4
Beginning-of-Life Cell Polarization

Cell Polarization (mV)
(All values are negative but the sign has been omitted.)

Cell

?5s ?30m Total Polarization
U59 24.8 30.2 55.0
U60 24.8 30.3 55.1
U62 25.1 31.4 56.5
U96 26.4 34.3 60.7
U99 23.9 36.6 60.5

Statistics
(excluding Cell U92)

Mean, mV 25.1 34.1 59.2
SD, mV 1.3 2.6 2.4
SE, % 5.0 7.6 4.0
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Test Results
• EOL voltage dispersion less 

than BOL voltage dispersion.
• Consistent with decrease in self 

discharge as cells age because 
of increase in internal resistance 
of cells. 

• No evidence of need for 
balancing electronics.

Comparison of EOL and BOL Self Discharge Balancing Data
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“Monte Carlo” Calculations
• Generate (with computer) 150 cells

– standard deviations from experimental capacity characterization

– random number generator

– normal capacity distribution as weighting function

• Randomly assemble 50 three-cell batteries

– No matching

– Three cells in series is a typical configuration for lap tops

• Calculate Discharge Energy for Unbalanced batteries

– assume discharge energy is limited by cell with lowest discharge energy

– battery discharge energy is three time discharge energy of “weakest” cell

• Calculate Discharge Energy for Nondissipatively Balanced Battery

– assume 100% efficiency or perfect balancing

– battery discharge energy is sum of discharge energy of three cells

• Determine difference in discharge energy between balanced and unbalanced batteries
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Histogram of Capacity Differences Distribution between 
Unbalanced and Non-Dissipatively Balanced Batteries 
containing Cells with Different Self Discharge Rates

0

1

2

3

4

5

6

7

8

9

10

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5

Discharge Energy Difference between Balanced and Unbalanced Batteries (%)

N
um

be
r o

f B
at

te
rie

s

C Rate Discharge

C/5 Rate Discharge



NASA Aerospace Battery Workshop-31

Monte Carlo Calculations of Capacity Difference Distribution 
between Unbalanced and Non-Dissipatively Balanced 
Batteries containing Cells with Different Self Discharge Rates
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Available Discharge Energy Calculations for
Unbalanced, Dissipative Balancing and

Assumptions
• Battery with two cells in series
• Cell 1 Capacity:  1 Ah
• Cell 2 Capacity:  3 Ah

Energy Calculations

• Unbalanced (Worst Case)
E = (3.17V)(3Ah)+(3.5V)(1Ah)= 6.67 Wh
• Dissipative Balancing (Best Case)
E = (3.83V)(1Ah)+(3.5V)(1Ah)= 7.33 Wh
• Non-Dissipative Balancing
E = (3.5V)(3Ah)+(3.5V)(1Ah)= 14 Wh
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Average Voltage = 3.83 V



NASA Aerospace Battery Workshop-33

Monte Carlo Calculations for Effect of Balancing 
Method on Battery Yield for Batteries containing 

Cells with Different Discharge Capacities
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Input Data

• Nominal Capacity:  700 mAh
• Nominal Discharge Energy:  2520 

Wh
• Failure Criteria:  2016 Wh/cell or 

6048 Wh/battery (80% of BOL 
energy)

• Average EOL Discharge Energy:  
2142 Wh/cell.  85% of BOL energy 
yielding 5% average margin.



NASA Aerospace Battery Workshop-34

Summary
• LI-ion Battery Management Requirements, 

Strategies and Architectures Reviewed.

• UBI Li-ion cell testing under way to quantify 

Charge Balancing Requirements.

• No evidence for Need for Cell Balancing for UBI 

Cells for Portable Commercial Electronics.

• Conclusions for UBI portable electronics cells not 

necessarily applicable to other applications and 

other cell types.
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Scope

• This presentation summarizes test results, to date, obtained 
with SAFT MP commercial cells and prototype space cells.

• These  tests  are  part of  an  ongoing  program  at  TRW  to  
evaluate lithium ion cells for space application.

• To facilitate development of  a coherent data base, all cells   
in the program are subjected to similar test regimes:
– Characterization

= Charge acceptance as a function of CVL and 
temperature

= Cell resistance as a function of SOC and temperature
– Cycling

= LEO:   25% DOD, 15ºC and 25ºC, or
= GEO:   70% DOD, 15ºC and 25ºC
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Test Plan
Characterization: Charge Acceptance, Cell Resistance

• Charge Acceptance:  determined as a function of  CVL      
and temperature
– Charge at C/5 to a CVL;  taper charge until current          

is  < C/100
– Discharge at C/5 to 3.0 volts

• Cell Resistance:  determined  as  a  function  of  SOC,       
during charge and discharge
– Impose 10% current pulses during C/5 charge and 

discharge
– determine cell resistance as dV/dI

• All characterizations were performed at 15°C and 25°C
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Test Plan
Simulated Leo Cycling

• Depth of Discharge:  25%  (basis:  capacity  at  25ºC  to  a   
CVL of 4.0 volts and taper charge until the current is < C/100 

• Orbit:  100 minutes with 36 minute eclipse periods

• Charge regime:  0.5C to CVL;  taper until eclipse discharge

• Charge management:  Individual cell control

• Discharge:  0.42C  (36 minutes)
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Test Facility

• Accommodates lithium ion cell 
characteristics
– Charge/discharge mgmt
– Safety

• Autonomous test control and 
data logging

• Individual  cell,  cell pack,  or 
battery control for all test articles

• Fail safe capability for test 
anomalies
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Test Articles

MP Cell Prototype Cell
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MP Cell Description

• Nomenclature:  SAFT Li-Ion Prototype  -- MP 176065

• Nominal Cell Capacity:  4.3 Ah

• Positive Electrode:  LiCoO2, PVDF binder

• Negative Electrode:  Synthetic graphite,  Non-fluorinated 
polymer binder

• Electrolyte:  EC-DEC-DMC + VC additive

• Separator:  PE/PP multilayer

• Stack:  Wound prismatic

• Container: Stainless steel can, negative polarity

• Place of Manufacture:  France
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PROTOTYPE Cell Description

• Nomenclature:  SAFT 400K Space Cell

• Nominal Cell Capacity:  42 Ah, 150 Wh

• Positive Electrode:  LiNiO2, PVDF binder

• Negative Electrode:  Synthetic graphite,  non-PVDF  binder

• Electrolyte: 1M LiPF6 PC/EC/3DMC

• Separator:  PE/PP multilayer

• Stack:  Wound cylindrical

• Container: Stainless steel can, negative polarity

• Place of Manufacture:  USA
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Test Results
(MP and Prototype Cells)

• Characterization
– Charge acceptance
– Cell resistance

• LEO Cycling
– Typical 25% DOD cycle
– EODV as a function of cycling at 25ºC 
– EODV as a function of cycling at 15ºC
– Reserve capacity
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MP Cell Characterization 
Charge Acceptance as a Function of CVL at 25ºC
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MP Cell LEO Cycling
Typical 25% DOD LEO Cycle  (25ºC)
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MP Cell LEO Cycling
EODV as a function of cycling at 25ºC
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MP Cell LEO Cycling
Reserve Capacity Estimate (25 Deg C)

Time Temp Discharge Discharge to 25%  of 
(Years) (Deg C) to 3.0V BOL 4.0V  CVL capacity Reserve Loss

BOL 25 2.54 1.07 1.47

2.0 25 1.35 1.07 0.28 1.19

Capacity (Reserve), 3.75V  CVL (Ah) = Capacity (LEO to 3.0V) - Capacity (25%  DOD)

Capacity (Loss), 3.75V  CVL (Ah) = Capacity (BOL) - Capacity (Time "t")

Capacity (Ah) -- Charge: 3.75V  CVL + taper
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• Capacity (Reserve), 3.75V  CVL (Ah): The capacity remaining, to a 3.0V 
cutoff, following a 25% DOD discharge, during simulated LEO cycling.

• Capacity (LEO to 3.0V): Capacity to a 3.0V cutoff, following a simulated 
LEO charge to a 3.75V  CVL and taper charge. 

• Capacity (BOL): BOL capacity to a 3.0V cutoff, following charge, at C/5, 
to a specified CVL and taper charge until the current is <C/100.

• Capacity (25% DOD): 25% of the BOL capacity.

• Capacity (Loss): The difference between capacity at BOL and time “t”, 
determined with comparable charge/discharge parameters..

• Capacity (Time “t”): The capacity observed at a time “t”, to a 3.0V cutoff, 
following a simulated LEO cycle charge to a 3.75V  CVL and taper. 

Reserve Capacity Estimate
Definition of Terms
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Prototype Cell Characterization
Cell Resistance as a Function of State of Charge and Temperature
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Prototype Cell LEO Cycling 
Reserve Capacity Estimate

Time Temp Discharge Discharge to 25%  of 
(Months) (Deg C) to 3.0V BOL 4.0V  CVL capacity Reserve Loss

BOL 25 24.5 10.5 13.9

13 Months 25 23.8 10.5 13.3 0.7

BOL 15 23.4 10.5 12.9

13 Months 15 21.4 10.5 10.9 2.0

Capacity (Reserve), 3.75V CVL (Ah) = Capacity (LEO to 3.0V) - Capacity (25%  DOD)

Capacity (Loss), 3.75V  CVL (Ah) = Capacity (BOL) - Capacity (Time "t")

Capacity (Ah) -- Charge: 3.75V  CVL + taper
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Summary

• SAFT MP 176065 and 42Ah space prototype cells are on test

• Testing includes initial characterization, and simulated, real 
time 25% DOD LEO cycling

• Initial characterization testing is complete

• MP cells have successfully completed > 2 years of LEO cycling

• 42 Ah cells have successfully completed  > 1 year of LEO 
cycling and the low fade observed  is encouraging;  results  
are  consistent  with approximately 10-year life

• No anomalies have been observed

• Testing is continuing
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OUTLINE OF PRESENTATION
• CAPACITY WALKDOWN DEFINED AND ILLUSTRATED
• IMPORTANCE OF CAPACITY WALKDOWN
• FOUR APPROACHES TO UNDERSTANDING THE

PHENOMENON
– Pressure Trend Studies
– Charging Curve Studies
– Electrochemical Voltage Spectroscopy Studies
– Destructive Physical Analysis Studies

• RESULTS OF THE INTERRELATED STUDIES
• SUGGESTED MECHANISM FOR CAPACITY WALKDOWN
• CHARGING PROTOCOLS TO AVOID THE PROBLEM
• SUMMARY STATEMENTS
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CAPACITY WALKDOWN
Characteristics

– Very Slow
– 2000 - 8000 Cycles
– Recoverable
– 30% to 40%Capacity

Loss
– Monitored Using

Strain Gauge
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IMPORTANCE OF CAPACITY 
WALKDOWN

• RESULTS IN A SIGNIFICANT REDUCTION IN THE
RESERVE CAPACITY FOLLOWING A NORMAL
DISCHARGE

– The Gradual Drop in State of Charge for a Fixed 
Depth of Discharge will Result in Less and Less 
Reserve Capacity Following a Discharge

• WHEN THE CHARGEING PROTOCOL IS BASED ON A
FIXED RECHARGE RATIO ADJUSTMENTS ARE
REQUIED AS CYCLING CONTINUES

– Accuracy to the Nearest One Tenth of a Percent 
May be Needed
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APPROACHES USED TO QUANTIFY AND 
UNDERSTAND CAPACITY WALKDOWN
• PRESSURE TRENDS DURING LEO CYCLING AT THE NAVY 

FACILITY AT CRANE INDANA
– Air Force, NASA Glenn, and NASA Space Station Tests

• CHARGING CURVES OF SELECTED AIR FORCE AND NASA 
SPONSORED LEO TESTS

• ELECTROCHEMICAL VOLTAGE SPECTROSCOPY STUDIES 
OF SELECTED SAMPLES OF PLATE MATERIAL FROM A 
VARIETY OF SOURCES

• EXTENSIVE DESTRUCTIVE PHYSICAL ANALYSES ON
SIMILAR CELLS

– One Cycled Under Conditions With No Walkdown
– One Cycled Under Conditions With Significant Amount of 

Walkdown 
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WALKDOWN AS A FUNCTION OF 
CYCLING CONDITIONS

• CELLS CYCLED AT 40% DOD AND -5OC DID NOT SHOW
WALKDOWN

• CELLS CYCLED AT 40% DOD AND +10OC SHOWED
VARIABLE AMOUNTS OF WALKDOWN

• CELLS CYCLED AT 60% DOD AND +10OC SHOWED NO
WALKDOWN

• CELLS CYCLED AT 60% DOD AND -5OC SHOWED NO 
WALKDOWN BUT VERY SHORT CYCLE LIVES
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CAPACITY LOSS AT 40% DOD AND +10OC
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TYPICAL TEST SHOWING NO 
WALKDOWN

26% KOH, 40% DOD, AND -5OC
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CHARGE CURVES FOR TWO CELLS:
ONE AT +10OC AND ONE AT -5OC
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DIFFERENCES IN CHARGING CURVES
• CYCLE 4000 WAS NEAR THE MINIMUM OF PRESSURE 

FOLLOWING WALKDOWN FOR CELLS IN PACK 3214E  
• CELL #1 IN PACK 3214E DOES NOT SHOW  THE SHARP

ROLLUP AT THE END OF THE CHARGING PROCESS
• CELL #1 IN PACK 3254E HAS A SHARP ROLLUP INDICATIVE 

OF LESS OXYGEN EVOLUTION
– This Results in a Higher Charging Efficiency and 

Therefore a Higher State of Charge at the End of the 
Charging Process for the Cell Cycled at -5oC
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ELECTROCHEMICAL VOLTAGE 
SPECTROSCOPY STUDIES
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EVS REVEALED THE SOURCE OF THE 
WALKDOWN PHENOMENON

• THE BETA MATERIAL DURING THE FIRST CYCLE IS MORE
DIFFICULT TO CHARGE BY 30 TO 40 MILLIVOLTS

• AFTER CHARGING TO THE GAMMA PHASE AND ONE FULL 
DISCHARGE, THE BETA MATERIAL IS REFERRED TO A 
BEING IN THE ‘ACTIVE’ FORM

• THE POSITION OF THE CHARGING PEAKS OF THE SECOND
CYCLE IS INDICATIVE OF A DIFFERENT ACTIVE SPECIE

• IT HAS BEEN SUGGESTED THAT THEY ARE DIFFERENT 
CRYSTALINE FORMS OF BETA NICKEL HYDROXIDE

• WE HAVE NOT BEEN ABLE TO DESCERN ANY
IDENTIFICABLE DIFFERENCES IN THE TWO
DIFFERENT FORMS
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RESULTS OF EVS SCANS TO DIFFERENT 
END OF CHARGE VOLTAGES

• MULTIPLE ~1.0 CM2 SAMPLES SELECTED FROM THE SAME 
PLATE TAKEN FROM A GOOD CELL WITH ONLY 100 
CYCLES

• TWO COMPLETE CHARGE DISCHARGE CYLES WERE USED 
AS PER THE PREVIOUS CHART

• THE END OF CHARGE VOLTAGE RANGED FROM 0.48 V vs. 
Hg/HgO REFERENCE ELECTRODE TO 0.54 V

• THE VOLTAGE PEAK FOR CHARGING THE BETA Ni(OH)2
DURING THE SECOND CYCLE WAS RECORDED

• IT WAS FOUND THAT IF THE END OF CHARGE VOLTAGE 
WAS BELOW A CERTAIN VALUE, THE DISCHARGED FORM 
OF THE ACTIVE MATERIAL WAS NOT CONVERTED TO THE 
ACTIVE FORM 

• FOR THIS ELECTRODE THE DIFFERENCE IN POTENTIAL OF 
THE TWO FORMS WAS 20 MILLIVOLTS
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POSITION OF THE BETA PEAK DURING 
THE SECOND EVS SCAN
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EXTENSIVE EVS STUDIES REVEALED 
THE FOLLOWING

• THE DEACTIVATED FORM OF NICKEL HYDROXIDE IS THE
THERMDYNAMICALLY STABLE FORM

• THE ACTIVATED FORM OF NICKEL HYDROXIDE CAN
BEGINE TO CONVERT BACK TO THE STABLE INACTIVE
FORM IN ONLY A FEW DAYS

• ONCE IN THE ACTIVATED FORM, THE MATERIAL WILL
REMAIN IN THE ACIVATED FORM AS LONG AS IT IS
CHARGED ABOVE THE CRITICAL TRANSITION VOLTAGE

• THE DISCHARGE BETA AND GAMMA PEAKS SEPARATE AS
ONE OR THE OTHER MATERIAL DOMINATES THE
DISCHARGE TRACE
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POST TEST AND DPA STUDIES ON 
SIMILAR CELLS     

• CELL FROM PACK 3214E
– +10 Degrees, 1.04 Recharge Ratio, 26% KOH

• CELL FROM PACK 3254E
– -5 Degrees, 1.03 Recharge Ratio, 26% KOH

• CELLS WERE 50 Ah, DOUBLE LAYER ZIRCAR, SLURRY,
BACK TO BACK CELLS CYCLING UNDER AIR FORCE
SPONSORSHIP 

• CELLS WITHDRAWN FROM ONGOING TESTS FOR OUR
FURTHER STUDIES

• CRANE CONDUCTED TWO POST CEST CYCLES
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SUMMARY OF CRANE POST TEST 
EVALUATION

Discharge Charge +10oC Cells -5oC Cells 
 Normal 1.04 recharge ratio 1.03 recharge ratio 
C-rate  21.7 Ah discharged 46.8 Ah discharged 
C/10-rate  11.3 Ah discharged   7.7 Ah discharged 
Total 1st discharge  33.0 Ah discharged 54.5 Ah discharged 
 C/2-rate 48.9 Ah charged 48.9 Ah charged 
 C/10-rate 14.8 Ah charged 14.9 Ah charged 
 Total 1st charge 63.7 Ah charged 63.8 Ah charged 
C-rate  49.9 Ah discharged 50.2 Ah discharged 
C/10-rate    7.7 Ah discharged   9.0 Ah discharged 
Total 2ed Discharge  57.6 Ah discharged 59.2 Ah discharged 
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AEROSPACE DPA ACTIVITIES
• CELLS PUNCTURED IN SPECIAL CHAMBER TO MEASURE 

RESIDUAL GAS PRESSURE AND COMPARE WITH STRAIN 
GAUGE READINGS OF OTHER CELLS WITHIN THE PACK

• RESIDUAL GAS SAMPLES SENT FOR MASS SPEC. 
ANALYSIS

• FLOODED UTILIZATION AND EVS TESTING OF PLATE 
SAMPLES FROM FOUR SECTORS OF THE CELLS

• CHEMICAL ANALYSIS CARRIED OUT ON SINTER AND 
ACTIVE MATERIAL
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RESIDUAL PRESSURE AND GAS 
ANALYSIS

Cell Pack 3214 E 3254 E
Cycling Temp. - oC + 10 -5
Residual Pressure - psia 118.0 1.3
Composition - %

Hydrogen 97.8 3.0
Water Vapor 1.8 16.3
Nitrogen 0.3 77.9

Average Plate Expansion - %   15.7 15.0
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SUGGESTED MECHANISM
• CHARGING TO HIGHER VOLTAGES CONVERTS BETA 

NICKEL OXYHYDROXIDE TO THE GAMMA PHASE
• UPON DISCHARGE, THE UNSTABLE ALPHA FORM OF 

NICKEL HYDROXIDE IS FORMED
• THIS MATERIAL DISSOLVES IN KOH AND PRECIPITATES AS 

A VERY SMALL CRYSTALINE FORM OF BETA NICKEL 
HYDROXIDE

• THIS IS THE ACTIVATED FORM AND CAN EASILY BE 
CHARGED TO THE GAMMA FORM VIA THE BETA NICKEL 
OXYHYDROXIDE

• OSTWOLD RIPENING CONVERTS THE ACTIVATED FORM 
BACK TO THE DEACTIVATED FORM

• LOWER TEMPERATURES FACILITATE THE CHARGING TO 
THE GAMMA PHASE AND RETARDS THE RATE OF 
COVERSION BACK TO THE DEACTIVATED FORM
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SUGGEST RECHARGE PROTOCOL TO 
AVOID OR MINIMIZE WALKDOWN

• CYCLING TEMPERATURE MUST BE LOW ENOUGH TO 
PERMIT CHARGING TO THE GAMMA PHASE

• DETERMINE MINIMUM VOLTAGE REQUIRED TO CONVERT 
MATERIAL TO THE ACTIVE FORM

• CHARGE TO A CUTOFF PRESSURE OR MONITOR THE END 
OF CHARGE PRESSURE

• CORRECT PRESSURE READING FOR STRAIN GAUGE DRIFT 
AND SINTER CORROSION VIA RECONDITIONING
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SUMMARY
• CAPACITY WALKDOWN A CONSEQUENCE OF THE 

INABILITY TO MAINTAIN A HIGHT STATE OF CHARGE
• CAPACITY LOSS IS TYPICALLY 35% WHICH WOULD BE 

EXPECTED BY THE VALENCE DIFFERNCE BETWEEN 
GAMMA AND BETA NICKEL OXYHYDROXIDE

• CYCLING AT -5 DEGREES FACILITATES THE FORMATION 
OF THE GAMMA PHASE

• EXCESSIVE OVERCHARGE CAN ALSO FACILITATE GAMMA 
PHASE FORMATION AT THE EXPENCE OF CYCLE LIFE

• CONDITIONS CAN NOW BE SUGGESTED TO HELP MINIMIZE 
CAPACITY WALKDOWN
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Mathematical Modeling of
Ni/H2 and Li-Ion Batteries

John W. Weidner, Ralph E. White
Department of Chemical Engineering

and 
Roger A. Dougal

Department of Electrical Engineering

Center for Electrochemical Engineering
University of South Carolina

Columbia, SC 29208



Analysis of Battery Systems

Experimental
Data

Physical
Insight

Mathematical
Models



Modeling Effort

• Electrochemical Deposition of Nickel Hydroxide
ØDeposition rates of thin films
ØImpregnation of porous electrodes

• Experimental Characterization of Nickel Hydroxide
ØDiffusion coefficients of protons
ØSelf-discharge rates (i.e., oxygen-evolution kinetics)
ØHysteresis between charge and discharge
ØCapacity loss on cycling 



Modeling Effort

• Mathematical Modeling of Ni/H2 Batteries
• Experimental Verification of the Ni/H2 Battery Model
• Mathematical Modeling Li-Ion Batteries
• Experimental Verification of the Li-Ion Battery Model
• Integrated Power System Models for Satellites
• Experimental Verification of Integrated-Systems Model



Schematic of Ni/H2 Battery 

y =l y 

y =0 
r = r 0 

Pressure 
Vessel 

Cell 
Stacks 

Negative 
Terminal 

Positive 
Terminal 

Head 
Space 

Nickel Substrate 

Gas Phase 

Electrolyte 

Active Material 

y  coordinate 

Core (electrode 
leads inside) 

(a) 

(c) (d) 

Idealization 

Gas Screen 

Hydrogen 
Electrode 

Separator 

Nickel 
Electrode 

Positive 
Lead 

Negative 
Lead 

x=0 

x=l 1 

x=l 2 

x coordinate 

(b) Magnifying 

r coordinate 

Ni(OH)2

NiOOH



Proton Diffusion Coefficient

S. Motupally, C. C. Streinz, and J. W. Weidner, J. Electrochem. Soc., 142, 1401-1408 (1995).



Utilization of the NiOOH

S. Motupally, C. C. Streinz, and J. W. Weidner, J. Electrochem. Soc., 145, 29-34 (1998). 



Utilization of the NiOOH

S. Motupally, C. C. Streinz, and J. W. Weidner, J. Electrochem. Soc., 145, 29-34 (1998). 
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Hysteresis in the Nickel Electrode
Constant Current vs. Constant Potential Experiments
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Internal Hysteresis Loops in The Ni Electrode
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Crystal Structures for 
Nickel Hydroxide

ABBCCA Structure: NiOOH ABAB Structure: Ni(OH)2



Bode Diagram

Modified Bode Diagram
α-Ni(OH)2
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Change in Defect Parameters on Cycling
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Simulated Charge/Discharge of a Ni-H2 Cell

0 2 4 6 8 10 12 14 16 18 20 22 24

Time (h)

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

V
ol

ta
ge

 (V
)

6.0

6.2

6.4

6.6

6.8

7.0

7.2

7.4

7.6

7.8

8.0

C
on

ce
nt

ra
tio

n 
of

 K
O

H
 (M

)

2β− 3β cycle
x=0.11

2α− 3γ cycle
x=0.25

No defects



0 4 8 12 16 20 24

Time (h)

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

V
ol

ta
ge

 (V
)

6.0

6.2

6.4

6.6

6.8

7.0

7.2

7.4

7.6

7.8

8.0

C
on

ce
nt

ra
tio

n 
of

 K
O

H
 (M

)

y1=0
y1=0.1

y1=0.25

Simulated Charge/Discharge of a Ni-H2 Cell



Simulated Capacity and KOH Concentration on Cycling
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Comparison of Model Predicted 
Cell Potential with TRW Data
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Comparison of Model Predicted 
Cell Temperature with TRW Data
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Comparison of Model Predicted 
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Experimental & Simulated Discharge Curves for a
Li-Ion Cell with 1.25 M Initial Salt Concentration
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Abstract 
Accelerated and real-time LEO cycle-life test data will be presented for a range of 

commercial Li-ion and Li-polymer (gel type) cells indicating the ranges of performance 
that can be obtained, and the performance screening tests that must be done to assure long 
life.  The data show large performance variability between cells, as well as a highly 
variable degradation signature during non-cycling periods within the life tests.  High-
resolution Dynamic Calorimetry data will be presented showing the complex series of 
reactions occurring within these Li cells as they are cycled.  Data will also be presented 
for cells being tested using an Adaptive Charge Control Algorithm (ACCA) that 
continuously adapts itself to changes in cell performance, operation, or environment to 
both find and maintain the optimum recharge over life.  The ACCA has been used to 
prevent all unneeded overcharge for Li cells, NiCd cells and NiH2 cells.  While this is 
important for all these cell types, it is most critical for Li-ion cells, which are not 
designed with electrochemical tolerance for overcharge. 
 
 

Introduction 
 The development of lithium-ion battery cells that are capable of long cycle-life for 
commercial applications has tempted satellite power-system engineers for years with the 
promise of smaller and lower weight battery systems.  However, the accumulation of the 
performance history and databases necessary to assure high reliability over long-term 
space missions as well as the needed optimization of lithium-ion power systems, have 
made the anticipated transition to lithium-ion batteries in satellite systems quite slow.  
One of the leading satellite types expected to advantageously utilize lithium-ion 
technology is nanosatellites and picosatellites.  These satellites are very small, typically 
in the 100g to 10 kg range.  Because of their small size, very compact and lightweight 
batteries offer compelling advantages.  Because of their relatively low cost and generally 
limited life requirements (1-3 years in low earth orbit is typical), commercial lithium-ion 
battery technology provides a promising power system option for these classes of 
satellites. 
 Here we will present performance data and thermal characteristics of selected 
commercial lithium-ion battery cells to illustrate some of the key advantages of these 
batteries for small satellites, as well as some of the issues that must be handled to reliably 
integrate these batteries into a successful power system. 
 

Cycle-Life Measurements 
The cycle life of a lithium-ion battery must be adequate to support worst-case 

mission needs with sufficient margin to assure high reliability when cell performance 



variability is considered.  One issue that has been noted for lithium-ion battery cells is 
that cycle life performance can be highly variable, depending on the details of how cells 
are built and how they are tested.  It should be pointed out that this experience matches 
that obtained early in the use of nickel cadmium and nickel hydrogen cells, where large 
variability in performance taught many lessons related to cell design and charge 
management practices.  Given this situation, it is key to the use of lithium-ion batteries 
that appropriate test and screening regimens be developed to assure that all cells selected 
for satellite use will perform well with the anticipated charge control system.  To this end 
we have developed an accelerated cycling test that will rapidly indicate the cycle-life 
capability of lithium-ion battery cells. 

A key difficulty in assessing the cycle-life capability of lithium-ion cells is the 
strong coupling between cycle life and both charge-management and operational 
temperature.  This kind of coupling is not really surprising, since it has also been found to 
be the rule for other kinds of battery cells, most notably nickel cadmium and nickel 
hydrogen.  As for these other types of battery cells, databases must be developed that 
show precisely how temperature and different charge management variations affect 
cycle-life.  To help gather such data we have developed a simple accelerated life test 
protocol that is based on a simple doubling of the cycle-times normally associated with 
low-earth-orbits.  This test employs a 45-minute cycle consisting of 15 minutes for 
discharge and 30 minutes for recharge, and operates the cells at 20% depth-of-discharge 
(DOD).  Recharge is at a C/2 rate, with a constant voltage limit of 4.0 or 4.1 volts, and 
test temperature is 20 deg C.  Thus, this test applies the currents normally anticipated at 
40% DOD in a standard 90-minute LEO cycle.  The test is therefore very sensitive to the 
increases in resistance that have often been seen to accompany or forewarn premature 
cell degradation, while allowing a x2 acceleration factor in cycle numbers.  Whether this 
acceleration factor of 2 applies to standard LEO orbital usage remains to be debated, and 
ultimately will be established based on the test data. 

This accelerated life test has been applied to a range of commercial Li-ion cells to 
determine anticipated performance.  Figure 1 shows the relative cycle life performance of 
two types of SONY 18650 cells.  Cell type A was acquired in 1994 and remained stored 
in the laboratory until 1999, when the cells were put on test.  Cell type B was acquired in 
1999 and immediately put on test.  These two types of cells reflect the changes in cell 
design over a 5-year period for SONY.  It should be noted that the type B cells had at 
least a 10% greater beginning-of-life capacity relative to the type A cells.  These cells are 
being tested at a 1.5 Ah nameplate capacity and recharge is to a 4.1-volt limit. 

There are several noteworthy results in Figure 1.  First, after about 16,000 cycles 
of testing, it has become clear that both the type A and the type B cells are capable of a 
very long cycle life.  Extrapolation of the observed degradation slopes yields a cycle life 
in excess of 50,000 for all these cells.  The other noteworthy result is that the degradation 
rate for the newer type B cells is about twice that of the older Type A cells, in spite of the 
greater capacity in the newer cells.  This was expected, and is at least partially a result of 
the utilization of a graphitic carbon in the anodes of the newer cell design, thus providing 
higher voltage and capacity at the cost of more rapid degradation of the highly ordered 
graphite structure.  These results, however, clearly demonstrate that it is important to 
routinely screen the performance of each lot of commercial cells acquired for space use 
so that such changes in design or performance will be detected prior to flight. 



 

 
The need for cell screening can be made dramatically clear by the results in 

Figure 2, which shows the relative performance obtained for cells from two different lots 
of cells that were built about 2 months apart.  These are lithium-polymer cells, which are 
of significant interest in nanosatellites because they can be sandwiched into the satellite 

 

Figure 1.  Comparison of Accelerated Cycling Performance for Type A and Type B 
SONY 18650 Cells. 

 

Figure 2.  Relative Accelerated Test Performance of Two Lots of Li-Polymer Cells. 



structure much more easily than the cylindrical 18650 cells.  As noted in Figure 2, cells 
from the first lot operated only 1000 to 3000 cycles before failing, while cells from the 
second lot operated 15,000 cycles. 

The issue of optimum charge control for lithium-ion cells is an area that has not 
been fully resolved.  As indicated in Figure 1, simple recharge to 4.1 volts each cycle, 
then allowing the current to taper at the 4.1-volt limit can be very effective.  However, 
the optimum recharge voltage level may not always be 4.1 volts.  It may vary with the 
cell design, temperature, electrode degradation over life, recharge rates, or a variety of 
other parameters.  One indication that this is indeed the case is shown in Figure 3, where 
the performance of four 1.5 Ah lithium polymer cells from the same build lot is indicated.  
Two of these cells were cycled with a 4.1-volt recharge limit and the other two were 
cycled with a 4.0-volt limit.  The cells cycled to 4.1 volts started out with a much higher 
discharge voltage, however they did settle in on a more rapidly dropping voltage as 
cycling progressed.  The cells cycled to 4.1 volts also developed a downwards curve to 
their end-of-discharge voltage that ultimately made them fail long before the cells that 
were only being recharged to 4.0 volts.  It is noteworthy that the cells cycled to 4.0 volts 
have degraded with a slow linear slope to the end-of-discharge voltage, thus not 
displaying any tendency to develop a curving down drop-off. 

 
 The results in Figure 3 can be interpreted to suggest a different failure mode 
coming into play when these cells were cycled to 4.1 volts, which was not the main 
degradation mode at a recharge limit of 4.0 volts.  One suggestion is that the rapid and 
curving drop-off in end-of-discharge voltage is due to capacity loss, which was 
significantly accelerated by recharge to the higher voltage.  This rapid and curving drop-

 

Figure 3.  Relative Performance of Lithium-Polymer Cells Charged to Different 
Voltage Limits. 



off is superimposed on a more linear drop-off that is due to increases in the impedance of 
the electrodes and electrolyte as the cells are cycled.  For the cells cycled to 4.0 volts, the 
increasing impedance of the cells appears to be the dominant degradation mode, 
explaining why no tendency has yet been seen for the end-of-discharge voltage to curve 
downwards.  These results clearly suggest that limiting the added degradation mode at the 
higher voltages for these cells can significantly increase their expected performance life 
and reliability in a satellite power system, at the cost of some lesser performance at 
beginning of life. 
 The data in Figure 3 also show another potential issue with lithium ion cells.  At 
about cycle 3500, a two-week test shutdown occurred due to the failure of some test 
equipment.  During these two weeks the cells were left in the fully charged state (either at 
4.0 or 4.1 volts).  When the cycling resumed, all the cells adopted an increased 
degradation rate, except one of the cells being charged to 4.0 volts.  In addition several of 
the cells displayed a step decrease in the end-of-discharge voltage in response to simply 
standing open circuited for two weeks in the fully charged state.  Both the variability in 
how this stand period impacted the cells, as well as the performance loss itself are a 
significant concern.  These results indicate that cells should be maintained at a less than 
fully charged state during known periods where no cycling or very shallow cycling is 
required.  This is a charge management capability that must be built into the satellite 
power system, since in many low-earth-orbits there are sometimes periods of up to 
several weeks when no battery cycling is required. 
 The accelerated testing that has been done on a wide range of lithium-ion and 
lithium polymer cells suggests that the initial downward slope in the end-of-discharge 
voltage is a good relative indication of degradation rate and ultimate cycle life.  If we 
examine the slope over the first 2500 cycles of test, those cells that failed most rapidly 
always had a higher slope.  While simple extrapolation of slopes to a failure point could 
be deceiving due to the accelerating drop-off for some cells, in all cases these cells had a 
higher early slope than did cells that did not exhibit downwards curvature towards end-
of-life.  Thus, we propose a 2500-cycle accelerated screening test be performed on a 
sampling of commercial cells from each lot intended for use in satellites.  While this test 
can be performed at any temperature, we recommend 20 deg C as a good standard 
temperature.  The charge voltage limit for this test should be based on that anticipated in 
the power system, but based on our data a 4.0-volt limit is recommended. 
 

Dynamic Calorimetry Results 
The heat generation from lithium-ion cells is important both for designing a 

thermal control system that can adequately handle the end-of-life thermal environment, 
and for observing the electrochemical processes within an operating cell.  The voltage of 
a lithium-ion cell typically does not clearly show steps and plateaus corresponding to the 
changing processes in the cell.  However, the thermal behavior of a cell is capable of 
separating quite subtle changes in the cell reaction processes.  Heat generation from 
lithium cells was measured here using dynamic calorimetry.  This technique provides 
accurate heat generation rates or rapidly changing systems, and thus is applicable during 
high rate charge or discharge.  Heat generation is sensed by the response of tiny 
thermistors attached to the sides of a cell.  The cell is immersed in a fluid bath that is held 
at a constant temperature (to + 0.0002 deg C), and heat generation is determined from the 



response of the thermistors which respond to the small region of the cell wall to which 
they are attached. Typical maximum thermal excursions for these thermistors are about 
0.1 deg C for 1.5 Ah lithium-ion cells.  This heat measurement system is calibrated by 
balancing electrical and thermal energy over a complete stabilized charge/discharge 
cycle, and typically has a thermal time constant of only several seconds. 

 
Figure 4 shows a typical charge and discharge voltage, which has a number of 

subtle inflections during recharge and discharge, but no clear indication of changing 
electrochemistry as the cell is cycled.  Figure 5 shows how the heat generation from a 1.5 
Ah lithium-polymer cell varies during charge and discharge at 20 deg C, and compares 

the heat generation to the voltage profile.  There are clearly a number of step changes in 
the heat production by this cell as it goes through several endothermic processes at the 
start of recharge, followed by several exothermic processes.  All of these processes 
appear to be fully reversible, i.e. they appear during discharge as well as during recharge 
with the exception of the exothermic spike seen at the start of recharge.  This exothermic 
spike is always seen for this particular type of cell, suggesting that some reactive material 
has been formed during recharge that is initially discharged.  While this raises some 
concern regarding cycle life for this cell design, cells that are on test appear to be capable 
of about a 20,000 cycle life at 20% DOD. 

The thermoneutral voltage of the cell may be determined during charge and 
discharge from the heat generation data.  The thermoneutral voltage is the voltage at 
which no heat is generated during charge or discharge.  Figure 6 indicates the 
thermoneutral voltage along with the cell voltage for a 1.5 Ah lithium-polymer cell.  
There are clearly a number of staging processes taking place during intercalation as the 

 

Figure 4. Typical Charge and Discharge Voltage for a Lithium-Polymer Cell. 



cell charges and discharges, and which correspond to the changes in heat generation seen 
in Figure 5.   

 

 

 

Figure 5.  Lithium-Polymer Cell Heat Production during Charge and Discharge. 

 

Figure 6.  Lithium Polymer Cell Voltage and Thermoneutral Potential during 
Charge and Discharge. 



Adaptive Charge Control Algorithm 
 The long-term performance of most rechargeable batteries is degraded by 
unnecessary overcharge.  While nickel cadmium and nickel hydrogen cells can tolerate 
overcharge, any overcharge that is not needed to maintain the state-of-charge does indeed 
tend to diminish cycle life.  Lithium-ion cells have no internal mechanism to allow them 
to tolerate overcharge, thus any overcharge not needed to keep them charged adequately 
should be avoided if long cycle life is required.  We have developed an adaptive charge 
control algorithm that applies recharge based on keeping track of recharge ratio, and 
which continuously adjusts the applied recharge ratio to prevent any overcharge that is 
not needed to maintain the state of charge.  This algorithm automatically adjusts for 
inaccuracies in the recharge ratio measurement, for temperature variations, electrode or 
cell degradation, as well as current or DOD changes.  In this way this algorithm seeks to 
prevent any unneeded overcharge over cycle life, which should optimize the cycle life 
from a given lithium-ion cell design. 
 Figure 7 indicates a test of this algorithm on a pair of NiCd cells.  The algorithm 
required about 550 cycles to adapt itself to the needs of a NiCd cell, settling out with a 
recharge ratio of about 101% in this 20% DOD test.  Figure 8 indicates another test of 
this algorithm for a 0.75 Ah commercial lithium-ion cell pair operated in a thermal 
vacuum environment that simulated low-earth orbit operation at 20% DOD.  These cells 
operated for over 2200 cycles with little evidence of significant degradation.  The 
dithering of the voltages in Figure 8 is due to the continuous adjustments in the cell 
recharge as the adaptive algorithm verifies that it is maintaining the optimum recharge 
conditions.  Figure 9 shows a similar simulated low-earth orbit test of two 1.5 Ah 
lithium-polymer cells in a nanosatellite mass simulator operated in a thermal vacuum 
chamber.  In Figure 9 we again see the dithering as the algorithm continuously adjusts the 
amount of recharge applied to the cells, which is controlled on an independent cell basis.  
These two cells do show some evidence of degradation after about 3000 cycles, which is 
recognized by the gradual decrease in the average end-of-discharge voltage and increase 
in the end-of-charge voltage.  In this test the end of life will occur when the average end 
of discharge voltage reaches 3.0 volts and the peak recharge voltage reaches 4.1 volts.   

 

Figure 7.  Adaptive Charge Control Test for 2 NiCd Cells. 



 
 
 The Adaptive Charge Control Algorithm method for the charge management of 
lithium ion batteries can offer a minimum stress cycling regime that will change in 
response to changes in the cell electrodes, resistance, or environment to maintain 

 

Figure 8.  Adaptive Charge Control Test for Two Lithium-ion Cells. 

 

Figure 9.  Adaptive Charge Control Test for Two Lithium-polymer Cells. 



minimum stress.  This approach is capable of actually optimizing the cycle life of a 
lithium-ion battery.  Additional testing of this algorithm with spacecraft type lithium-ion 
cells is expected to begin shortly. 
  

Conclusions 
 An accelerated cycling test has been developed that can screen lithium-ion test 
cells from a given lot in 2-3 months of test time, and is based on the degradation seen in 
cell voltages over the first 2500 cycles.  Evidence has also been seen suggesting that 
some lithium-ion cells do not respond well to periods of stand in a highly charged state.  
Calorimetry measurements on a wide range of lithium-ion and lithium polymer cells 
invariably show a rich chemistry of staging processes as lithium ions undergo stepwise 
intercalation into the electrodes.  Calorimetry can also provide an extremely sensitive 
method for detecting changes in cell design or chemistry over time, as well as verifying 
the thermal design of a satellite for a given type of cell at end of life. 
 An Adaptive Charge Control Algorithm has been discussed that is capable of 
automatically adapting to the charge needs of a battery cell so as to maintain an 
optimized recharge protocol for minimizing stress due to cycling.  Data have been 
presented demonstrating the functioning of this algorithm for NiCd, lithium-ion, and 
lithium-polymer batteries. 
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Eagle-Picher Technologies, LLC
Single Pressure 

Vessel (SPV) 
Background

o Originally Developed for 
the Iridium® Program

o 104 Batteries Produced
o 92 Batteries Launched
o Flights Included Batteries 

Having Capacities of 50 
Ah and 60 Ah
o Iridium®, Ikonos, STEX
o 50 Ah --- 24 Flights
o 60 Ah --- 68 Flights
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Eagle-Picher Technologies, LLC
Single Pressure 

Vessel (SPV) Battery 
Characteristics

o All Cells in One 
Pressure Vessel

o Pressure Monitored 
by Two Transducers 
for Redundancy

o Heat Conducted by 
Ni-coated Al Plates

o Cell Terminals 
Connected by 
Mechanical Pressure
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Eagle-Picher Technologies, LLC

SPV Design Heritage

o Qualified Batteries In the 10 inch Diameter Pressure Vessel:
o 30 Ah --- SAR 10107

l Length 19.44 inches
l MEOP 400 psig
l Weight 43 lbs

o 50 Ah --- SAR 10065
l Length 24.7 inches
l MEOP 500 psig
l Weight 67 lbs

o 60 Ah --- SAR 10081
l Length 25.2 inches
l MEOP 640 psig
l Weight 80 lbs
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Eagle-Picher Technologies, LLC Designs in 
Development

o Two Battery Designs in Development with 13 inch Diameter 
Pressure Vessels

o Scaled From the 10 Inch Designs
o Lessons Learned From 10 Inch SPV Applied to 13 Inch 

Diameter Battery Designs
o Cell Terminal/ECS Seal Design Modified Due to the Need 

for a Larger Current Conductor
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Eagle-Picher Technologies, LLC SPV Design 
Comparison

Modules Per 
Cell

Resulting 10" 
Design Capacity 

(AH)

Resulting 13" 
Design Capacity 

(AH)
3 30 N/E
4 40 80
5 50 100
6 60 120

o 30 Ah, 50 Ah, & 60 Ah 10” Battery Designs Proven 
by Flight Heritage.

o 80 Ah & 120 Ah 13” Battery Designs Are Currently 
in Development.  
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Eagle-Picher Technologies, LLC

SPV Cell Design

o Same Cell Design 
As Was Used in 10” 
Design  

o Dual Layer 
Electrolyte 
Containment 
System

o Microporous Vent 
Allows Gas to Flow, 
but Not Liquid
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Eagle-Picher Technologies, LLC

SPV Module features

o “Half-Moon” Module 
Shape Identical to 10” 
Design

o Nickel Plaque Identical 
to Original 10” Design

o Two Tabs Per 
Electrode for Low 
Impedance and 
Redundancy

o Absorber Functions As 
an Electrolyte 
Reservoir



9

Eagle-Picher Technologies, LLC SPV Pressure Vessel 
Characteristics

o Pressure Vessel Manufactured From Inconel 718 by the 
Same Processes Used in the 10” Design

o Boss and Trunion Welds Are LASER Welds

o Girth Weld Is LASER Weld by In-house System

o Pressure Vessel Qualified With Cycle-burst Sample in 
Same Manner As 10” Designs
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Eagle-Picher Technologies, LLC 13” Battery Design 
Improvements

o Most Changes to SPV Design Are Necessary to Incorporate the 
Larger Electrode Size or Higher Current Rates.

o ECS-Comb Seal Redesign Completed and Verified Through 
Development Test

o Benefits of ECS-Comb Seal Redesign
o Fewer Parts Necessary to Seal Simplifies Comb Seal
o ECS Hermetically Sealed and Tested Prior to Battery Stack
o Restacking Battery Will Not Automatically Require a Rebagging of Cells
o Allows Larger Surface Area for Intercell Electrical Connections
o Fewer Electrical Tie Rods Reduces Mass Associated With Electrical 

Connections
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Eagle-Picher Technologies, LLC
SPV Battery 
Performance 
Similarities

o Battery Impedance  Similar to That of the 10” Design 
(<35 mΩ) – Measured 21 mΩ

o Charge Retention Efficiency Is Same As 10” Design (85-
90%) – Measured 87.5%

o Hydrogen Leak Rate Same as Level Experienced in 
10”design (< 5 X 10-6 cc/sec)
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Eagle-Picher Technologies, LLC 80 AH SPV Battery 
Design Summary

o Battery Type SAR 10121 
o Nominal Voltage (volts) 27.7
o Rated Capacity (Ah) 80
o Actual Capacity (Ah) 90.6
o Specific Energy (WHr/kg) 55.3
o Energy Density (WHr/liter) 70.9
o Weight (lb) 100
o Diameter (inches) 13.06
o Length (inches) 26.4
o MEOP (psig) 540
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Eagle-Picher Technologies, LLC C/10 Charge for 
SAR 10121
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Eagle-Picher Technologies, LLC C/2 Discharge for
SAR 10121
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Eagle-Picher Technologies, LLC
C/2 Discharge for 

SAR 10121 After 72 Hr 
OCV
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Eagle-Picher Technologies, LLC Step Charge for 
SAR 10121
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Eagle-Picher Technologies, LLC Discharge with 
160 amp Pulse 

SAR 10121
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Eagle-Picher Technologies, LLC
120 AH SPV Battery 

Proposed Design 
Summary

o Battery Type SAR 10125 
o Nominal Voltage (volts) 27.7
o Rated Capacity (Ah) 120
o Actual Capacity (Ah) 132
o Specific Energy (WHr/kg) 53.7
o Energy Density (WHr/liter) 64.3
o Weight (lb) 150
o Diameter (inches) 13.06
o Length (inches) 36.2
o MEOP (psig) 540
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Eagle-Picher Technologies, LLC
Planned 13” Battery 
Design Qualification 

Tests

o Pressure Vessel Qualification (Cycle & Burst Sample)
o Random Vibration to 12.9 Grms
o Sinusoidal Vibration to 10.5 G
o Pyrotechnic Shock 
o Electrical Testing

o Standard Capacity @ -10°C to 30°C
o LEO Operational Profile 
o GEO Operational Profile
o Charge/Discharge Rates (pulse)
o Charge Retention @ 10°C
o Impedance
o Insulation Resistance
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Eagle-Picher Technologies, LLC

Summary

o Two Battery Designs Are Being Developed in the 13 Inch 
Diameter

o Both Designs Utilize the Basic Technology Qualified and 
Flown on the Iridium® Program

o 80 Ah Design Is Being Completed for Qualification Test 
with Planned Completion of March 2001

o 120 Ah Design Will Be Completed by November 2001
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CRANE CELL TESTING SUPPORT OF
NASA/GODDARD SPACE FLIGHT 

CENTER:  AN UPDATE

Mike Strawn and Jerry David
NAVSURFWARCENDIV Crane, Indiana

Gopalakrishna M. Rao
NASA Goddard Space Flight Center

Greenbelt, Maryland
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OBJECTIVE

• Verify the Quality and Reliability of aerospace battery 
cells and batteries for NASA flight programs

• Disseminate the data
– to develop a Plan for in-orbit battery management
– to Design a cell/battery for future NASA spacecraft

• Establish a cell test Data Base for rechargeable 
cell/batteries
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PACKS
Orbit Pack Type Ah

Start
Date DoD °C

K
Cycles

Stress 0021H Super 21 10/98 50 20 10.9
Mission 0040P Saft Ni-Cd 40 7/96 21 5 20.4
Mission 0044P Saft Ni-Cd 40 1/99 21 5 9.0
Mission 0045P Saft Ni-Cd 40 1/00 21 5 3.2
Mission 0052T Super 50 3/95 14.4 10 28.9
Mission 0053T Super 50 5/95 17 0 27.9
Mission 6151T Super 50 6/96 25 10 22.4
Stress 6152T Super 50 6/96 17 0 24.6
Stress 3023M EPT-CPV 23 11/98 60 10 1.3
Stress 3023T EPT-CPV 23 12/98 60 10 10.4

Mission 3050S EPT 50 1/00 60 10 4.1
Mission 3050H EPT 50 10/95 20 5 25.6
Mission 3600H EPT 93 1/92 11 -5 42.7
Mission 3601H EPT 93 1/92 11 -5 42.2
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DISCONTINUED PACKS

Orbit Pack Type Ah
Date
Start/
End

DoD ºC
K

Cycles

Stress 0042P Saft Ni-Cd 40 7/97
3/00

40 20 15.1

Stress 0043P Saft Ni-Cd 40 10/97
2/00

40 20 13.1

Mission B300A Super 21 3/99
2/00

pulse 5 0.5

GEO
REAL

GOES 1 Saft Ni-Cd 12 10/95
7/00

60 0 Sh#10

Packs discontinued during FY00
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SUMMARY

• Quality EPT Ni-H2, EPT Super NiCd and SAFT NiCd cells 
have been demonstrated for Aerospace applications

• The data has been provided to NASA Centers and other          
Agencies for their use and application

– Developed plan and used in NASA in-orbit battery 
management.

• Database on rechargeable cell/batteries is now available for 
customer use.



Effect of  Handling, Storage and Cycling on
Ni-H2 Cells: Second Plateau Phenomenon

Hari Vaidyanathan
Lockheed Martin Global Telecommunications

And
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Background

• The discharge voltage profile for some Ni-H2 cells exhibits 
a second plateau at about 0.8V

• The capacity at a lower voltage plateau results in loss of 
useful energy

• The proportion of capacity in the second plateau varies 
with handling, storage, use and cycling



Criteria for Cell Selection

•Cells received after ATP from the Vendor
•Cells stored cold in discharged open-circuit conditions
•Cells stored dry/cold and activated in later years

- Room temperature exposure 
•Cells removed from a workhorse battery

- Room temperature exposure
- Intermittent charging
- Extensive use
- Cell reversal



Cell History
CELL I.D. HISTORY

T E R R A  -  5 0  A H

2-044 STORED AT LOW TEMP

1-005 STORED AT LOW TEMP

2-117 WORKHORSE BATTERY

2-14 6  WORKHORSE BATTERY

3-16 0 17317 LEO CYCLES (40% DOD AND 10°C)

3-205 STORED AT LOW TEMP

2-097 WORKHORSE BATTERY

2-048 WORKHORSE BATTERY

2-061 WORKHORSE BATTERY/500 LEO CYCLES (40% DOD AND 10°C)

HS T  -  9 3  A H

10-515 ATP

10-511 DRY STORED (2 YRS), STORED UNCONTROLLED (1 YEAR) AFTER ATP

10-512 DRY STORED (2 YRS), STORED UNCONTROLLED (1 YEAR) AFTER ATP 

11-754 DRY STORED (2 YRS), STORED UNCONTROLLED (1 YEAR) AFTER ATP

A Q U A  a n d  A U R A            
16 0  A H

1-041 ATP
2-10 2 ATP, SEAL REWORK, ATP



C/2 RATE DISCHARGE PROFILES AT10OC
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Second Plateau Capacity at C/2 Discharge
CELL I.D. HISTORY Capacity AH,10°C SECOND PLATEAU

1V 0.1V CAPACITY, %
50 AH, TERRA

2-044 Stored at low temp. 68.9 69.7 1.1
1-005 Stored at low temp. 63.6 64.3 1
2-117 Workhorse battery 56 63.8 12.2
2-146 Workhorse battery 62.5 63.9 2.2
3-160 17317 LEO cycles 53.4 64.5 17.2
3-205 Stored at low temp. 63.7 64.2 0.78
2-097 Workhorse battery 55.2 67.5 18.1
2-048 Workhorse battery 56 67.7 17.3
2-061 Workhorse battery, 500 LEO cycles 54.4 68.9 21

93 AH, HST
10-515 ATP 84.2 88.7 5
10-511 Dry storgae, Uncontrolled storage after ATP 93.4 98.3 5
10-512 Dry storgae, Uncontrolled storage after ATP 93 99.3 5.9
11-754 Dry storgae, Uncontrolled storage after ATP 91.8 97.5 5.8

160 AH, AQUA and AURA
1-041 ATP 184.7 185.1 0.3
2-102 ATP, Seal rework, ATP 192.2 192.9 0.2



VARIATION OF EOD VOLTAGE WITH CYCLING FOR 
CELL 160 (ATP) 60% DoD AT 10°C
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VARIATION OF END OF DISCHARGE VOLTAGE 
FOR  CELL 048 AT 60% DoD AT 10°C

 (Workhorse Battery - TERRA)
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RESISTOR DRAIN
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Cell Reversal Test Condition

• Temperature = 20°C
• Charge at C/10 for 16 hrs followed by two discharges at 

C/2 to 1V and at C/20 to 0.01V and then resistive drain to 
0.005V

• Reversal discharge at C/40 for 5 minutes



REVERSAL DISCHARGE @ 1.25A
TERRA 50AH
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GAS ANALYSIS
CELL  I.D. GAS CONTENT
50 AH TERRA cell(2-044), stored at low temp. No  gas present
50 AH TERRA (2-061), wo rkho rse, 500  cycles vacuum 
50 AH TERRA (2-097), workhorse No  gas present
50 AH TERRA (2-117), work ho rse H2  less  than 100mL
50 Ah TERRA (3-160), ATP, 173 17 cycles H2  3700  mL
50 AH TERRA (2-146), wo rkho rse vacuum 
50 AH TERRA (3-205), stored at low temp. vacuum 
93  AH HST (11-754 ), s to red  uncontrolled 1 year vacuum 
93  AH HST (10 -511), stored uncontrolled 1 year vacuum 
93  AH HST (10 -512 ), stored uncontrolled 1 year vacuum 
93  AH HST (10 -515), s to red  uncontrolled 1 year vacuum 
16 0  AH AQUA (1-041), ATP vacuum 
16 0  AH AURA (2 -102), ATP, seal rewo rk, ATP vacuum 



NICKEL PRECHARGE
CELL ID AH ELECTRICAL CHEMICAL TOTAL TOTAL, %

50 AH TERRA (2-044) 58.9 0.3 8.0 8.3 16.5
 50 AH TERRA (2-117) 49.1 0.0 14.6 14.6 29.2
 50 AH TERRA (3-160) 47.5 0.0 9.1 9.1 18.1
50 AH TERRA (2-146) 58.7 0.7 1.3 4.5 8.9
50AH TERRA (3-205) 57.3 1.0 8.7 9.7 19.4
93 AH HST (10-511) 89.3 0 7.9 7.9 8.8
93 AH HST (10-515) 78.6 1.4 12.8 13.2 14.7
160 AH AQUA Cell (1-41) 150 8 19.3 27.3 18.2
160 AH AURA Cell (2-102) 165 8.7 16.3 25 15.1

* Based on measured 20°C Capacity



Summary

• Cell stored at low temperature did not exhibit a second 
plateau in the discharge profile 

• Second plateau occurs in cells that are subjected to excessive 
use, high temperature exposure, intermittent charging, cell 
reversal, and cycling

• Cells exhibiting second plateau also have a large residual 
capacity at a lower voltage of about 0.8 V and a voltage 
plateau at 1V during resistive drain

• Gas analysis indicated the presence of large quantity of 
hydrogen in the cycled cell and relatively small quantity of 
hydrogen in ONLY one of the cells that exhibited second 
plateau

• Chemical analysis indicated the presence of Ni+3 in 
discharged positive plates



Conclusions

• Proper handling of Ni-H2 cells/batteries in storage, during 
I&T, and at launch site is very important to preserve the 
useful energy and to extend the mission life

• Cell reversal test is not a prudent test to verify or quantify 
the nickel pre-charge in Ni-H2 cells/batteries 

• The second plateau is due to the formation of Ni+3 that is 
electrochemically inactive

• Gas analysis of the cell, and Chemical analysis of the 
positive plate are confirmatory tests to determine the 
nature of pre-charge in Ni-H2 cells



Large Lithium Ion Batteries for Aerospace and Aircraft 
Applications 
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ABSTRACT 

Eagle-Picher Energy Products (EPEP) has been 
manufacturing and testing large lithium ion cells 
(up to 100-Ah) for several years.  Recently, work 
has focused on testing of different chemistries at 
variable temperatures and designing and 
fabricating 100-Ah cylindrical cells.  For the aircraft 
application the largest concern is irreversible 
capacity loss at elevated temperatures (70oC).  In 
contrast, for the aerospace application shelf-life 
and cycle life is critical.  EPEP has found that the 
major contributor to the loss in low temperature 
performance due to high temperature testing was  
the positive electrode.  Eagle-Picher Energy 
Products will discuss recent results of variable 
temperature cycling and 100-Ah cell performance.  

INTRODUCTION 

Eagle-Picher Energy Products has been 
developing large lithium ion cells for several years.  
The initial efforts were the result of a contract 
funded by the USAF and the Canadian 
Department of Defense.  The program 
successfully demonstrated that lithium ion cells 
could be scaled up to sizes useful for spacecraft 
and aircraft applications.  The program included 
the delivery of 10, 25-Ah Design I cells, 12, 25-Ah 
Design II cells and 12, DD (7-Ah) cells to the 
USAF and JPL.  The three cells are shown in 
Figure 1.  As a follow on EPEP is participating in 
the USAF/NASA Li Ion Battery Consortium with 
the development of a 25-Ah cell for Mars Lander 
applications and a 7-Ah cell for Mars Rover 
applications.   In the initial stages of this contract  
40, 25-Ah Design II cells were delivered to JPL 
and Lockheed Martin Astronautics (LMA).      

One of the test requirements for the Mars missions 
is cell performance under variable temperature 
cycling.  The cells were alternatively cycled at 
40oC and –20oC.  During the program the need for 
EP Energy Products to improve variable 
temperature performance became evident and 
work was initiated in this area.     

Figure 1. Eagle-Picher Energy Products 25-Ah, 
Design I, DD and 25-Ah Design II lithium ion cells. 

 

RESULTS AND DISCUSSION - VARIABLE 
TEMPERATURE CYCLING 

With planetary exploration missions performance 
under large temperature variations is required.  
One of the first tests completed at JPL on EPEP 
lithium ion cells was performance as a function of 
temperature.  During the test program JPL noted 
that low temperature performance was adversely 
affected by high temperature cycling.  Since the 
mission profile called for high temperature cycling 
followed by low temperature performance this 
could be mission limiting.  The test results 
obtained by JPL are shown in Figure 2.   

Figure 2.  Variable temperature cycling for Eagle-
Picher Energy Products DD cell performed at JPL. 
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Therefore, work focused on improving the variable 
temperature performance of EPEP cells.  The first 
step was to repeat the JPL test results and then 
systematically change parameters to improve 
performance.  EPEP decided to use C cells as a 
test bed due to materials required and the ease in 
manufacturing.  The initial test results in this test 
format under variable temperature conditions are 
shown in Figure 3. 

Figure 3.  Variable temperature cycling for Eagle-
Picher Energy Products baseline 1.6-Ah cells.   

Of initial interest was that the cells tested by 
Eagle-Picher showed a far more rapid decline in 
capacity that the test results at JPL.  This was 
found to be due to the difference in cell sizes.  At  
–20oC the 25-Ah (tested by JPL) cell benefits more 
than the C cell (tested at EPEP) from self-heating.  
The first parameter tested was the binder used in 
the positive electrode.  By consulting the 
manufacturer on solubility of PVDF binders in 
carbonate solvents the most insoluble binder was 
selected.  Cells manufactured with this binder 
showed superior performance when compared to 
the baseline cells but further improvements were 
still required.  The next parameter tested was 
positive electrode supplier.  Samples of LiCoO2 
from two independent  sources were obtained and 
tested.  Surprisingly, the source of LiCoO2 made a 
substranial difference in performance when 
compared to the baseline cells as shown in 
Figures 4 and 5. 

The difference in performance was attributed to 
the physical characteristics of the positive 
electrode material.  The main cause of the loss in 
low temperature performance due to high 

temperature cycling was attributed due to an 
increase in impedance on the positive electrode 
surface.  This is thought to be the main driver 
since the performance at 40oC is not diminished 
as dramatically and cannot be attributed to LiCoO2 
dissolving in the electrolyte or to a structural 
change in the LiCoO2. 

Figure 4. Variable temperature cycling for Eagle-
Picher Energy Products 1.6-Ah cells, LiCoO2 from 
supplier A. 

Figure 5. Variable temperature cycling for Eagle-
Picher Energy Products 1.6-Ah cells, LiCoO2 from 
supplier B. 

Since it became quite obvious that the major factor 
in low temperature performance was the active 
material two other metal oxide positive electrode 
materials were tested.  The materials tested were 
LiNi0.82Co0.18O2 and LiNi0.80Co0.15Al0.05O2.  The 
results for the mixed metal oxide positive 
electrodes are shown in Figures 6 and 7.   
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Figure 6. Variable temperature cycling for Eagle-
Picher Energy Products 1.6-Ah cells, 
LiNi0.82Co0.18O2. 

 

Figure 7. Variable temperature cycling for Eagle-
Picher Energy Products 1.6-Ah cells, 
LiNi0.80Co0.15Al0.05O2. 

As can be seen from all the data presented two 
factors play in the loss in capacity at low 
temperature  due to high temperature cycling.  The 
first and primary factor is the positive electrode 
active material and the second is the binder. Work 
will continue to further enhance cell performance 
under these conditions. 

CELL PERFORMANCE – 100-Ah CYLINDRICAL 
CELL 

Recently, Eagle-Picher Energy Products has been 
working with very large lithium ion cells for use in 
spacecraft or aircraft applications.  The latest cell 
developed is a 90 to 100-Ah cylindrical cell.  The 
physical characteristics of the cell are given in 
Table 1.  A general drawing of the cell is shown in 
Figure 8.   

Table 1.  Physical characteristics of 100-Ah, 
86211 lithium ion cell. 

Parameter 100-Ah,  

86211 

Cell height 8.30” 

Cell diameter 3.406” 

Positive electrode length 1112 cm 

Positive electrode width 17.7 cm 

Inter tab distance 93 cm 

Negative electrode length 1142 cm 

Negative electrode width 18.0 cm 

Inter tab distance 95 cm 

 

Figure 8.  General drawing of the 86211 lithium ion 
cell.   

 

The cell utilizes a LiCoO2 positive electrode and a 
graphite negative electrode.  The electrodes have 
six tabs which are fusion welded to a 0.250” 
diameter molybdenum pin in at glass-to-metal 
feed-through.  The cell has a rupture disc and 
shut-down separator for safety and uses a 
standard fill tube for cell activation.  The physical 
characteristics accompanied with the performance 
characteristics for the 86211 cell are given in 
Table 2.   
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Table 2.  Performance and physical characteristics 
of 86211 cell.  

 Cell 
Weight 

g 

Capacity 
Ah 

Specific 
Energy 
Wh/kg 

Energy 
Density

Wh/l 

Ave. 2651.8 93.8 132.0 282.6 

Std. 
Dev. 

23.1 2.1 2.3 6.5 

 

As with all cylindrical cells when compared to a 
plate cell design the often cited drawbacks are 
rate capability and thermal management.  The cell 
was tested for rate capability with various charge 
and discharge rates from C/10 (10A) to C (100A).  
In all cases the cell was charged to a voltage limit 
of 4.1V and then held at constant potential for 2.5 
hours and then discharged to 3.0V.  The results of 
these tests are shown in Figure 9.   

Figure 9.  Rate capability of the 86211 lithium ion 
cell at various charge and discharge rates. 

The data shows that the cell is starting to see rate 
limitations at the C rate.   

The mass analysis of the 86211 cell is shown in 
Table 3.  The relatively low values for the cap and 
can is related to the inherent tube strength of the 
cylindrical design. 

 

 

Table 3.  Mass analysis of 86211 Cell. 

Component Mass, g % of Total 

Can 213.0 8.0 

Cap Assembly 54.0 2.0 

Electrolyte 688.5 25.2 

Positive 
electrode 

1074.5 40.5 

Negative 
electrode 

517.5 19.5 

Miscellaneous 124.3 4.7 

Total 2651.8 100 

 

The cells were tested for cycle life at the C/5 and 
the C/2 charge and discharge rates.  The C/5 test 
was carried out at 20A to a 4.1V cut-off with a 
voltage clamp for a further 1.5 hours.  The C/2 rate 
was tested at 45A with a voltage clamp of 4.1V for 
a total charge time of 6 hours.  The C/5 results are 
shown in Figure 10 and the C/2 results are given 
in Figure 11.  

Figure 10.  Cycle life of 86211, 100-Ah cell at 
20oC, 100% depth of discharge at C/5. 
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Figure 11.  Cycle life of 896211 100-Ah cell at 
20oC, 100% depth of discharge at C/2.  

 

The cycle life projections for the two cells tested at 
the C/5 rate indicate that 75% of initial capacity will 
not be reached until 940 and 998 cycles.  For the 
C/2 rate test the projection is for greater than 800 
cycles to 75% of initial capacity.   

CONCLUSION 

The reduced capacity at low temperature due to 
high temperature cycling is attributed primarily to 
the positive electrode.  The performance for the 
86211 cell is quite impressive for a LiCoO2 
cathode with good specific energy and energy 
density and excellent cycle life. 
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5 Year Old Lithium Thionyl Chloride Cells
Used In The Test (18 each type)

• Low Rate ‘D’                Part No.  LTC-114
– 14 Ahr (@50 ohms and 3.0V cutoff)
– Sandia Design

• Medium Rate ‘D’          Part No.  LTC-111
– 12 Ahr (90 mA and 2.5V cutoff at 25 oC

• Medium Rate ‘sub D’   Part No.  LTC-115
– 11 Ahr (100 mA and 2.0 V cutoff at 25 oC
– Sandia Design, Military Aviation qualified cell S ch lumbe rger
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Cell Acceptance Test

Measure OCV
Voc > 3.6 Volts

5 Ohm Load for 90 s
Vcc  > 3.5 Volts

160 oF - 2 hours
No Leaks

S ch lumbe rger



Cell Acceptance Test Results
All 54 Cells

Measure OCV
Voc > 3.6 Volts

5 Ohm Load for 90 s
Vcc  > 3.5 Volts

160 oF - 2 hours
No Leaks

PASS

S ch lumbe rger

3.65 V



Cell Acceptance Test Results
All 54 Cells

Measure OCV
Voc > 3.6 Volts

5 Ohm Load for 90 s
Vcc  > 3.5 Volts

160 oF - 2 hours
No Leaks

All Cells Failed

S ch lumbe rger

PASS

3.05V       3.00V       3.01V
LTC-114        LTC-111         LTC-115

3.65 V



Cell Acceptance Test (Revised)

Measure OCV
Voc > 3.6 Volts

5 Ohm Load for 90 s
Vcc  > 3.5 Volts

160 oF - 2 hours
No Leaks

All Cells Failed

S ch lumbe rger

PASS

54



Test Plan - Part 1
Cell Acceptance Test Results

160 oF - 2 hours
No Leaks

S ch lumbe rger

 54 PASS
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Test Plan (Overview)
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Room Temperature Capacity and
Forced Overdischarge Test

S ch lumbe rger
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Room Temperature Capacity and
Forced Overdischarge Test

S ch lumbe rger
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Capacity:
1000 mA, 2.0V

+ Diodes
3 Weeks

+ Diodes
3 Weeks

1000 mA
  160 oF
3000 mA

R.T.

3000 mA
R.T.

1000 mA
  160 oF

2

2

1
3

3
1

3 Over
Temperature

Test

Clip Diodes

Clip Diodes

1000 mA
  160 oF

1000 mA
  160 oF

SC

Fresh



Capacity Test Results
Capacity (Ah)

50 mA 500 mA 1000 mA

LTC-114 LTC-115 LTC-114LTC-114LTC-111 LTC-111

15.7

15.6

15.7

LTC-115 LTC-115LTC-111

15.0

14.9

14.9

                              LTC-114        LTC- 111       LTC 115
Rated Capacities:   14 Ah              12 Ah              11 Ah

11.8

12.7

13.0

8.6

 8.9

8.7 4.8

4.9

4.4

13.3

13.8

13.7

12.7

12.8

12.25.3

5.6

5.2

3.3

3.1

S ch lumbe rger

Note:  One LTC-115 cell had tab break off and repair was not possible

Note



Average Cell Capacity

S ch lumbe rger

Rated Capacity (Ah)

50 mA Capacity (Ah)

500 mA Capacity (Ah)

1000 mA Capacity (Ah)

LTC-114 LTC- 111 LTC 115

14 12 11

15.7

8.7

4.7

14.9

13.6

12.6

12.5

  3.2

  5.4

                                  LTC-114        LTC- 111       LTC 115
Rated Capacities:      14 Ah              12 Ah              11 Ah



Typical Discharge Curves - LTC-114
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Typical Discharge Curves - LTC-111
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Typical Discharge Curves - LTC-115
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Room Temperature Capacity and
Forced Overdischarge Test

S ch lumbe rger
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50 mA ,2.0V

Capacity:
500 mA, 2.0V
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1 Amp at 160F Over-Discharge
Test Results

Cell Type With Diodes Without Diodes

After 50 mA discharge capacity test

After 500 mA discharge capacity test

LTC-114

LTC-111

LTC-115

LTC-114

LTC-111

LTC-115

ok

ok

ok
ok

ok

ok

ok
ok
ok
ok
ok
ok

ok
ok
ok

ok
ok

ok
ok

ok

vented
vented

not available
not available



Voltage behavior during 1 A over-discharge with diode
at 160oF - LTC-111 (vented) and LTC-114 (no mishaps)
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Voltage behavior during 1 A over-discharge with diode at 160 oF
and afterwards without diode at 160 oF - LTC-111

S ch lumbe rger
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Voltage behavior during 1 A over-discharge without diode
at 160 oF - LTC-114

S ch lumbe rger
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3 Amps at R.T. Over-Discharge
Test Results

Cell Type With Diodes

After 50 mA discharge capacity test

After 500 mA discharge capacity test

LTC-114

LTC-111

LTC-115

LTC-114

LTC-111

LTC-115

ok

ok

ok
ok

ok

ok

ok
ok

vented
ok

ok
ok

S ch lumbe rger



3 Amp Over Discharge Curve (Vented) - LTC-114
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LTC-114 Cell  Vented during 3A Over-Discharge



Test Plan (Overview)
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Room Temperature
Short Circuit Test Results

Cell Type 0.050 Ohm short 1 Ohm short

LTC-114

LTC-111

LTC-115

Ok - Cell open in 20 min.
Ok - Cell open in 15 min.
Ok - Cell open in 20 min.

Ok - No Mishaps
Ok - No Mishaps
Ok - No Mishaps

Cell open in 1 hour
Cell open in 1 hour
Cell open in 1 hour

Exploded
Leaked

Exploded
Cell open immediately
Cell open immediately
Cell open immediately

Cell open in 1 hour
Cell open in 1 hour
Cell open in 1 hour

Note: Cells with ‘Ok’ went on to the Over Temperature Test

S ch lumbe rger



Typical Short Circuit (50 mΩ) Curve - LTC-114
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-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5 1 1.5 2 2.5

Hours

V
o

lt
s

0

10

20

30

40

50

60

70

80

T
e

m
p

e
ra

tu
re

, 
d

e
g

 CVolts

Temperature



Typical Short Circuit (50 mΩ) Curve - LTC-111

S ch lumbe rger
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Over Temperature Test Results
Condition Samples Status

LTC-114

LTC-114

LTC-115

LTC-114

LTC-115

LTC-115

LTC-111

LTC-111

LTC-111

After 1 A 
Discharge 

Capacity Test

Short Circuit 
Test 

Survivors

Fresh Cells

Ok up to 120 oC
Ok up to 120 oC
Ok up to 120 oC
Vented at ~115 oC
Vented at ~116 oC
Vented at ~120 oC
Ok up to 120 oC
Ok up to 120 oC

Vented at ~100 oC
Vented at ~100 oC

Vented at ~100 oC

Ok up to 120 oC
Ok up to 120 oC
Ok up to 120 oC

Not tested - All Cells Open Circuit

Vented at ~170 oC

Vented at ~120 oC

Vented at ~170 oC

Ok up to 170 oC

Ok up to 170 oC
Ok up to 170 oC



Conclusions

• Cells passed most of the acceptance test including consistent Voc of
3.65V and no mishaps during 2 hour 160 oF thermal exposure.
However, all cells failed minimum loaded voltage under the 5 Ohm
load test probably due to their 5 year storage conditions.

• The medium rate LTC-111 demonstrated very good discharge rate
capability.  The low rate LTC114 ‘D’ and the medium rate LTC-115
‘sub D’ both showed significant capacity loss at high discharge rates of
500 mA and greater.

• The medium rate LTC-115 ‘sub D’ had 5% capacity dispersion at 50
mA discharge, while the LTC-111 had 0.2% and the LTC-114 had
0.4% capacity dispersion.

• The medium rate LTC-111 tend to explode or leak when force over-
discharged at 160 oF following high rate discharge of 500 mA. The
LTC-114 and LTC115 both survived 1 Amp over-discharge with and
without diodes for 16 hours.



Conclusions

• Most cells survived the 3 A over-discharge at room temperature for 2
hours.  The cell that failed was the LTC-114 after high rate discharge
of 500 mA similar to the results of the 1 A over-discharge test.

• Most cells opened during 0.05 Ohm short circuit test without incident
but three LTC-111cells exploded apparently due to a lack of a thermal
cutoff switch.  The LTC-114 cells  exposed to a hard short of 0.05
Ohms recovered but the LTC-114 cells exposed to a soft short of  1
Ohm  did not. This is probably due to the activation of a resetable fuse
during a hard short.

• Fresh cells tend to survive exposure to higher temperatures than cells
previously discharged at  high rate (1 Amp).  LTC-111 cells  tend to
vent at lower temperatures than the all LTC-114 cells and the LTC-115
cells that were previously discharged at rates exceeding 1 Amp.
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Scope

• Lithium-ion battery modules, similar to the modules to be 
flown on the STRV spacecraft, have been on test for almost 
two years.

• The modules, designed and assembled by AEA Technology
plc, each contain twelve Sony 26650 cells.

• Characterization testing and LEO cycling through 2700   
25% DOD cycles were reported at this workshop last year.

• This presentation summarizes the results of the simulated 
LEO cycling to date.
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Test Articles

• STRV modules consist of two      
6-cell strings of Sony 26650 cells.

• Test modules were reconfigured
– one 6-cell string
– two 2-cell strings
– two individual cells

• Each cell is equipped with a 
thermocouple at its midpoint.
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Test Plan
Simulated Leo Cycling

• Depth of Discharge:  25%  (basis 2.7 Ah nameplate capacity)

• Orbit:  100 minutes with 36 minute eclipse periods

• Charge regime:  0.5C to CVL;  taper until eclipse discharge

• Charge management:  Pack level, e.g.,  
– 6-cell average voltage for the 6-cell packs 
– 2-cell average voltage for the 2-cell packs 
– individual cell control for the single cells

• Discharge:  0.42C  (36 minutes)

• Two modules were tested; one at 25°C and one at 15°C
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Simulated LEO Cycling Results

• 25°C End of Discharge Voltage trend charts
– 6-cell Pack
– 2-cell pack (typical of two)
– single cells (both cells on one plot)

• 15°C End of Discharge Voltage trend charts
– 6-cell Pack
– 2-cell pack (typical of two)
– single cells (both cells on one plot)

• 6-cell pack dispersion analysis
– EODV Trending
– Rate of Change of EODV
– EOCV Trending
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EODV Dispersion Trending
AEA STRV 6-Cell Packs at 15ºC and 25ºC
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Rate of Change of EODV Dispersion as a Function of Cycling 
AEA STRV 6-Cell Packs
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EOCV Dispersion Trending
AEA STRV 6-Cell Packs at 15ºC and 25ºC
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Summary

• Simulated 25% DOD LEO cycling of AEA STRV battery 
modules is continuing at 15ºC and 25ºC 

– The STRV “two 6-cell strings” configuration was modified 
to provide 6-cell strings, 2-cell strings and individual cells.

– Charge control is at the pack level.

• 7700 cycles have been completed without incident.

• EODV voltage dispersion (in the absence of cell level 
balancing) is stable at 15ºC and increasing slightly at 25ºC.

• The test is continuing. 



Technologies, LLC

Progress Toward a Li-ion 
Spacecraft Battery

Progress Toward a Li-ion 
Spacecraft Battery

CHAD KELLY & JAMES DeGRUSON 

15 NOVEMBER 2000

NASA AEROSPACE BATTERY 
WORKSHOP
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FSpecific Energy                       

•100 Wh/Kg in 1999

FEnergy Density

•300 Wh/L in 1999

FImpedance (SLC-16002)

•3.5 milliohms in 1999

FTemperature Capability

•10% @ C/5 @ -30oC in 1999

FCycle Life 

FLEO 25% from 100%SOC                     

•2700 completed 1999

FGEO Battery

•36 Abb. GEO in 1999

FRate Capability

•C Max in 1999

PROGRESS 
Late 99’
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PROGRESS 
Late 99’ and 2000’

FSpecific Energy                       

•100 Wh/Kg in 1999

•>150 Wh/Kg in 2000

FEnergy Density

•300 Wh/L in 1999

•>380 Wh/L in 2000

FImpedance (SLC-16002)

•3.5 milliohms in 1999

•1.4 milliohms in 2000

FTemperature Capability

•10% @ C/5 @ -30oC in 1999

•>75% @ 0.6C -30oC in 2000

FCycle Life 

FLEO 25% from 100%SOC                     

•2700 completed 1999

•13000 projected 2000

FGEO Battery

•36 Abb. GEO in 1999

•101 Abb. GEO in 2000

•>808 Battery Cycles 
W/o Electronics

FRate Capability

•C Max in 1999

•3.3C Tested in 2000
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Characteristics of the SLC-16002 

Cell Design

98/99’

Size 3”x7.15”x0.94”

Mass 840g

Ah 20Ah@10A
24Ah BOL

Wh/Kg >100Wh/Kg

Rate Capability 20A Max
12Ah Delivered



Technologies, LLC

98/99’ 2000’

Size 3”x7.15”x0.94” 3”x7.15”x0.94”

Mass 840g 815g

Ah 20Ah@10A 35Ah@35A
24Ah BOL 38Ah BOL

Wh/Kg >100Wh/Kg >150Wh/Kg

Rate Capability 20A Max 117A Tested
12Ah Delivered 12Ah Delivered

Characteristics of the SLC-16002 
Cell Design
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PROGRESS 
SINCE INCEPTION OF 

USG CONTRACT
LEO Cycle Life Demonstration (25% DOD)

Real Time Data (16 cycles/ Day)
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PROGRESS 
SINCE INCEPTION OF 

USG CONTRACT
LEO Cycle Life Demonstration (25% DOD)

Real Time Data (16 cycles/ Day)
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1.65mA/cm2

Continued Janurary 2000 Technology Testing
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Historical View (Wh/Kg) as Lithium-Ion System Evolves
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PROGRESS SINCE 
INCEPTION OF CONTRACT

Historical View (Wh/Kg) as Lithium-Ion System Evolves
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PROGRESS SINCE 
INCEPTION OF CONTRACT

Historical View (Wh/Kg) as Lithium-Ion System Evolves
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Aluminum Container

Higher Capacity Chemistry
(LiNi0.8Co0.2 O2)

Process 
Improvements
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CELL EVALUATION
Rate/Temperature Tests



Technologies, LLC

F PURPOSE:  DETERMINE DISCHARGE CHARACTERISTICS OF “NEW” CHEMISTRY
• CHARGE RATE EFFECTS 
• DISCHARGE RATE EFFECTS
• TEMPERATURE EFFECTS

ä CELL DISCHARGE CAPACITY (AHRS)
ä CELL DISCHARGE ENERGY (WHRS)
ä CELL ENERGY DENSITY (WHRS/KG)

SLC-16002 (35 AHR NAMEPLATE)
CELL TESTS
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SLC-16002 (35 AHR NAMEPLATE)

CELL TESTS

F PURPOSE:  DETERMINE DISCHARGE CHARACTERISTICS OF “NEW” CHEMISTRY
• CHARGE RATE EFFECTS 
• DISCHARGE RATE EFFECTS
• TEMPERATURE EFFECTS

ä CELL DISCHARGE CAPACITY (AHRS)
ä CELL DISCHARGE ENERGY (WHRS)
ä CELL ENERGY DENSITY (WHRS/KG)

• TEST RATES EXPRESSED IN mA/cm² OF CATHODE SURFACE AREA
ä ALLOWS RESULTS TO BE “SCALED” FOR OTHER PRISMATIC CELL DESIGNS
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F PURPOSE:  DETERMINE DISCHARGE CHARACTERISTICS OF “NEW” CHEMISTRY
• CHARGE RATE EFFECTS 
• DISCHARGE RATE EFFECTS
• TEMPERATURE EFFECTS

ä CELL DISCHARGE CAPACITY (AHRS)
ä CELL DISCHARGE ENERGY (WHRS)
ä CELL ENERGY DENSITY (WHRS/KG)

• TEST RATES EXPRESSED IN mA/cm² OF CATHODE SURFACE AREA
ä ALLOWS RESULTS TO BE “SCALED” FOR OTHER PRISMATIC CELL DESIGNS

F STANDARD SLC-16002 (35 AHR NAMEPLATE) CELL DESIGN CHOSEN AS TEST 
VEHICLE

SLC-16002 (35 AHR NAMEPLATE)
CELL TESTS
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SLC-16002 (35 AHR NAMEPLATE) CELL
CHARGE VOLTAGE @ 23°C
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SLC-16002 (35 AHR NAMEPLATE) CELL
CHARGE VOLTAGE @ 23°C
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F CHARACTERIZE  STANDARD SLC-16002 (35 AHR NAMEPLATE) 
CELL DESIGN

• AMBIENT TEMPERATURE (23°C) CHARGE VS:
ä 70°C DISCHARGE
ä 60°C DISCHARGE
ä 50°C DISCHARGE
ä 40°C DISCHARGE
ä 23°C DISCHARGE
ä 10°C DISCHARGE
ä 0°C DISCHARGE
ä -10°C DISCHARGE

SLC-16002 (35 AHR NAMEPLATE)
CELL TESTS
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F CHARACTERIZE  STANDARD SLC-16002 (35 AHR NAMEPLATE) 
CELL DESIGN

• AMBIENT TEMPERATURE (23°C) CHARGE VS:
ä 70°C DISCHARGE
ä 60°C DISCHARGE
ä 50°C DISCHARGE
ä 40°C DISCHARGE
ä 23°C DISCHARGE
ä 10°C DISCHARGE
ä 0°C DISCHARGE
ä -10°C DISCHARGE

• SAME TEMPERATURE CHARGE & DISCHARGE
ä 23°C
ä 10°C
ä 0°C

SLC-16002 (35 AHR NAMEPLATE)
CELL TESTS
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F CHARACTERIZE  STANDARD SLC-16002 (35 AHR NAMEPLATE) 
CELL DESIGN

• AMBIENT TEMPERATURE (23°C) CHARGE VS:
ä 70°C DISCHARGE
ä 60°C DISCHARGE
ä 50°C DISCHARGE
ä 40°C DISCHARGE
ä 23°C DISCHARGE
ä 10°C DISCHARGE
ä 0°C DISCHARGE
ä -10°C DISCHARGE

• SAME TEMPERATURE CHARGE & DISCHARGE
ä 23°C
ä 10°C
ä 0°C

• DISCHARGE RATES FROM 1 mA/cm² (C/3 AMPS) thru 10 mA/cm² 
(3.3C AMPS)

SLC-16002 (35 AHR NAMEPLATE)
CELL TESTS
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F TEST PROFILE
• CHARGE CELL AT 2.34 AMPS (0.2 mA/cm²) TO 4.1 VOLTS
• DISCHARGE CELL PER THE FOLLOWING STEP RATE SEQUENCE:

ä 117.06 AMPS (10 mA/cm²)
ä 105.35 AMPS (9 mA/cm²)
ä 93.65 AMPS (8 mA/cm²)
ä 81.94 AMPS (7 mA/cm²)
ä 70.23 AMPS (6 mA/cm²)
ä 58.53 AMPS (5 mA/cm²)
ä 46.82 AMPS (4 mA/cm²)
ä 35.12 AMPS (3 mA/cm2)
ä 23.41 AMPS (2 mA/cm²)
ä 11.71 AMPS (1 mA/cm²)

SLC-16002 (35 AHR NAMEPLATE)
CELL TESTS
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F TEST PROFILE
• CHARGE CELL AT 2.34 AMPS (0.2 mA/cm²) TO 4.1 VOLTS
• DISCHARGE CELL PER THE FOLLOWING STEP RATE SEQUENCE:

ä 117.06 AMPS (10 mA/cm²)
ä 105.35 AMPS (9 mA/cm²)
ä 93.65 AMPS (8 mA/cm²)
ä 81.94 AMPS (7 mA/cm²)
ä 70.23 AMPS (6 mA/cm²)
ä 58.53 AMPS (5 mA/cm²)
ä 46.82 AMPS (4 mA/cm²)
ä 35.12 AMPS (3 mA/cm2)
ä 23.41 AMPS (2 mA/cm²)
ä 11.71 AMPS (1 mA/cm²)

• ALL DISCHARGE STEPS TO 3.0 VOLT CUT-OFF

• 15 MINUTE OPEN CIRCUIT BETWEEN DISCHARGE STEPS FOR 
VOLTAGE  RECOVERY & TEMPERATURE RESTABILIZATION

• TOTAL CAPACITY IS CUMULATIVE AS RATE STEPS DOWN

SLC-16002 (35 AHR NAMEPLATE)
CELL TESTS
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SLC-16002 (35 AHR NAMEPLATE) CELL
RATE & TEMPERATURE EFFECTS ON CAPACITY IN AHRS
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F AMBIENT TEMPERATURE (23°C) CHARGE TEST SUMMARY
• SIGNIFICANT CELL CAPACITY AVAILABLE AT ELEVATED 

DISCHARGE RATES

ä 3C AMPS (9 mA/cm²) DISCHARGE RATE TO 3.0 VOLT CUT-OFF
– 32 SECOND PULSE @ -10°C
– 54% OF NAMEPLATE CAPACITY @ 23°C
– 97% OF NAMEPLATE CAPACITY @ 70°C

SLC-16002 (35 AHR NAMEPLATE)
CELL TESTS
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F AMBIENT TEMPERATURE (23°C) CHARGE TEST SUMMARY
• SIGNIFICANT CELL CAPACITY AVAILABLE AT ELEVATED 

DISCHARGE RATES

ä 3C AMPS (9 mA/cm²) DISCHARGE RATE TO 3.0 VOLT CUT-OFF
– 32 SECOND PULSE @ -10°C
– 54% OF NAMEPLATE CAPACITY @ 23°C
– 97% OF NAMEPLATE CAPACITY @ 70°C

ä 2C AMPS (6 mA/cm²) DISCHARGE RATE TO 3.0 VOLT CUT-OFF
– 18% OF NAMEPLATE CAPACITY @ -10°C
– 89% OF NAMEPLATE CAPACITY @ 23°C
– 109% OF NAMEPLATE CAPACITY @ 70°C

SLC-16002 (35 AHR NAMEPLATE)
CELL TESTS
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F AMBIENT TEMPERATURE (23°C) CHARGE TEST SUMMARY
• SIGNIFICANT CELL CAPACITY AVAILABLE AT ELEVATED 

DISCHARGE RATES

ä 3C AMPS (9 mA/cm²) DISCHARGE RATE TO 3.0 VOLT CUT-OFF
– 32 SECOND PULSE @ -10°C
– 54% OF NAMEPLATE CAPACITY @ 23°C
– 97% OF NAMEPLATE CAPACITY @ 70°C

ä 2C AMPS (6 mA/cm²) DISCHARGE RATE TO 3.0 VOLT CUT-OFF
– 18% OF NAMEPLATE CAPACITY @ -10°C
– 89% OF NAMEPLATE CAPACITY @ 23°C
– 109% OF NAMEPLATE CAPACITY @ 70°C

ä C AMPS (3 mA/cm²) DISCHARGE RATE TO 3.0 VOLT CUT-OFF
– 38% OF NAMEPLATE CAPACITY @ -10°C
– 105% OF NAMEPLATE CAPACITY @ 23°C
– 112% OF NAMEPLATE CAPACITY @ 70°C

SLC-16002 (35 AHR NAMEPLATE)
CELL TESTS
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F SAME TEMPERATURE CHARGE/DISCHARGE TEST SUMMARY
• SIGNIFICANT CELL CAPACITY AVAILABLE AT ELEVATED 

DISCHARGE RATES

ä 3C AMPS (9 mA/cm²) DISCHARGE RATE TO 3.0 VOLT CUT-OFF
– 17% OF NAMEPLATE CAPACITY @ 0°C
– 36% OF NAMEPLATE CAPACITY @ 10°C
– 54% OF NAMEPLATE CAPACITY @ 23°C

SLC-16002 (35 AHR NAMEPLATE)
CELL TESTS
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F SAME TEMPERATURE CHARGE/DISCHARGE TEST SUMMARY
• SIGNIFICANT CELL CAPACITY AVAILABLE AT ELEVATED 

DISCHARGE RATES

ä 3C AMPS (9 mA/cm²) DISCHARGE RATE TO 3.0 VOLT CUT-OFF
– 17% OF NAMEPLATE CAPACITY @ 0°C
– 36% OF NAMEPLATE CAPACITY @ 10°C
– 54% OF NAMEPLATE CAPACITY @ 23°C

ä 2C AMPS (6 mA/cm²) DISCHARGE RATE TO 3.0 VOLT CUT-OFF
– 41% OF NAMEPLATE CAPACITY @ 0°C
– 67% OF NAMEPLATE CAPACITY @ 10°C
– 89% OF NAMEPLATE CAPACITY @ 23°C

SLC-16002 (35 AHR NAMEPLATE)
CELL TESTS
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SLC-16002 (35 AHR NAMEPLATE)

CELL TESTS

F SAME TEMPERATURE CHARGE/DISCHARGE TEST SUMMARY
• SIGNIFICANT CELL CAPACITY AVAILABLE AT ELEVATED 

DISCHARGE RATES

ä 3C AMPS (9 mA/cm²) DISCHARGE RATE TO 3.0 VOLT CUT-OFF
– 17% OF NAMEPLATE CAPACITY @ 0°C
– 36% OF NAMEPLATE CAPACITY @ 10°C
– 54% OF NAMEPLATE CAPACITY @ 23°C

ä 2C AMPS (6 mA/cm²) DISCHARGE RATE TO 3.0 VOLT CUT-OFF
– 41% OF NAMEPLATE CAPACITY @ 0°C
– 67% OF NAMEPLATE CAPACITY @ 10°C
– 89% OF NAMEPLATE CAPACITY @ 23°C

ä C AMPS (3 mA/cm²) DISCHARGE RATE TO 3.0 VOLT CUT-OFF
– 64% OF NAMEPLATE CAPACITY @ 0°C
– 90% OF NAMEPLATE CAPACITY @ 10°C
– 105% OF NAMEPLATE CAPACITY @ 23°C
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SLC-16002 (35 AHR NAMEPLATE) CELL
RATE & TEMPERATURE EFFECTS ON DISCHARGE ENERGY IN WHRS
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SLC-16002 (35 AHR NAMEPLATE)
CELL TESTS

Header changes decreased wt. From 840g to 815g in late 2000
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F AMBIENT TEMPERATURE (23°C) CHARGE TEST SUMMARY
• CELL DISCHARGE ENERGY AVAILABLE AT ELEVATED 

DISCHARGE RATES

ä 3C AMPS (9 mA/cm²) DISCHARGE RATE TO 3.0 VOLT CUT-OFF
– 3.25 WHRS @ -10°C
– 64.38 WHRS @ 23°C
– 113.96 WHRS @ 70°C

SLC-16002 (35 AHR NAMEPLATE)
CELL TESTS
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SLC-16002 (35 AHR NAMEPLATE)

CELL TESTS

F AMBIENT TEMPERATURE (23°C) CHARGE TEST SUMMARY
• CELL DISCHARGE ENERGY AVAILABLE AT ELEVATED 

DISCHARGE RATES

ä 3C AMPS (9 mA/cm²) DISCHARGE RATE TO 3.0 VOLT CUT-OFF
– 3.25 WHRS @ -10°C
– 64.38 WHRS @ 23°C
– 113.96 WHRS @ 70°C

ä 2C AMPS (6 mA/cm²) DISCHARGE RATE TO 3.0 VOLT CUT-OFF
– 19.64 WHRS @ -10°C
– 102.80 WHRS @ 23°C
– 126.75 WHRS @ 70°C
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SLC-16002 (35 AHR NAMEPLATE)

CELL TESTS

F AMBIENT TEMPERATURE (23°C) CHARGE TEST SUMMARY
• CELL DISCHARGE ENERGY AVAILABLE AT ELEVATED 

DISCHARGE RATES

ä 3C AMPS (9 mA/cm²) DISCHARGE RATE TO 3.0 VOLT CUT-OFF
– 3.25 WHRS @ -10°C
– 64.38 WHRS @ 23°C
– 113.96 WHRS @ 70°C

ä 2C AMPS (6 mA/cm²) DISCHARGE RATE TO 3.0 VOLT CUT-OFF
– 19.64 WHRS @ -10°C
– 102.80 WHRS @ 23°C
– 126.75 WHRS @ 70°C

ä C AMPS (3 mA/cm²) DISCHARGE RATE TO 3.0 VOLT CUT-OFF
– 41.72 WHRS @ -10°C
– 120.57 WHRS @ 23°C
– 129.58 WHRS @ 70°C
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F SAME TEMPERATURE CHARGE/DISCHARGE TEST SUMMARY
• CELL DISCHARGE ENERGY AVAILABLE AT ELEVATED 

DISCHARGE RATES

ä 3C AMPS (9 mA/cm²) DISCHARGE RATE TO 3.0 VOLT CUT-OFF
– 18.67 WHRS @ 0°C
– 41.57 WHRS @ 10°C
– 64.38 WHRS @ 23°C

SLC-16002 (35 AHR NAMEPLATE)
CELL TESTS
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F SAME TEMPERATURE CHARGE/DISCHARGE TEST SUMMARY
• CELL DISCHARGE ENERGY AVAILABLE AT ELEVATED 

DISCHARGE RATES

ä 3C AMPS (9 mA/cm²) DISCHARGE RATE TO 3.0 VOLT CUT-OFF
– 18.67 WHRS @ 0°C
– 41.57 WHRS @ 10°C
– 64.38 WHRS @ 23°C

ä 2C AMPS (6 mA/cm²) DISCHARGE RATE TO 3.0 VOLT CUT-OFF
– 46.40 WHRS @ 0°C
– 77.54 WHRS @ 10°C
– 102.80 WHRS @ 23°C

SLC-16002 (35 AHR NAMEPLATE)
CELL TESTS
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F SAME TEMPERATURE CHARGE/DISCHARGE TEST SUMMARY
• CELL DISCHARGE ENERGY AVAILABLE AT ELEVATED 

DISCHARGE RATES

ä 3C AMPS (9 mA/cm²) DISCHARGE RATE TO 3.0 VOLT CUT-OFF
– 18.67 WHRS @ 0°C
– 41.57 WHRS @ 10°C
– 64.38 WHRS @ 23°C

ä 2C AMPS (6 mA/cm²) DISCHARGE RATE TO 3.0 VOLT CUT-OFF
– 46.40 WHRS @ 0°C
– 77.54 WHRS @ 10°C
– 102.80 WHRS @ 23°C

ä C AMPS (3 mA/cm²) DISCHARGE RATE TO 3.0 VOLT CUT-OFF
– 71.50 WHRS @ 0°C
– 102.55 WHRS @ 10°C
– 120.57 WHRS @ 23°C

SLC-16002 (35 AHR NAMEPLATE)
CELL TESTS
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LEO/GEO Tests
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F 25% DOD
F 100% SOC

F C/4 Charge
F C/2 Discharge

LEO Testing
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F 25% DOD
F 100% SOC

F C/4 Charge
F C/2 Discharge

LEO Testing

F 4850 Cycles Accumulated

FProjected to 13000 Cycles
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IRAD GEO Battery 

Development

F Battery Design

F Thermal 
Characteristics

F Battery Life Data
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Battery Structure & Design

F SLB-16001 battery
F Comprised of eight 

SLC-16002 cells
F Structural & thermal 

hardware includes:
• Aluminum alloys
• RTV’s
• Thermal transfer 

enhancement 
materials

• High strength 
fastening systems 

• Electrically neutral 
architecture

7.83
7.19

9.959

2.16 4.415



Technologies, LLC
Series String Battery Testing

F Abbreviated GEO Season 
for initial series battery 
testing

• 7.5%DOD
• 15%DOD
• 30%DOD
• 60%DOD
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• 7.5%DOD
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Thermal Characteristics 
of Battery

F Low variance in DT 
leads to longer life

F High rate and High 
Cycle Life applications 
Higher Importance

F 2oC maximum 
temperature variance 
throughout entire 
battery during full 
cycle

SLB-16000 #1, Cycle 9-10, TC Data
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End of Discharge Voltage

60% DOD Operation

F Historical data has 
shown
End of discharge 
voltage
linear until 
approximately 3.2 
volts/cell
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End of Discharge Voltage

60% DOD Operation

F Historical data has 
shown
End of discharge 
voltage
linear until 
approximately 3.2 
volts/cell

F Results
• 101 Abb. GEO 

Seasons (>808 
Cycles w/o 
electronics)

• Represents 18 
seasons in GEO

• 9 years in orbit
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FEnergy Density/ Specific Energy
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FGEO Battery Cycled over 2.5 years w/o 
individual cell control or bypass electronics
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FChemistry changes have shown significant 
increases in 

FEnergy Density/ Specific Energy

FRate / Temperature Capability

FLife

FGEO Battery Cycled over 2.5 years w/o 
individual cell control or bypass electronics

FAcceptable performance demonstrated during 
safety testing (Jim DeGruson 0830 Thursday) 

Conclusions
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STRV 1d: Launched 16 November 2000
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Contents

l Why small cells ?

l Using Sony cells in flight applications

l Battery Design

l Life Tests
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Small Lithium-Ion Cells
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Small Beginnings

l Early Lithium-ion cells were generally small cells
− Small means <5Ah
− Sony 18650 gained early commercial success

l Tests on small cells showed potential benefits for space
− Weight, volume, thermal advantages widely recognized

l The space industry requires many sizes of battery
− Voltages from ~8V to ~125V
− Capacity from 3Ah to several 100Ah

l Different paths to adopting Lithium-ion technology for space
− ‘Large batteries need large cells’ approaches
− ‘Small cell’ approaches
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Small Cell Approach

l Use a single design of small cell in all applications
l Implies the use of an array of cells

− Use a larger array for a large battery – not a larger cell
− Similar philosophy to solar array

l Initial motivation for a small cell approach
− Design & qualify a single cell design
− Small cells are easier to design and manufacture
− Negligible thermal gradient within cell
− Scalability, redundancy & reliability
− Experience with early small batteries is directly applicable to later large 

batteries

l Small cell approach is rapidly gaining acceptance
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Flight Programs

Mis s ion Cus tome r Mis s ion Type  Launch 
Date  

Status  

STRV-1c UK MOD GTO Nov 2000 In Orbit 
PROBA ESA LEO Q1 2001 FM in test 
ROSETTA Astrium, 

UK 
Interplanetary platform 2003 FM in test 

MARS-EXPRESS Astrium, Fr Interplanetary platform 2003 PFM in 
manufacture 

RoLand CNES, Fr Lander 2003 FM delivered 
Beagle2 Astrium, 

UK 
Lander 2003 BDR complete 

SciSat CSA LEO 2002 Program KO 
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Sony 18650 Hard Carbon

l Mature technology - in mass production since 1992
l Production standard frozen since 1995
l Good performance and lifetime characteristics
l 5.4Wh @ 40.5g =>133Wh /kg when battery delivered
l Highly uniform production
l Tested by many organizations
l Sony now manufacture several 18650 Lithium-ion cells: only 

the hard carbon type is considered here
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Cell Qualification Tests
 

CELL QUALIFICATION 
PARAMETER 

VALUE 

Non-Operating TVAC -50°C to +70°C 

Operating TVAC Charge –25 to 60°C 

Discharge –25 to 60°C 
Short term (emergency) 
temperature excursion limits 

Charge and discharge at 80°C 

Charge and discharge at -60°C 

Random Vibration Three axis, 240 seconds per axis  
In-plane: 30.4grms  (peak PSD 2g2/Hz) 
Out of plane: 30.4grms  (peak PSD 2g2/Hz) 

Shock 100 g, 0.5 ms half-sine (2000g qual at module level) 
Radiation Tolerance 100krad and 20krad at 0%, 50% and 100% SOC 

Fuse Blowing 10C for >250 ms @ 100% SoC 
4C for >250 ms @ 70% SoC 
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Cell Quality Control

l Sony implement high level of material & process control
− High volume production
− 5000 cells per hour

l Long term, close relationship with Sony
l Long term supply agreement with Sony

− Regularly procure batches > 10,000

l Lot Acceptance Test on each batch procured for space use
l Screening tests on every cell
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Lot Acceptance Test
LAT

Selection of lot from batch

84

Electrical Properties Group

Measure electrical properties

Accept / reject batch

74

44 6 24

Environmental Group Electrical
Abuse Group

Endurance
Group

Vibration

38 6

Level I DPA Rapid thermal
cycling

Seal integrity

Over-current
device

verification

Over-charge
device

verification

Accelerated
life test

No failures
allowed

BATCH ACCEPTANCE

No failures
allowed

No failures
allowed

No failures
allowed

10

Build Quality
Group

Level II DPA

No failures
allowed
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Small Cell – Small & Large Batteries



NASA Aerospace Battery Workshop, Huntsville
November 2000

Battery Electrical Design

l Connect cells in series to 
provide the required voltage

l Connect strings in parallel to 
provide the required 
capacity

l Battery is a two terminal 
device- charge management 
is at battery level only

l Packaged into modules. 
Each module contains 
complete strings

p strings define the capacity
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Reliability

l Found the Sony cells to be robust & reliable
l Assessment using MIL HBK has been performed
l Small cell approach allows redundant strings to be included at 

very low mass penalty
l Provision of modest levels of redundancy allows high reliability

to be easily achieved and reduces stress on cells
l (Try getting a solar array manufacturer to use a small number of

very large solar cells !)
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Cell Packaging Concept
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Qualified Battery Module

l Qualification of a point 
design of a highly scalable 
concept

l Each string has 11 cells for 
50V operation

l Module contains 20 strings 
for 30Ah capacity

l Testing completed Jan 1999
l Measured battery energy 

density is 117 Wh/kg
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Characterization & Life Test

l Extensive testing for space applications
− 2 million cell-hours

l Most tests performed on small 6s 2p modules
l All generic life tests performed at 4.2V per cell EOCV
l Temperature sensitivity

− 0°C, 10°C, 20°C, 40°

l Depth of discharge (relative to BOL 4.2V capacity)
− 10% to 100%

l Rate
− C/2 to 1.8C in discharge, C/20 to 1.8C in charge

l Real time tests
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Internal Resistance
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72 Simulated GEO Eclipse Seasons
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Capacity After Variable DOD Cycling
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Constant DOD GEO cycling
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Calendar Aging
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Larger Modules



NASA Aerospace Battery Workshop, Huntsville
November 2000

Scale – Up Tests

l Series of planned ground tests
l Voltages between 50V and 100V
l Single & multiple module tests
l Several different test locations
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Conclusions

l Small cell approach to satellite Lithium-ion batteries is both 
viable and attractive

l Small cells can be used to build large batteries
l Use of Sony 18650 HC cells maximizes maturity and delivers 

excellent performance
l Excellent possibilities for delivering much higher performance 

in the future
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Background of Lithium Battery Background of Lithium Battery 
TechnologyTechnology

e -

LiNiO 2            xLi +   +  Li 1-x NiO 2   +  xe -

C 6   +  yLi +   +  ye -             Li y C 6



Electrolyte RequirementsElectrolyte Requirements

nn The Ideal SolventThe Ideal Solvent
–– Large liquid rangeLarge liquid range
–– Low viscosityLow viscosity
–– Ability to solvate ionsAbility to solvate ions
–– Minimal toxicityMinimal toxicity
–– Large working voltageLarge working voltage



Status Quo for SolventsStatus Quo for Solvents

M.P. 4.6°C -43 +39 -49 -43 -109

B.P. 91°C 126 248 240 203 66

Viscosity 0.59cP 0.75 1.86 * 2.5   1.75 0.48

Dielectric
Constant e

3.12   2.82 89.6 * 64.4   39 7.75

**Solution
Conductivity

11.00 mS
        cm

5.00 6.97 5.28 10.62 12.87

 

O O

O

CH 3 CH 3

 

O O

O

EtEt

 

O O

O

 

O O

O

CH3

 

O

O
 

O

*     At 40°C
** 1 M  LiAsF 6



The ProblemThe Problem

nn The electrolyte (solvent) can be reduced in lieu ofThe electrolyte (solvent) can be reduced in lieu of LiLi++ ion ion 
reduction / intercalation.reduction / intercalation.

nn This causes significant, irreversible capacity loss on the firstThis causes significant, irreversible capacity loss on the first
charge cycle.charge cycle.

nn It can also lead to considerably more capacity loss over long It can also lead to considerably more capacity loss over long 
periods.periods.

nn The S.E.I. or P.E.I. that forms with electrolyte decomposition The S.E.I. or P.E.I. that forms with electrolyte decomposition 
mitigates further decomposition of the electrolyte, but this S.Emitigates further decomposition of the electrolyte, but this S.E.I. .I. 
or P.E.I. also inhibits charge transfer at the anode and this lior P.E.I. also inhibits charge transfer at the anode and this limits mits 
the the powerpower of theof the LiLi Ion cell.Ion cell.



How the SEI worksHow the SEI works

 

 

 

 

 

e

Li°Li+ClO4- CO32-



QuestionsQuestions

nn Can the behavior of electrolyte solvent be predicted Can the behavior of electrolyte solvent be predicted 
through computer modeling?through computer modeling?
–– What What molecularmolecular properties of a solvent make it susceptible to properties of a solvent make it susceptible to 

electrochemical degradation?electrochemical degradation?
–– What properties of a solvent make it form a S.E.I. or P.E.I.?What properties of a solvent make it form a S.E.I. or P.E.I.?
–– Can a solvent be designed that will not be oxidized or reduced Can a solvent be designed that will not be oxidized or reduced 

under charge or discharge conditions?under charge or discharge conditions?
–– If not, can a solvent be designed that will form a thin, robust If not, can a solvent be designed that will form a thin, robust 

S.E.I.?S.E.I.?



Generally Accepted BehaviorGenerally Accepted Behavior
of Alkyl Carbonatesof Alkyl Carbonates

nn They strongly coordinate LiThey strongly coordinate Li++ ions, probably 4:1ions, probably 4:11,21,2

nn There is an electron transfer to the electrolyte well anodic of There is an electron transfer to the electrolyte well anodic of LiLi++

ion reductionion reduction33

nn Subsequent electron transfers are likelySubsequent electron transfers are likely4,54,5

nn AfterAfter the reduction process, these Alkyl Carbonates decompose the reduction process, these Alkyl Carbonates decompose 
to:to: 4,6,7 4,6,7 polymerization products, polymerization products, 

CHCH22=CHR=CHR(g)(g), CO, CO2(g)2(g), (CHROCO, (CHROCO22Li)Li)2(s)2(s), and Li, and Li22COCO3(s)3(s)
nn Chloroethylene Carbonate Chloroethylene Carbonate alsoalso easily loses Cleasily loses Cl-- 88
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Free Energy Map 1Free Energy Map 1
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LiLi++ Ion SolvationIon Solvation 

Li + nS LiS n
++

Solvent Ave. n αLiSn(mode)+
²G° form.
kcal/mole 

O O

O
3.97 0.97 -78

 

O O
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CH 3

3.98 0.98 -87
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Cl

4.00 1.00 -72
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F

5.92 0.93 -140



Free Energy Map 2Free Energy Map 2

ECLi+

Li+

EC2Li+
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EC4Li°
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e- transfer
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First Reduction ProcessFirst Reduction Process
 

S + e - S -
 

LiS 4
+ LiS n

0e -+

Solvent E.A. (S)
(eV)

²G° red
(kcal/mole)

E.A. (LiS4+) ²G° red
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Free Energy Map 3Free Energy Map 3
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Free Energy Map 4Free Energy Map 4

EC4Li+
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Charge DistributionCharge Distribution
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? H Normalized Reaction Pathway? H Normalized Reaction Pathway

-20

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10

EC
ClEC
PC
FEC

1  doubly reduced w/ 2 solvent molec 6  breaking other beta bond (transition state)

2  breaking beta bond (transition state) 7  optimized, carbonate formed

3  broken beta bond (opt) 8  CH2=CH-R lost

4  addition of 3rd electron 9  losing solvent molecule (transition state)

5  optimized structure w/ 3e- 10  isolated lithium carbonate

² H 
(kcal/mol)



? G Normalized Reaction Pathway? G Normalized Reaction Pathway

1  doubly reduced w/ 2 solvent molec 6  breaking other beta bond (transition state)

2  breaking beta bond (transition state) 7  optimized, carbonate formed

3  broken beta bond (opt) 8  CH2=CH-R lost

4  addition of 3rd electron 9  losing solvent molecule (transition state)

5  optimized structure w/ 3e- 10  isolated lithium carbonate

-20

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10

EC
ClEC
PC
FEC

² H 
(kcal/mol)



ClEC Reactions PathwaysClEC Reactions Pathways

beta pathway
beta' pathway



ClEC Reactions PathwaysClEC Reactions Pathways

w/ Li+
w/o Li+

25 kcal/mol



Future WorkFuture Work

nn Further analysis of the pathways obtained from this Further analysis of the pathways obtained from this 
research usingresearch using ab initioab initio calculations and updated calculations and updated 
parameters in MOPAC.  parameters in MOPAC.  

nn Investigate oxidation processes.Investigate oxidation processes.

nn Design and characterize new solvents based on this work.Design and characterize new solvents based on this work.



ReferencesReferences

1.1. R. Blint, R. Blint, J. Electrochem. SocJ. Electrochem. Soc., ., 142142, 696, 696--702 (1995).702 (1995).

2.2. S. Hyodo and K. Okabayashi, S. Hyodo and K. Okabayashi, Electrochim. Acta, Electrochim. Acta, 34, 155134, 1551--1556 (1989).1556 (1989).

3.3. S. Mori, H. Asahina, H. Suzuki, A. Yonei, and K. Yokoto, S. Mori, H. Asahina, H. Suzuki, A. Yonei, and K. Yokoto, J. Power SourcesJ. Power Sources, 68, , 68, 
5959--64 (1997).64 (1997).

4.4. D. Aurbach, Y. EinD. Aurbach, Y. Ein--Ely and A. Zaban, Ely and A. Zaban, J. Electrochem. Soc.J. Electrochem. Soc., 141, L1, 141, L1--3 (1994).3 (1994).

5.5. D. Aurbach, A. Zaban, A. Schechter, Y. EinD. Aurbach, A. Zaban, A. Schechter, Y. Ein--Eli, E. Zinigrad and B. Markovsky, Eli, E. Zinigrad and B. Markovsky, 
ibid,ibid, 142, 2873142, 2873--2889 (1995).2889 (1995).

6.6. D. Aurbach, M. Daroux, P. Faguy and E. Yeager, D. Aurbach, M. Daroux, P. Faguy and E. Yeager, ibidibid, 134, 1611, 134, 1611--1619 (1987).1619 (1987).

7.7. D. Aurbach and M. Moskovich, D. Aurbach and M. Moskovich, ibid.ibid., 145, 2629, 145, 2629--2639 (1998).2639 (1998).

8.  Z.X. Shu, R.S. McMillan, J.J. Murray and I.J. Davidson, 8.  Z.X. Shu, R.S. McMillan, J.J. Murray and I.J. Davidson, ibidibid, 143, , 143, 
22302230--2235 (1996).2235 (1996).



• Murdock Charitable Trust

• Pacific University

AcknowledgementsAcknowledgements





The Lithium Ion CellThe Lithium Ion Cell

e -

LiNiO 2            xLi +   +  Li 1-x NiO 2   +  xe -

C 6   +  yLi +   +  ye -             Li y C 6
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EMU BATTERY LIFE TESTING OBJECTIVES

• A 45Ah Li-ion battery comprised of five (5) Yardney prismatic cells is 
being evaluated to replace the silver-zinc cells in the Extra-vehicular 
Mobility Unit (EMU).  

• The tests being conducted at Symmetry Resources are to determine if 
the 5 cell battery can meet the mission objective of 500 duty cycles and 
maintain a minimum voltage of 16.0 V without an individual cell voltage 
dropping below 3.0V.  

• 40 Real Time cycles were conducted to develop BOL trend data (This 
accomplishment would exceed the current silver-zinc capability).

• Decision to switch to accelerated cycling for the remaining 460 cycles 
was made since “Real Time”cycling requires 1 day/cycle.

This presentation covers the initial test data
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WHY CHANGE THE EMU BATTERY?

Silver Zinc Design

11 Zn/AgO Cells in Series

Cell Compliment Wt = 11.6 lbs 

Cell Compliment Cost = $10K

45Ah Capacity BOL(Full Cap)

425 Day Wet Life, 32 Cycle Life

237.6 Wh/L BOL

141.0 Wh/Kg BOL

Li-ion Design

5 LiNi1-XCoxO2 Cells in Series

Cell Compliment Wt = 12.2 lbs

Cell Compliment Cost = $20K

45Ah Capacity BOL (Full Cap)

Goal of 5 yr Wet Life, 500+ Cycle Life

262.8 Wh/L BOL

148.8 Wh/Kg BOL
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EMU BATTERY LIFE TESTING

Characterization Testing at 50°C, 25°C, -10°C

40 Real Time Cycles at 25°C

460 Accelerated Cycles at 25°C

Characterization Testing at 50°C, 25°C, -10°C
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YTP 45A-h Li-Ion EMU Battery Cycling Tests
Initial Conditioning Cycle, 25 deg. C
Battery/Cell Charge Voltage Profiles
4.50A to 21.0V (4.25V) battery (cell) voltage
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Battery Volt Cell #01 volt Cell #02 volt Cell #03 volt Cell #04 volt Cell #05 volt

    Up o n  c o m p letion of  this  cha rge ,  c e lls  0 1-04 
   were independently charged at 4.50A to a 
   4.25V cutoff.  The primary charge input was
   39.923A-h.  The incremental capacity input
   fo r  each  ce ll is  a s  fo llo ws .

                      Cell #          Input (A-h)
                         01                8.768
                         02                3.462
                         03                4.861
                         04                1.924
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CHARACTERIZATION TESTING

Stabilize at Temperature

Charge at 4.5 amps to Battery Voltage of 21.0V or Cell Voltage 4.2V

Discharge at 10.0 amps to Battery Voltage of 14.5V or Cell Voltage of 2.7V

50°C Capacity = 48.09Ah  (107.0% of 25°C)

25°C Capacity = 44.96Ah

-10°C Capacity = 31.31Ah  (69.6% of 25°C)
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REAL TIME CYCLING

Discharge at 3.8 amps for 7 hours or Battery Voltage of 16.0V, Cell Voltage of 3.0V

Charge at 1.55 amps for 20 hours or Battery Voltage of 20.5V, Cell Voltage of 4.1V

Every 20th Cycle, Continue Discharge to Battery Voltage of 16.0V, Cell Voltage of 3.0V

40 CYCLES COMPLETED
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ACCELERATED CYCLING

Discharge at 11.0 amps for 2 hours 25 minutes or Battery Voltage of 16.0V, Cell Voltage of 3.0V

Charge at 11.0 amps to a Battery Voltage of 20.5V, Cell Voltage of 4.1V.

Then charge at 5.0 amps to a Battery Voltage of 20.5V, Cell Voltage of 4.1V.

Then charge at 2.0 amps to a  Battery Voltage of 20.5V, Cell Voltage of 4.1V.

Then charge at 1.0 amp to a  Battery Voltage of 20.5V, Cell Voltage of 4.1V.

Every 20 Cycles  Discharge Battery at 3.8 amps to 16.0V (Cell Voltage of 3.0V)

CYCLING IN PROGRESS
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CYCLE 19, 40 AND 120 BATTERY 
DISCHARGE VOLTAGE COMPARISONS

(Discharged at 3.8amps to 16.0V)
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     Cycle 19 Capacity = 37.85 Ah
     Cycle 40 Capacity = 37.06 Ah
     Cycle 120 Capacity = 36.41Ah
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YTP 45A-h, 5-cell Li-Ion EMU Battery Cycling Tests
Real Time and Accelerated Cycling at Room Temp.
End-of-Discharge Battery Voltage versus Cycle Trend

3.8A to 16V (3.0V) battery (cell) voltage on 20 cycle interval; All other cycles to 26.6A-h
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    voltage for cycles 10 through 40.  The
    charge termination voltages for cycles 1
    through 9 w ere 21.0V (4.20V).

  Partial Discharges at 3.8A for cycles 1
  through 40; at 11.0A for all subsequent
  partial discharge cycles.
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YTP 45A-h, 5-cell Li-Ion EMU Battery Cycling Tests
Real Time and Accelerated Cycling at Room Temp.

End-of-Discharge and End-of-Charge Cell Voltage Differentials
3.8A to 16V (3.0V) battery (cell) voltage on 20 cycle interval; All other cycles to 26.6A-h

0

50

100

150

200

250

300

350

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

Cycle #

V
ol

ta
ge

 D
iff

er
en

tia
l (

m
V

)

End-of-Discharge Cell Voltage Diff End-of-Charge Cell Voltage Diff

    The charge termination voltage w as
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  Partial Discharges at 3.8A for cycles 1
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SUMMARY 

• The Data Indicates the Potential to Meet the 500 Cycle Objective Within the 
EMU Mission Requirements.

• Capacity to 16.0 Volts at 120 Cycles ( 36.41Ah) Exceeds Requirement by 
36.9 %.

• Battery Charge Method and Cell Protective Circuitry Need to be Addressed.

• 40 Additional Cells Have Been Ordered for Additional Performance and 
Safety/Abuse Testing for This Cell Design.
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at Tsukuba Space Center, NASDAat Tsukuba Space Center, NASDA

Y. Sone,  X. Liu, H. Kusawake, K. Kanno, 
and S. Kuwajima

Battery Group, Office of Research and Development 
National Space Development Agency of Japan (NASDA)

2000 NASA Aerospace Battery Workshop



Development of Space Batteries at NASDA
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List of Li-Ion Secondary Cells

Temp
/?

DOD
/%

Charge(CC-CV) Discharge C/D
Ratio

Sample Number Cycle Number
CC/A CV/V(/cell) Current/A Initial Present

20 4.1 0.5 2 End
20 4.0 0.5 2 End
20 4.2 0.5 2 2
20 4.1 0.5 2 2
20 4.1 0.5 2 End
20 4.0 0.5 2 2
20 4.1 0.35 2 End
20 4.0 0.35 2 End
20 4.2 0.35 2 2
20 4.1 0.35 2 2
20 4.2 0.6 2 End
20 4.1 0.6 2 1
20 4.2 0.6 2 2
20 4.1 0.6 2 1
20 4.1 0.6 2 1
20 4.0 0.6 2 2

Feasibility 
Study using 
Commercial 
Cells

Simulation 
Tests for 
Satellite 
Applications

Phase

20 4.05 15 5 5
20 4.05 24 5 41)

20 4.05 5 2 2
20 4.05 8 3 3
15 3.95 50 5 5
15 3.95 80 5 5
15 3.95 67 5 5
10 4.2 72 5 5

Capacity
/Ah

0.7
0.7
1.0
1.0
1.2
1.2
0.7
0.7
1.0
1.0

0.98
0.98
1.0
1.0
1.2
1.2
30
30
10
10
100
100
100
90
90

Package

CELL
CELL
CELL
CELL
CELL
CELL
CELL
CELL
CELL
CELL
CELL
CELL
CELL
CELL
CELL
CELL
CELL
CELL
CELL
CELL
CELL
CELL
CELL
CELL
CELL

Mode

LEO
LEO
LEO
LEO
LEO
LEO
LEO
LEO
LEO
LEO
LEO
LEO
LEO
LEO
LEO
LEO
LEO
LEO
LEO
LEO
LEO
LEO
GEO
LEO
GEO 10

35.7
35.7

25
25

20.8
20.8
25
25
18
18
31
31
30
30
18
18
25
40
25
40
25
40
80
40
80

0.3
0.3
0.3
0.3
0.3
0.3

0.21
0.21
0.21
0.21
0.36
0.36
0.36
0.36
0.36
0.36

9
15
3
5

25
50
10
45
9 4.2 60 5 5

1.01
1.01
1.01
1.01
1.01
1.01
1.01
1.01
1.01
1.01
1.01
1.01
1.01
1.01
1.01
1.01
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.000
1.000

Date 
Started

May-95
May-95
May-95
May-95
May-95
May-95
Sept-96
Sept-96
Sept-96
Sept-96
Sept-96
Sept-96
Sept-96
Sept-96
Sept-96
Sept-96
Sept-98
Sept-98
June-99
June-99
May-99
July-99
Aug-99
June-00
July-00

Ended

--
--
--
--

18,151
--
7,353

12,108
--
--
3,322
3,203
--
3,003

14,143
--
--
--
--
--
--
--
--
--
--

Present

13,000
8,200

22,000
22,000

--
22,000

--
--

15,000
15,000

--
15,000
15,000
15,000
15,000
15,000
9,600
9,200
6,000
6,000
5,200
4,800

320
1,100

45

October 2000
Data Update



10Ah LiCoO2/Graphite Cells

Cell Style  Prismatic 

Positive E lectrode  LiCoO2 Electrode  

Negative E lectrode  C (graphite) over  

porous Nickel  

Capacity  Nominal / Typical  10Ah / 12  Ah  

Weight  0.43 kg 

Dimensions  70 m m  (W) x 23.5 m m  (D) 

x 130 mm (H) 

per Weight  100 Wh/k g Energy 

Density  per Volume 202 Wh/L 

Charge Voltage / Higher Limited 

Voltage 

4.1 V 

Nominal Voltage  3.6 V Discharge 

Voltage Lower Limited Voltage  3.0 V 

 

10 Ah Prismatic cells were prepared in 1999.  The originality of the cell design is the 
negative electrode.  Instead of Cu sheet, porous Ni is used as a current collector.  Graphite 
covers the surface of porous Ni, thus it performs as a negative electrode.
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Fig. Life Cycle Trend of DOD=25% LEO Test
Two cells are connected in series.

Fig. Life Cycle Trend of DOD=40% LEO Test
Three cells are connected in series.

Data Update

EOCV

EODV

EOCV

EODV

Trend Data of 10 Ah LiCoO2/Graphite Cells

Above figures show the trends of LEO tests using 10 Ah prismatic cells.  We are testing the 
performance of the cells under two different DOD conditions.  We have not observed any variety 
of EOCV or EODV of the cells with a series connection.



Trend Data of 10 Ah LiCoO2/Graphite Cells

Fig. Recent Cycle Performance 
of DOD=25% LEO Test

Two cells are connected in series.

Fig. Recent Cycle Performance 
of DOD=40% LEO Test

Three cells are connected in series.
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Above figures are charge and discharge curves for recent five cycles.  The charge and discharge curves 
of two cells are almost identical in the case of DOD=25% LEO test, while one of the three cells shows a 
higher charge voltage and lower discharge voltage in the case of DOD40% LEO test.  We believe that the 
impedance of the cell is increasing, now. 
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Fig. Capacity Trend by Cycles,
LEO Test/DOD25%

Fig.  Capacity Trend by Cycles, 
LEO Test/DOD40%

Residual Capacity Measurement

First Capacity Measurement

Second Capacity Measurement

Residual Capacity Measurement

First Capacity Measurement

Second Capacity Measurement

Capacities of samples are slightly decreasing.  However, in the both case, all samples 
still keep their nominal capacity. 



Cell Style  Prismatic 

Positive E lectrode  LiCoO2 Electrode  

Negative E lectrode  C (graphite) 

Capacity  Nominal / Typical  30Ah / 39 Ah  

Weight  1.3 kg 

Dimensions  98.5 m m  (W) x 27 m m  (D) 

x 190 mm (H) 

per Weight  108 Wh/kg Energy 

Density  per Volume 278 Wh/L 

Charge Voltage / Higher Limited 

Voltage 

4.1 V 

Nominal Voltage  3.6 V Discharge 

Voltage Lower Limited Voltage  3.0 V 

 

30Ah LiCoO2/Graphite Cells

30 Ah prismatic cells were prepared by Japan Storage Battery Co. (denoted as JSB) in 1998.  
Our request to JSB was to fabricate a ‘Prismatic Cell’using popular electrode materials.  
Positive and Negative electrodes were LiCoO2 and C (graphite), respectively. They 
prepared square sheets of electrodes on the basis of their conventional Li-Ion cells for 
ground applications that requested 7 hours for the ideal full charge.  
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Fig. Life Cycle Trend of DOD=25% LEO Test
Five cells are connected in series.

Fig. Life Cycle Trend of DOD=40% LEO Test
Five cells used to be connected in series. At 8,269 
cycle, one of the cells was removed for DPA.

Five cells were connected in series for the above measurements. The performance of cells have been 
very stable in the case of DOD=25%, while a considerable decrease in EODV was observed in the 
case of DOD=40%.

Trend Data of LiCoO2/Graphite Cells
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Fig. Capacity Trend by Cycles,
LEO Test/DOD25%

Fig.  Capacity Trend by Cycles, 
LEO Test/DOD40%
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In the test with DOD=25%, we observed a constant decrease in capacity. The residual capacity during cycle 
test was almost the same as the capacity obtained after full charge.  In test with DOD=40%, high decrement 
of residual capacity was observed, which resulted in the considerable decrease in EODV.  It is notable that 
we obtained high capacity after full charge, which means that the charge amount during DOD=40% cycles 
was too small due to the lack of charge duration (60 min.) for '98 models to maintain its cycle performance. 
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DPA of 30 Ah LiCoO2/Graphite Cells

Fig. Capacity Measurement before DPA.

In order to understand the reason of the high decrease in EODV and residual capacity, we decided to 
perform destructive physical analysis (DPA) using a sample of DOD=40% cycle test.  As a reference, 
we used an as-prepared cell which had been stored at room temperature by JSB. The charge and 
discharge curves of the sample after life cycle test suggested an increase in impedance.  The capacity of 
DOD=40% sample was ca. 20% smaller than that of the reference.  
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Fig.  Charge curves of 30Ah cells
Charge Condition : CC(3A)-CV(4.05V), at 20

Fig.  Discharge curves of 30Ah cells
Discharge Condition : CC(15A), at 20
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DPA of 30 Ah LiCoO2/Graphite Cells

Fig.  Pictures of electrodes after destruction. 

Fig.  Positive Electrode  Fig.  Negative Electrode  

These are photographs of electrodes after DPA.  These appearances and SEM images revealed that 
the electrodes still kept a smooth surface condition.  Separators and electrodes seemed to be enough 
wet for electrochemical conduction.  
The significant increase in water content in the solvent and the composition change in the electrolyte 
were not detected by means of Karl Fischer Titration and LC-FTIR.
Electrochemical measurements were carried out using a glass cell with three electrodes configuration. 
Both reference and counter electrodes were lithium metal foils. Samples for working electrodes were 
taken out from an inner (central side) and an outer (case side) sheet of a stack.

Contract research with JSB
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DPA of 30 Ah LiCoO2/Graphite Cells

Fig. Capacity Measurement of Positive Electrodes.

Fig.  Charge curves of Positive Electrodes
Charge Condition : CC(0.5mA/cm2) to 4.3V, at 25

Fig.  Discharge curves of Positive Electrodes
Discharge Condition : CC(2.0mA/cm2) to 3.0V, at 25

Capacities of positive electrodes were measured.  The samples from DOD=40% test cell showed a 
lower capacity than that from the as-prepared reference cell, while the samples coming from the 
common cell stack showed almost the same curves and capacities. 

Contract research with JSB
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DPA of 30 Ah LiCoO2/Graphite Cells

Fig. Capacity Measurement of Negative Electrodes.

Fig.  Charge curves of Negative Electrodes
Charge Condition : CC(0.5mA/cm2) to 0.0V, at 25

Fig.  Discharge curves of Negative Electrodes
Discharge Condition : CC(2.0mA/cm2) to 1.5V, at 25
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Capacities of negative electrodes were also measured.  A fairly degradation of performance was observed in 
the case of DOD=40% test cell.  The degradation of the inner sheet of a stack was more considerable than 
that of the outer sheet.  An increase in thickness and impedance was also observed in the negative electrode.  
We believe that the degradation of negative electrodes played an important role in the decreasing residual 
capacity of DOD=40% test cells. 
Based on these results, accompanied with the experience of 100Ah elliptic cylinder cells, we have started the 
discussion of the new trial cell which might enable high rate charge targeting LEO applications.

Contract research with JSB



Fig. Recent Cycle Performance 
of DOD=25% LEO Test

Five cells are connected in series.

Fig. Recent Cycle Performance 
of DOD=40% LEO Test

Four cells are connected in series.

Trend Data of 30 Ah LiCoO2/Graphite Cells
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Above figures are charge and discharge curves for recent five cycles. When we restarted the cycle test with 
DOD=40% after the replacement of a cell for DPA, we raised the CV condition up to 4.1V to continue the 
cycles.  As shown above, very stable performance is observed currently.

Voltage CurrentTemperature



Mitsubishi Electric Co. (MELCO) and Japan Storage Battery Co. (JSB) have been cooperating for the 
development of lithium ion secondary battery for space applications.  In 1998, we decided to 
collaborate with these companies to accelerate our R&D of lithium ion secondary battery for the 
NASDA future satellites. 
MELCO is going to establish the battery system including the charge method.  For example, 
MELCO studies the electric circuits, safety unit, and others to maintain and evaluate the safety of the 
whole battery system. 
JSB performs the cell design, manufacturing, and checking the single cell performance. Life cycle 
test, safety test of cells, storage effects are included in its study.  JSB has improved the cell design for 
this 100Ah cell to reduce the increase in impedance during cycles.
NASDA focuses the evaluation on the long-term performance as a battery.

Cell Style  Elliptic Cylinder  

Positive E lectrode  LiCoO2 Electrode  

Negative E lectrode  C (graphite) 

Capacity  Nominal / Typica l 100Ah / 106 Ah  

Weight  2.8 kg  

Dimensions  130 mm (W) x 50 mm (D) 

x 207 mm (H) 

per Weight  136 Wh/kg Energy 

Density  per Volume 309 Wh/L 

Charge Voltage / Higher Limited 

Voltage 

3.98 V 

Nominal Voltage  3.6 V Discharge 

Voltage Lower Limited Voltage  2.75 V 

 

100 Ah LiCoO2/Graphite Cells 
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Trend Data of 100 Ah LiCoO2/Graphite Cells

In the case of DOD=25% test, we observed lower EODV of a cell until ca. 1,600 cycles.  It was because of 
the loose contact between the terminal of the cell and the external lead from the instruments.  Today, though 
both EOCV and EODV sprit into different levels, we have almost the same cycle trends of the cells 
connected together in series.
In the case of DOD=40%, we observed nearly no difference in the performance of five cells connected in 
series. 

Fig. Life Cycle Trend of DOD=25% LEO Test
Five cells are connected in series.

Fig. Life Cycle Trend of DOD=40% LEO Test
Five cells are connected in series.

Data Update

EOCV

EODV

EOCV

EODV



Trend Data of 100 Ah LiCoO2/Graphite Cells

Fig. Recent Cycle Performance 
of DOD=25% LEO Test

Five cells are connected in series.

Fig. Recent Cycle Performance 
of DOD=40% LEO Test

Five cells are connected in series.
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Above figures are charge and discharge curves for recent five cycles.  Very stable performance 
is still observed. 
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Fig. Capacity Trend by Cycles,
LEO Test/DOD25%

Fig.  Capacity Trend by Cycles, 
LEO Test/DOD40%

Residual Capacity Measurement

First Capacity Measurement

Second Capacity Measurement

Residual Capacity Measurement

First Capacity Measurement

Second Capacity Measurement

Capacities of samples are decreasing slightly.  Significant degradation has not been observed, yet.



Trend Data of 100 Ah LiCoO2/Graphite Cells
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Fig. Life Cycle Trend of DOD=80% GEO Test
Five cells are connected in series.

After 300 cycles, the end of discharge voltage decreased to 3.4 V.  A constant decrease in the end of 
discharge voltage is still observed.

Fig. Cycle Curve of DOD=80% GEO Test
Five cells are connected in series.
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Trend Data of 100 Ah LiCoO2/Graphite Cells

Fig.  Capacity Trend by Cycles, GEO Test/DOD80%
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Capacity of samples is decreasing slightly.  Significant degradation has not been observed, yet.
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Temperature Dependence of Capacity, 
100 Ah LiCoO2/Graphite Cells

Fig. Capacity Measurement at different temperatures, measured before we started life cycle test.

Fig.  Charge curves
Charge Condition : CC(10 A)-CV(3.95 V)

Fig.  Discharge curves
Discharge Condition : CC(50 A) to 2.8 V

We measured capacities of a cell at different temperatures.  There was an increase in charge 
voltage and a decrease in discharge voltage with decreasing temperature, while we could obtain 
almost the same capacity in every measurement.
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Temperature Dependence of Capacity,
100 Ah LiCoO2/Graphite Cells
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Fig.  Temperature dependence of capacity
100 Ah Elliptic Cylindrical Cell from JSB.

We obtained a smaller capacity at 0 , though the decrement was almost negligible.



Cell Style  Cylinder  

E lectrode  positive electrode  LiMn 2O4 

 negative electrode C (n on -graphite) 

Capacity 90 Ah  

Weight  3.3 kg  

Dimensions  ƒ Ó67mm x 410 mm  

per weight  104 Wh /kg Energy 

Density per volume 237 Wh /L 

Charge Voltage / Higher Limited 

Voltage 

4.2 V 

Nominal Voltage 3.8 V Discharge 

Voltage Lower Limited Voltage  2.5 V 

 

Above battery and cell are under development by the cooperation of IHI Aerospace Co. (IAC) and
Shinkobe Electric Machinery Co.  We started the collaboration with these companies, too, in 1999. 
They used LiMn2O4 and C (non-graphite) for the positive and negative electrode, respectively.

90Ah LiMn2O4/Non-Graphite Cells



Trend Data of 90 Ah LiMn2O4/Non-Graphite Cells

Above figures show the trends of the performance during DOD=40% life cycle test.  The 
charge and discharge curves of five cells in series have been almost identical through the test.
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Fig. Life Cycle Trend of DOD=40% LEO Test
Five cells are connected in series.

Fig. Recent Cycle Performance 
of DOD=40% LEO Test

Five cells are connected in series.
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Trend Data of 90 Ah LiMn2O4/Non-Graphite Cells
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Fig. Life Cycle Trend of DOD=80% GEO Test
Five cells are connected in series.

One of the cells showed higher voltage in the both case of charge and discharge.  When 
we checked the capacity after 45 cycles, we discharged each cell down to 2.5V.  We 
expected the same state of charge among these five cells by this treatment.

Fig. Recent Cycle Performance 
of DOD=80% GEO Test

Five cells are connected in series.

3. 0

3. 2

3. 4

3. 6

3. 8

4. 0

4. 2

0

10

20

30

40

50

60

70

0 5 10 15 20 25 30

V
ol

ta
ge

/V

Tem
perature/D

egrees C
  and   C

urrent/A

Ti me  /  Hour s

EOCV

EODV

Voltage CurrentTemperature



Fig. Capacity Trend by Cycles,
LEO Test/DOD40%

Fig.  Capacity Trend by Cycles, 
GEO Test/DOD80%
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Trend Data of 90 Ah LiMn2O4/Non-Graphite Cells

Residual Capacity Measurement

First Capacity Measurement

Second Capacity Measurement

Residual Capacity Measurement

First Capacity Measurement

Second Capacity Measurement
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Temperature Dependence of Capacity,
90 Ah LiMn2O4/Non-Graphite Cells

Fig. Capacity Measurement at different temperatures, measured at 45 cycle of GEO test.

Fig.  Charge curves
Charge Condition : CC(9 A)-CV(4.2 V)

Fig.  Discharge curves
Discharge Condition : CC(45 A) to 2.7 V

We measured capacities of a cell at different temperatures.  The typical curves of the cell using 
C (non-graphite) were observed.  Because of this discharge curve, at lower temperature, we 
observed the decrease in capacity.
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Fig.  Temperature dependence of capacity

90 Ah Cylinder Cell from IAC.

Temperature Dependence of Capacity,
90 Ah LiMn2O4/Non-Graphite Cells

Capacity of 90Ah cells linearly increased with temperature.  The capacity at 0 was almost 8% 
smaller than that obtained at 30 .



Summary

Life cycle performance of large size Li-Ion secondary cells is studied at Tsukuba Space Center, NASDA.

10 Ah LiCoO2/Graphite Cell
LEO simulating test reveals stable cycle performance of the cells with series connection.  We have already 
tested more than 6,000 life cycles in DOD=25/40% test.

30 Ah LiCoO2/Graphite Cell
More than 9,000 cycles have passed in DOD=25 /40% LEO cycle test. 
The performance of cells have been very stable in the case of DOD=25%, while a considerable decrease in 
EODV and residual capacity was observed in the case of DOD=40%. In order to understand the degradation 
of DOD=40% samples, we performed destructive physical analysis. The analysis suggested us that the 
degradation of negative electrode played an important role in the degradation of cell performance.
Based on these results, accompanied with the experience of 100Ah elliptic cylinder cells, we have started the 
discussion of the new trial cell which might enable high rate charge targeting LEO applications.

100 Ah LiCoO2/Graphite Cell
More or less than 5,000 cycles have passed in DOD=25/40% LEO cycle test, and more than 300 cycles have 
passed in DOD=80% GEO cycle test.  No significant degradation of the performance has been observed, yet.  
Thermal effect on capacity was also presented.

90 Ah LiMn2O4/Non-Graphite Cell
The study of this type of cells has just started.  More than 1,000 cycles in DOD=40% LEO test and 45 cycles 
in DOD=80% GEO test have passed.  Thermal effect on capacity was also presented.
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Objective

• Cell Characterization
- Capacity
- Self-discharge
- Mid-discharge voltage

• Determination of Cycling Performance as a Battery Pack 
under LEO regime

- Number of cycles
- Charge voltage
- Temperature



Cells Under Study

• Prismatic Cells
- 20 AH Yardney
- 1.5 AH Wilson Greatbatch 

• Cylindrical Cells
- 12 AH, 4 AH and 1.25 AH SAFT

• Polymer cells
- 3 AH Alliant Tech. 
- 8 AH Lithium Technology, Inc. 



Characterization Data

• Self-discharge - 72 hours charged open-circuit stand
- Yardney = 1.4% 
- SAFT =1.4%
- Alliant Tech (ATK) = 2% 
- Wilson Greatbatch (WG) =1.4%

• Capacity Decrease when the discharge rate is increased to 
C/2 from C/5

- Yardney - 2% 
- SAFT - 0.9% 
- ATK - 2%
- WG - 25%



Characterization Data -Contd.

• Mid-discharge voltages at C/2 discharge rate
- Yardney = 3.51V  
- SAFT = 3.56V 
- ATK  = 3.54 V 
- WG = 3.65V

• Cell impedance (mohms) at 50% SOC
- SAFT = 1.74
- Yardney = 10.2 
- ATK = 51 
- WG = 68 



Characterization Data -Contd.

• Capacity at 0oC in percentage of capacity at 25oC 

- Yardney  = 92%
- SAFT = 91% 
- WG = 91%
- ATK = 51%



LEO Cycling: Conditions

• Continuous cycling in a regime consisting of 30 min. 
discharge and 60 min. charge at the rate of 16 cycles/day

• Temperature = -20°C to 40°C 
• Depth of discharge = 40%
• Charge voltage clamped at a Battery/Pack voltage at C/2 

rate with current taper
• Recharge ratio =  1-1.01 



LEO Cycling: Data

Number of cells CAP , AH Charge CYCLES S TATUS

and ce ll type AT 25°C V limit

8 - S AFT12AH 11.4 3.85 2745 Cont inuing

8 - Yardney 20AH* 24.9 4 2739 Cont inuing

5 - Allian t  Tech 3AH 2.06 4 2359 Discontd

8 - WG 1.5AH 1.43 4.1 10 Discontd

8 - Li-Tech 8AH 7.1 4.1 2 Discontd

2 - S AFT 4AH 4 3.85 7472 Cont inuing
2 - S AFT 1.25AH 1.3 3.85 11323 Cont inuing

* Cells 192,194,195 and 196 have previously completed 2966 cycles.
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Temp Number of End of dischg Comments

°C cycles voltage

30 4289 3.217 cell charged to 3.85V

40 550 3.266 cell charged to 3.85V

0 560 2.816 cell charged to 4.1V

-20 2 2 cell charged to 4.3V

-10 39 2.755 cell charged to 4.48V

10 442 3.039 cell charged to 4.1V

20 6157 3.17 cell charged to 3.85V

PERFORMANCE TWO 2-CELL SAFT 4 AH BATTERIES
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Conclusions

• The self-discharge rate of Li-ion cells is 1.4% in the 72-hr 
charged open-circuit stand test that is superior to NiCd and 
NiH2 Batteries

• Charge acceptance of the cells decreases with temperature
• Cells cannot be cycled in a 90-minute orbit and 40% DoD at 

minus 10°C unless the voltage limit on charge is increased to 
4.5V

• Limited cycling excursion to minus 20°C (low temperatures) 
does not appear to impair the cycling behavior at 20°C 

• The solid electrolyte and gel electrolyte cells’ performance is 
inferior to the liquid electrolyte cells under our LEO test 
conditions

• The data suggests the potential use of a battery level charging 
by monitoring and managing the cell parameters
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CECOM Bottom Line: THE SOLDIER

Polymer Cell 1.4 AH Life cycle test 
Charge at 1.4A/4.2V,

discharge at .7A/2.75V
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CECOM Bottom Line: THE SOLDIER

Burned 1.4 AH Polymer Lithium ion Cell
During Cycling



CECOM Bottom Line: THE SOLDIER

Shorted Polymer Lithium ion Cell  During
Cycling From 231 to 238

Polymer Lithium ion 1.4 AH Cell 
Charge at 1.4/4.2V/.05A, Discharge at 

.7A/2.75V
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CECOM Bottom Line: THE SOLDIER

Polymer Cell 1.4 AH 231 cycles 
charge at 1.4 A to 4.2V Discharge 

at .7A/2.75V

-2

0

2

4

6

-1 0 1 2 3 4
Capacity in AH

V
o

lt
ag

e 
in

 
v

o
lt

s

Shorted 1.4 AH Polymer Lithium ion Cell
During Cycling



CECOM Bottom Line: THE SOLDIER

Shorted Polymer Lithium ion Cell  During Cycling

Polymer Cell 1.4 AH at 238 
cycles on rest
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CECOM Bottom Line: THE SOLDIER

AH WH A V

Polymer Lithium ion Cell Cycle Data

12318 231 4  62d 16:46  0d 01:00 0 0 0 3.57116 R
12319 231 5  62d 16:46  0d 00:00 6.23E-05 0.000233 1.399863 3.78265 C
12320 231 5  62d 16:47  0d 00:00 0.007572 0.029184 1.400015 3.882628 C
12321 231 5  62d 16:48  0d 00:01 0.034713 0.136102 1.400015 3.983154 C
12322 231 5  62d 16:50  0d 00:03 0.088652 0.353757 1.399939 4.083131 C
12323 231 5  62d 16:54  0d 00:07 0.170985 0.694314 1.399939 4.183108 C
12324 231 5  62d 17:04  0d 00:17 0.373095 1.542775 1.067292 4.199588 C
12325 231 5  62d 17:14  0d 00:27 0.532285 2.21114 0.872969 4.200137 C
12326 231 5  62d 17:24  0d 00:37 0.664404 2.765814 0.701534 4.200137 C
12327 231 5  62d 17:34  0d 00:47 0.771445 3.215159 0.588388 4.200137 C
12328 231 5  62d 17:44  0d 00:57 0.858548 3.580753 0.468299 4.199588 C
12329 231 5  62d 17:54  0d 01:07 0.929777 3.879686 0.379568 4.200137 C
12330 231 5  62d 18:04  0d 01:17 0.986491 4.117654 0.310979 4.200137 C
12331 231 5  62d 18:14  0d 01:27 1.032339 4.309986 0.243534 4.199588 C
12332 231 5  62d 18:16  0d 01:29 1.042173 4.351228 0.268788 1.900114 C
12333 231 5  62d 18:16  0d 01:29 1.042175 4.351228 0.391012 0 C
12334 231 5  62d 18:26  0d 01:39 1.27551 4.351228 1.400015 0 C
12335 231 5  62d 18:36  0d 01:49 1.508846 4.351228 1.400015 0 C
12336 231 5  62d 18:46  0d 01:59 1.742182 4.351228 1.399939 0 C
12337 231 5  62d 18:56  0d 02:09 1.975518 4.351228 1.400015 0 C
12338 231 5  62d 19:06  0d 02:19 2.208854 4.351228 1.399939 0 C
12339 231 5  62d 19:16  0d 02:29 2.44219 4.351228 1.400015 0 C
12340 231 5  62d 19:26  0d 02:39 2.675526 4.351228 1.400015 0 C
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12245 230 3  62d 08:36  0d 01:14 0.873924 3.171562 0.700008 3.356374
12261 230 4  62d 09:35  0d 00:31 0 0 0 3.535454
12262 230 4  62d 09:55  0d 00:51 0 0 0 3.560174
12269 230 5  62d 10:21  0d 00:17 0.375898 1.554214 1.038605 4.200137
12270 230 5  62d 10:31  0d 00:27 0.53513 2.222758 0.87686 4.200137
12271 230 5  62d 10:41  0d 00:37 0.666299 2.773442 0.701839 4.200137
12272 230 5  62d 10:51  0d 00:47 0.773657 3.224118 0.587701 4.200137
12273 230 5  62d 11:01  0d 00:57 0.860612 3.589092 0.467994 4.199588
12274 230 5  62d 11:11  0d 01:07 0.931791 3.887816 0.385214 4.200137
12275 230 5  62d 11:21  0d 01:17 0.988114 4.124145 0.305257 4.200137
12276 230 5  62d 11:31  0d 01:27 1.034228 4.3176 0.244984 4.200137
12277 230 5  62d 11:41  0d 01:37 1.070484 4.469645 0.19791 4.200137
12278 230 5  62d 11:51  0d 01:47 1.100572 4.595777 0.159075 4.199588
12279 230 5  62d 12:01  0d 01:57 1.124518 4.696127 0.13344 4.199588
12280 230 5  62d 12:11  0d 02:07 1.144839 4.781248 0.105058 4.199588
12281 230 5  62d 12:21  0d 02:17 1.16137 4.85045 0.093462 4.199588
12282 230 5  62d 12:31  0d 02:27 1.175664 4.910261 0.072938 4.199588
12283 230 5  62d 12:41  0d 02:37 1.187588 4.960122 0.06836 4.200137
12284 230 5  62d 12:51  0d 02:47 1.197909 5.003245 0.052949 4.200137
12285 230 5  62d 13:01  0d 02:57 1.206755 5.040179 0.051499 4.200137
12288 230 6  62d 13:23  0d 00:20 0 0 0 4.171572
12289 230 6  62d 13:43  0d 00:40 0 0 0 4.16553
12295 231 3  62d 14:28  0d 00:24 0.289628 1.10583 0.700008 3.693111
12296 231 3  62d 14:38  0d 00:34 0.406296 1.532536 0.699931 3.62884
12297 231 3  62d 14:48  0d 00:44 0.522964 1.952393 0.699931 3.573358
12298 231 3  62d 14:58  0d 00:54 0.639632 2.366408 0.700008 3.527214
12299 231 3  62d 15:08  0d 01:04 0.7563 2.774047 0.700008 3.456901
12300 231 3  62d 15:18  0d 01:14 0.872968 3.172226 0.700008 3.371206
12316 231 4  62d 16:17  0d 00:30 0 0 0 3.539849
12317 231 4  62d 16:37  0d 00:50 0 0 0 3.564569
12324 231 5  62d 17:04  0d 00:17 0.373095 1.542775 1.067292 4.199588

AH WH A V

Polymer Lithium ion Cell Cycle Data



CECOM Bottom Line: THE SOLDIER

12374 233 4  63d 01:49  0d 01:00 0 0 0 0 R
12375 233 5  63d 01:49  0d 00:00 6.23E-05 0 1.400015 0 C
12376 233 5  63d 01:59  0d 00:10 0.233398 0 1.399939 0 C
12377 233 5  63d 02:09  0d 00:20 0.466734 0 1.400015 0 C
12378 233 5  63d 02:19  0d 00:30 0.70007 0 1.400015 0 C
12379 233 5  63d 02:29  0d 00:40 0.933406 0 1.399939 0 C
12380 233 5  63d 02:39  0d 00:50 1.166742 0 1.400015 0 C
12381 233 5  63d 02:49  0d 01:00 1.400078 0 1.399939 0 C
12382 233 5  63d 02:59  0d 01:10 1.633413 0 1.400015 0 C
12383 233 5  63d 03:09  0d 01:20 1.866749 0 1.400015 0 C
12384 233 5  63d 03:19  0d 01:30 2.100085 0 1.399939 0 C
12385 233 5  63d 03:29  0d 01:40 2.333421 0 1.399939 0 C
12386 233 5  63d 03:39  0d 01:50 2.566757 0 1.400015 0 C
12387 233 5  63d 03:49  0d 02:00 2.800093 0 1.399939 0 C
12388 233 5  63d 03:57  0d 02:08 3.000003 0 1.399939 0 C
12389 233 6  63d 03:57  0d 00:00 0 0 0 0 R
12390 233 6  63d 04:17  0d 00:20 0 0 0 0 R
12391 233 6  63d 04:37  0d 00:40 0 0 0 0 R
12392 233 6  63d 04:57  0d 01:00 0 0 0 0 R
12393 234 3  63d 04:57  0d 00:00 0 0 0 0 D
12394 234 4  63d 04:57  0d 00:00 0 0 0 0 R
12395 234 4  63d 05:17  0d 00:20 0 0 0 0 R
12396 234 4  63d 05:37  0d 00:40 0 0 0 0 R
12397 234 4  63d 05:57  0d 01:00 0 0 0 0 R
12398 234 5  63d 05:57  0d 00:00 6.23E-05 0 1.399939 0 C
12399 234 5  63d 06:07  0d 00:10 0.233398 0 1.400015 0 C
12400 234 5  63d 06:17  0d 00:20 0.466734 0 1.399939 0 C
12401 234 5  63d 06:27  0d 00:30 0.70007 0 1.399939 0 C
12402 234 5  63d 06:37  0d 00:40 0.933406 0 1.399939 0 C
12403 234 5  63d 06:47  0d 00:50 1.166742 0 1.399939 0 C
12404 234 5  63d 06:57  0d 01:00 1.400078 0 1.400015 0 C
12405 234 5  63d 07:07  0d 01:10 1.633413 0 1.399939 0 C
12406 234 5  63d 07:17  0d 01:20 1.866749 0 1.399939 0 C
12407 234 5  63d 07:27  0d 01:30 2.100085 0 1.400015 0 C
12408 234 5  63d 07:37  0d 01:40 2.333421 0 1.400015 0 C
12409 234 5  63d 07:47  0d 01:50 2.566757 0 1.399939 0 C
12410 234 5  63d 07:57  0d 02:00 2.800093 0 1.400015 0 C
12411 234 5  63d 08:06  0d 02:08 3.000003 0 1.400015 0 C
12412 234 6  63d 08:06  0d 00:00 0 0 0 0 R
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18650 Cell Overcharge test
Charge at 1.35 A 

Time in minutes
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18650 Cell Overcharge Test 
Constant current charge at 1.35 A 
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Lithium ion Cell 26650 overcharge tests
Constant at 2.5 Amps

Capacity in AH
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Lithium ion Cell 26650 Overcharge tests
Constant Current Charge at 2.5 amperes

Time in hour:minute:second
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Lithium ion D cell
cycling at 20 C, 70 C,

and 90 C

Lithium ion D cellLithium ion D cell

cycling at 20 C, 70 C,cycling at 20 C, 70 C,

and 90 Cand 90 C

Fig 9: 34570 (D) cell #20, #18, and #21 w/1.0M LiPF6  1EC:1DMC:1EMC

Discharge 2A / Charge 4A
#20 at 70oC, #18 at 20oC, #21 at 90oC

Lifecycle Test

Cycle Number
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Charge at 70C 
Discharge at 20C 
Charge at 20C 
Discharge at 90C
Charge at 90C

20oC

70oC

Power
Interruptions

Discharge capacity fade rate:
20oC:  0.147% for 1st 127 cycles; 0.128% for 1st 219 cycles
70oC:  0.416% for 1st 136 cycles; 0.313% for 1st 277 cycles
90oC:  1.547% for 1st 144 cycles

90oC
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Overcharge Test Lithium ion  D Cell with
Rupture disk and Electrolyte Started to Leak out
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Overcharge Test D cell Spark Come out of
Rupture vent
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Overcharge Test D cell, Voltage went to Zero
and Temperature rise to 256 C
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Lithium ion D size cell 
charge at 4 A

Time in Hour and minutes
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Lithium ion D size Cell Overcharge charge tests
Charge at constant current at 4.0A

Capacity in AH
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Commercial 18650 Pressure Disconnect Vent

From M.Reid, E-One Moli Energy
Limited
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Commercial 18650 Pressure Disconnect Vent

From M.Reid, E-One Moli Energy
Limited
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Commercial 18650 Pressure Disconnect Vent

From M.Reid, E-One Moli Energy
Limited
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Nicad BB-542/U using Pressure Switch for Fast
Charge Termination or Cutoff
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Large Lithium ion Cell and Batteries using the
rupture disk

20 AH, 14.4 V Battery 40 AH, Single Cell
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Propose Mechanical Pressure Switch for a
large Lithium ion Cell
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40 AH Cell Charge at 45A/4.0V/.01A
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Lithium ion Cell 40AH, Discharge at 55A to 2.75V at 18 C

Capacity in AH
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at 55 Amperes to 2.75V Cutoff
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40 AH Cell Discharge at 80A 
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3.5.3  Cell safety   A single cell that does not contain any electronics shall meet all the safety requirement listed below:
 
3.5.3.1   Cell overcharge .  After being subjected to the test as specified in 4.4.2.3.1 the cell shall not explode or catch fire or
spark.  No electrodes or separator material of the cell shall be outside of the cell case.
 
3.5.3.2   Cell short circuit.   After being subjected to the test as specified in 4.4.2.3.2 the cell shall not explode or catch fire.
 
3.5.3.3  Cell Forced-Discharge.  After a single cell in the string has been subjected to the test as specified in  paragraph
4.4.2.3.3 , there shall be no leaking, venting, fire or explosion.

4.4.2.3.1  Cell overcharge.  A single cell shall be placed in a temperature chamber set  at  25oC.  A thermocouple shall attach
to the side of the cell, and current carrying and voltage monitoring leads shall be attached to the terminals. A constant C/2
current charging rate shall be applied for 8 hours continuously.  Cell temperature, voltage, and current shall be recorded. A
single cell shall meet the requirement for 3.5.3.1.
 
4.4.2.3.2  Cell short circuit.  A single cell shall be shorted by connecting the positive and negative terminals of the cell with a
less than 8 inch in length of No. 0 AWG or equivalent copper wire.  The cell shall be completely discharged and the battery
case temperature has returned to near ambient temperature.  The cell shall meet the requirement of 3.5.3.2.
 
4.4.2.3.3  Cell forced-discharge.  A completely discharged single cell (less than 0.2 volts) is to be forced-discharge in
accordance with method 2 of the forced-discharge test of UL-1642.  One cell for each cell string shall be discharged at the
rate specified (see 3.1) to a test end voltage of two-thirds of its open circuit voltage.  It shall then be connected in series with
the appropriate number of charged cells which shall then be discharged at the rate specified (see 3.1) to a test end voltage of
the applicable specification sheet.  All cells shall comply with requirements (see 3.5.3.3).

Propose Cell Specification For a Large Lithium
ion Cell
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Conclusion and Recommendation for
Lithium ion Cell & Battery Safety Design

      Cell Level

• Shall have Pressure Switch for large Lithium ion Cell and
Pressure Disconnect and /or PTC device for small lithium ion
Cell. These Devices must capable to disrupt of current flow.

Battery Level

•  Charge controller – Overvoltage and undervoltage,
Temperature devices.

Charger Level

• Overvoltage, Undervoltage, overcharge, temperature
termination.
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SLC-16002 CELL

DESCRIPTION

F ~ SIZE: 3 IN. X 7 IN. X 1 IN.

F WEIGHT: 815 GRAMS

F CAPACITY: 35 Ah

F IMPEDANCE: .0014 Ω

F ENERGY DENSITY: >380 Wh/L

F SPECIFIC ENERGY: >150 Wh/Kg
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SLC-16002 CELL

DESIGN FEATURES

FSTAINLESS STEEL CONTAINMENT
FBURST DISC DIAPHRAM

•.25 INCH DIAMETER
•OPENS AT 125 PSI

FPOLYMERIC TERMINAL SEALS
FELECTROLYTE: LiPF6 in EC/DEC
FSEPARATOR: CELGARD 2300
FLiNiCoO2 AND LiCoO2
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SLC-16002 DISCHARGE 

RATE CHARACTERISTICS
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SAFETY & ABUSE 

TEST PLAN

F RANDOM VIBRATION
F SHOCK
F TEMPERATURE SHOCK
F HIGH TEMPERATURE EXPOSURE
F ALTITUDE SIMULATION
F EXTERNAL SHORT CIRCUIT
F OVER-DISCHARGE
F OVER-CHARGE
F CRUSH
F PUNCTURE
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VIBRATION TEST 

DESCRIPTION

F RANDOM VIBRATION
F CELLS AT 100% SOC & 50% SOC
F OCV MONITORED DURING TEST
F DURATION: 4 HRS/AXIS FOR TOTAL OF 12 HOURS
F 31.4 Grms
F FREQUENCY: 60 to 2000 Hz
F PSD: .03 to .20 G2/Hz
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NO ADVERSE EFFECTS FROM 

RANDOM VIBRATION

Charge/Discharge Curves
for

S/N 879009
11.7 Amp Chg. & 35 Amp Dchg.
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F AFTER VIBRATION, SAME TWO CELLS WERE SHOCK TESTED
F CELLS WERE AT 100% SOC & 50% SOC
F ONE SHOCK/AXIS for a TOTAL OF 3 SHOCKS
F MINIMUM ACCELERATION: 75 Gs DURING 1st THREE MS
F PEAK ACCELERATION: 165 Gs
F TEST REFLECTS TRANSPORTATION REQUIREMENTS
F CELLS WERE UNPACKAGED
F AIRCRAFT REQUIREMENTS NOT AS SEVERE
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F X-RAY PRIOR & AFTER SHOCK

F SHOCK HAD NO EFFECT ON CELLS

F CELL VOLTAGE UNCHANGED

F ELECTRICAL PERFORMANCE UNCHANGED
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HIGH-TEMPERATURE 

EXPOSURE TEST

F TEST DESCRIPTION
• LiCoO2 CHEMISTRY
• TEST PERFORMED ON CELL IN 100% SOC
• HEAT BLANKET WRAPPED AROUND CELL
• CELL HEATED TO ≅550°C

F TEST RESULTS
• CELL VENT OPENED AT 360°C
• SMOKE BUT NO FLAME OR FIRE
• NO RUPTURE OF CELL CONTAINER
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HIGH TEMPERATURE 

EXPOSURE TEST 

SLC-16002 (LiCoO2) CHARGED STATE
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ALTITUDE SIMULATION 

TESTING

F TEST DESCRIPTION
• THREE CELL CONTAINERS COMPLETE WITH VENTS/TERMINALS
• TABLE 1 of MIL-E-5400 for CLASS 2 EQUIPMENT
• SIMULATION OF 70,000 FEET, AMBIENT TEMPERATURE

F TEST RESULTS
• NO EFFECT ON CONTAINER OR VENT
• ALL REQUIREMENTS MET 
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SHORT-CIRCUIT TEST 

DESCRIPTION

F LiNiCoO2 CELL IN 100% SOC

F .09 OHM RESISTOR APPLIED ACROSS TERMINALS

F VOLTAGE, CURRENT, TIME & TEMPERATURE MONITORED

F TEST TIME: APPROXIMATELY 20 HOURS
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SHORT-CIRCUIT TEST 

RESULTS

F INITIALLY CELL PEAKED AT 3.87 VOLTS @ 44.1 AMPS

F INITIAL TEMPERATURE 26°C

F PEAK TEMPERATURE: 45°C AT 1 Hr & 3 MINUTES

F AFTER 2 HOURS: VOLTAGE <.02 VOLTS & TEMP. 33°C

F NO VENTING OR RUPTURE
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EXTERNAL SHORT ON SLC-16002
(S/N 879009)
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F TEST DESCRIPTION:
• SLC-16002 CELL – LiNiCoO2 CHEMISTRY
• CELL IN 50% SOC
• DISCHARGE CELL AT “C/2” RATE TO NEGATIVE ONE VOLT
• MONITOR VOLTAGE, CURRENT, TIME, & TEMPERATURE

F TEST RESULTS:
• NO VENT
• ALL REQUIREMENTS MET
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OVERDISCHARGE TEST
S/N 886003
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POST-TEST

OVER-DISCHARGE RESULTS

F VENT DIAPHRAGM INTACT

F NO COLOR CHANGE IN 
THERMAL SENSITIVE DOTS

F NO PHYSICAL CHANGE IN 
CELL
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OVER-CHARGE TEST

F TEST DESCRIPTION
• SLC-16002 (LiNiCoO2)
• CELL IN 100% SOC 
• AMBIENT TEMPERATURE
• CHARGE RATE: “C” RATE to 200% of RATED CAPACITY (70 Ah)

F TEST RESULTS
• CELL DID VENT AT VENT DIAPHRAGM
• NO FLAME OR RUPTURE
• ALL REQUIREMENTS MET
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SLC-16002 (S/N 972008)
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Technologies, LLC
POST-TEST

OVER-CHARGE RESULTS

F VENT DIAPHRAGM OPEN
F TERMINAL SEALS 

UNAFFECTED
F NO DISTORTION OF CELL



Technologies, LLC CONCLUSIONS

F NO EXPLOSIONS OR CELL CASE RUPTURES

F PRESSURE VENT WORKS AS INTENDED
• SHORT CIRCUIT & OVER-DISCHARGE DID NOT VENT

F POLYMERIC TERMINAL SEALS PRESENT NO PROBLEMS

F PRISMATIC CELL DESIGN RESULTS IN RUGGED 
CONSTRUCTION WHICH WITHSTANDS EXTREME 
ENVIRONMENTS



Technologies, LLC FUTURE SAFETY WORK

F ADDITIONAL TESTING BEING CONDUCTED ON LiNiCoO2

F LARGE QUANTITY OF CELLS FOR EACH TEST

F DOT TESTING BEING ADDRESSED

F CRUSH, PUNCTURE, & TEMP. SHOCK BEING CONDUCTED
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Lithium-ion Battery Technology
Configured to Tolerate Overcharge

and Overdischarge
S. Hossain, Y. Saleh, R. Loutfy

LiTech, LLC
7960 S. Kolb Road
Tucson, AZ 85706

NASA Aerospace Battery Workshop
Holiday Inn-Research Park 

Huntsville, Alabama
November 13-16, 2000



                   LiMO2 + C         Li0.5MO2 + Li0.5C
    

    Overdischarge                                          Overcharge

Copper Dissolution          Lithium Deposition
                                         +

                                                    Solvent Decomposition
Cell Fails

                                                        Explosion/Fire

LiTech LLCLiTech LLC

Limitations of Present LithiumLimitations of Present Lithium--ionion
Battery TechnologyBattery Technology



There are Shortfalls of Present There are Shortfalls of Present 
LithiumLithium--ion Battery Technology ion Battery Technology 
for the Production of High for the Production of High 
Capacity, High Voltage BatteriesCapacity, High Voltage Batteries
u Almost Zero Tolerance
u Huge Capital Investment
u Complicated Electronic Circuits
u High Cost
u Safety Concerns

LiTech LLCLiTech LLC



LiTech LLCLiTech LLC

Cathode or Positive Electrode : LiCoO2, LiNiCoO2,  
LiMn2O4

Anode or Negative Electrode : C-C Composite

Electrolyte : LiPF6 in Carbonate-
based Organic Solvent

Separator : Poly-olefin

Cell Design : Prismatic, Cylindrical

LiTech LithiumLiTech Lithium--ion Cell Componentsion Cell Components



Why CWhy C--C Composite as Anode C Composite as Anode 
for Lithiumfor Lithium--ion Batteries?ion Batteries?

u Substrate is Carbon - no Dissolution of Substrate 
during Overdischarge

u Substrate can act as Li+ Sink - can accept lithium ion 
during Overcharge

u Strong Mechanical Integrity - High Cycle Life
u No Binder, no Carbon Black, high Compression - High 

Thermal Conductivity, Flame Retardant and Low Self 
Discharge

u C-C Composite Anodes are Reusable

LiTech LLCLiTech LLC
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CC--C Composite Exhibits High Reversible Capacity C Composite Exhibits High Reversible Capacity 
and almost Zero Irreversible capacity Lossand almost Zero Irreversible capacity Loss



Specifications and Characteristics of LiTech’s Lithium-ion Cells

Cell
Type

T
(mm)

W
(mm)

L
(mm)

Nominal
Capacity

(mAh)

Cell
Weight

(g)

Energy
Density
(Wh/l)

Specific
Energy
(Wh/kg)

ICP-
015674

0.7 56 74 215 6.8 274 117

ICP-
033555

2.3 35 55 350 10.0 292 130

ICP-
025674

1.9 56 74 650 16.5 305 145

ICP-
035674

2.6 56 74 1,000 23.0 343 160

LiTech LLCLiTech LLC
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LiTech’s LithiumLiTech’s Lithium--ion Cell can Accept ion Cell can Accept 
Repeated OverdischargeRepeated Overdischarge
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No Significant increase in Cell No Significant increase in Cell 
Temperature on OverchargeTemperature on Overcharge
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No Smoke, Fire, or Explosion duringNo Smoke, Fire, or Explosion during
Overcharge of a 1Ah CellOvercharge of a 1Ah Cell



3

4

5

6

7

0 1 2 3 4 5 6

Tim e (h)

V
ol

ta
ge

 (V
)

26

27

28

29

30

T
em

pe
ra

tu
re

 (C
)

Voltage-Temperature Responses during Overcharge 
followed by Rest of a 1Ah Lithium-ion Cell.

LiTech LLCLiTech LLC

No Significant increase in CellNo Significant increase in Cell
Temperature on OverchargeTemperature on Overcharge
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Overcharged Cell can be DischargedOvercharged Cell can be Discharged
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LithiumLithium--ion Cells Exposed to Overchargeion Cells Exposed to Overcharge
can Deliver over 85% Capacity can Deliver over 85% Capacity 
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Overcharged Cell, after fully Discharged and Overcharged Cell, after fully Discharged and 
Adding fresh Electrolyte, can also be CycledAdding fresh Electrolyte, can also be Cycled
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LiTech LithiumLiTech Lithium--ion Cells can Acception Cells can Accept
Repeated Overcharge/OverdischargeRepeated Overcharge/Overdischarge



50

60

70

80

90

100

110

0 100 200 300 400 500 600

Cycle Number

C
ap

ac
ity

 (%
)

Cycling Behavior of a LiTech Lithium-ion Cell at C/5
Rate. Cathode: LiCoO2. Electrolyte: 1M LiPF6 in 
EC/DMC (1:1 v/v).

LiTech LLCLiTech LLC

Delivers 550 cycles with over 90% Delivers 550 cycles with over 90% 
Capacity RetentionCapacity Retention



LiTech LLCLiTech LLC

Only 10 mV Voltage Decay after Storage
for 1 Month at Ambient Temperatures 
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Only 2% Capacity Loss After 1 MonthOnly 2% Capacity Loss After 1 Month
of Storage at Ambient Temperatures.of Storage at Ambient Temperatures.
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At 1C Rate, the Cell Delivers 95% At 1C Rate, the Cell Delivers 95% 
CapacityCapacity



LiTech LLCLiTech LLC

                   Safety and Abuse Test Results
Tests Results

Overdischarge No Performance
Degradation.

Overcharge No Fumes, No Fire, No
Explosion.

External Short-
circuit

No Fumes, No Fire, No
Explosion.

Internal Short-
circuit

(Nail Penetration)

No Fumes, No Fire, No
Explosion.



LiTech LLCLiTech LLC

LiTech LithiumLiTech Lithium--ion Battery Technologyion Battery Technology
offers:offers:

•Low Cost
•Enhanced Safety
•High Energy Density
•Long Life, and
•Low Self-Discharge

The Technology is the Right Choice for The Technology is the Right Choice for 
the Production of High Capacity, High the Production of High Capacity, High 
Voltage Batteries.Voltage Batteries.



On the Behavior of Lithium Ion 
Batteries During Short Circuit 

and Extended Overcharge

Randolph A. Leising,a Marcus J. Palazzo,a

David M. Spillman,a Esther S. Takeuchi,a

and Kenneth J. Takeuchib

aWilson Greatbatch Ltd., Clarence, NY
bSUNY at Buffalo, Department of Chemistry, Buffalo, NY



Introduction
• The safety of lithium ion batteries under abusive 

conditions is a primary concern of battery 
manufacturers and their customers.

• Placement of thermocouples within a battery will 
provide more accurate information on the internal 
temperature during these reactions. 

• Short circuit conditions or extreme overcharge of 
lithium ion batteries may result in high 
temperatures, and can lead to violent reactions 
under some circumstances.



Introduction
• External short circuit tests were conducted on 

medium sized prismatic batteries while the 
voltage, current, case temperature, and internal 
temperature were monitored and recorded.

• The rate of overcharge was systematically varied 
for batteries having the same cell balance.

• Extended overcharge tests were conducted on 
medium size prismatic batteries which contained 
thermocouples that were positioned within the 
wound electrode stack.



Introduction
• The effects of cell balance, i.e. ratio of lithiated 

cobalt oxide to carbon weight, on the overcharge 
reaction was investigated.

• Partially delithiated cathodes were placed into 
batteries containing non-lithiated anodes and 
subjected to an extended overcharge test.

• Several mechanisms may contribute to lithium ion 
battery instability during abusive conditions.



Experimental
• Battery Materials:

– Cathode: LiCoO2

– Anode: Graphite
– Electrolyte: 1.0 M LiPF6 in alkyl carbonates
– Separator: Polyethylene

• Battery Design:
– Nominal capacity: 1.5 Ah
– Stainless steel case
– Hermetically sealed
– Internal (sealed with epoxy) and external Type-K 

thermocouples



External Short Circuit Test
• Conducted on medium size prismatic batteries at 

room temperature in still air within an explosion 
proof chamber.

• Electrode weight ratio was 2.8, and batteries were 
charged to 4.10 volts prior to test.

• External circuit resistance was approximately six 
milliohms.  The battery voltage, current, case 
temperature, and internal temperature were 
recorded.
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Figure 1:  External case skin temperature 
                 during 10 mž short circuit test.
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Figure 2: Cell temperature during 10 mž short circuit test.



Short Circuit Test Summary
• The current peaked at about 36 amps (24C rate) 

within 0.2 seconds when the external short circuit 
was applied.  The battery voltage simultaneously 
decreased from 4.10 volts to less than 0.25 volts.

• The current stabilized at 14 to 15 amps during the 
first 1.5 minutes, sharply decreased to about two 
amps, and then slowly decayed thereafter.



Short Circuit Test Summary
• The external case temperature increased to 

between 94 and 109°C within two minutes, while 
the internal temperature of the battery increased to 
about 132°C at a faster rate.

• The polyethylene separator fused, and greatly 
reduced the short circuit current.

• The batteries remained hermetic, and swelled only 
slightly.

• Placing thermocouples within the battery provided 
important temperature data.



Effect of Charge Rate
on Overcharge Reaction

• Medium size prismatic batteries having a cell 
balance of 2.8 were outfitted with external 
thermocouples, charged to 4.10 volts, and 
subjected to an extended overcharge test in an 
explosion-proof chamber.

• Batteries were tested at rates of 150 mA, 300 mA, 
525 mA, and 1.5 amps, i.e. C-rates of about 0.10, 
0.2, 0.35, and 1.0, respectively.
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Figure 3: External case skin temperature
                at various overcharge rates.



Summary of Charge Rate Effect
on Overcharge Reaction

• External case temperature remained constant until 
>75% overcharge.

• At higher charge rates, the external case 
temperature was observed to increase at lower 
states of overcharge.  The highest temperature was 
observed after full delithiation of the cathode.

• Under lower charge rates, batteries swelled but 
remained hermetic.  Under a 1.5 amp charge rate, 
the battery ruptured.



Thermal Profile during
Overcharge Reaction

• Medium size prismatic batteries having a cell 
balance of 2.8 were outfitted with internal and 
external thermocouples, and tested within an 
explosion proof chamber.

• Batteries were initially charged to 4.10 volts, and 
then subjected to an extended overcharge test at 
room temperature in still air.  The overcharge rates 
were 525 mA, i.e. about C/3 rate, and 1.5 amps, 
i.e. 1C rate.
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Figure 4: Cell temperature during 525 mA overcharge test.
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Figure 5: Cell temperature during 1.5 amp overcharge test.



Summary of Thermal Profile 
during Overcharge Reaction

• Batteries overcharged at 525 mA did not vent, 
exhibited a case temperature of about 120°C, and 
an internal temperature of about 148°C.

• Batteries overcharged at 1.5 amps ruptured, 
exhibited a case temperature of about 107°C, and 
an internal temperature of about 199°C.



Effect of Cell Balance on 
Overcharge Reaction

• Medium size prismatic batteries having a nominal 
capacity of 1.5 Ah were built with the following 
modifications in order to achieve an overall 
balance of about 2.3, 2.8, and 3.3:
– Fixed cathode weight combined with varying anode 

weight.
– Fixed anode weight combined with varying cathode 

weight.



Effect of Cell Balance on 
Overcharge Reaction

• Batteries were initially charged to 4.10 volts, and 
then subjected to an extended overcharge test at 
room temperature in still air.  The test was 
conducted in an explosion proof chamber.  

• The overcharge rate was 1.0 amp, i.e. C/1.5 rate, 
and the battery voltage and external case 
temperature were monitored throughout test.
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Figure 6: Overcharge test at 1 amp with 
                anode weight varied.
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Figure 7: Overcharge test at 1 amp with 
                cathode weight varied.



Summary for Effect of Cell 
Balance on Overcharge Reaction

• All batteries ruptured as a result of extended 
overcharge at 1.0 amp, i.e. C/1.5 rate.

• Batteries containing a fixed cathode weight 
exhibited an external case temperature of up to 
105°C, and the rupture point was independent of 
the amount of anode material.

• Batteries containing a fixed anode weight 
exhibited an external case temperature of up to 
112°C, and the rupture point tracked the amount 
of cathode material.



Evaluation of Partially 
Delithiated Cathodes

• Partially delithiated cathodes were removed from 
batteries that were subjected to formation and 
discharge, i.e. the nominal formula was Li0.9CoO2, 
or that were charged to 4.10 volts following 
formation, i.e. the nominal formula was Li0.5CoO2.

• Batteries containing partially delithiated cathodes 
and non-lithiated anodes were then assembled.  
They contained both internal and external 
thermocouples.



Evaluation of Partially 
Delithiated Cathodes

• Batteries were charged to 4.10 volts, and then 
subjected to an extended overcharge test at room 
temperature in still air.  The test was conducted in 
an explosion proof chamber.  

• The overcharge rate was 0.75 amps, i.e. C/2 rate, 
and the battery voltage, external case temperature, 
and internal temperature were monitored 
throughout test.
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Figure 8: Voltage on 750 mA overcharge 
                test for cells containing LixCoO2.



2.52.01.51.00.50.0
0

50

100

150

200

250

300
External
Internal

Total Charge Capacity  (Ah)

Te
m

pe
ra

tu
re

  (
°C

)

Figure 9: Temperature on 750 mA overcharge 
                test for cells containing Li0.5CoO2.



Summary for Evaluation of 
Partially Delithiated Cathodes

• Both batteries ruptured during overcharge test.
• The shape of both voltage curves was similar, with 

the noticeable difference being the time, i.e. 
charge capacity, until the batteries reached full 
overcharge.

• Batteries containing the slightly delithiated 
cathode material, Li0.9CoO2, exhibited an external 
case temperature of 116°C, and an internal 
temperature of 215°C.



Summary for Evaluation of 
Partially Delithiated Cathodes

• Batteries containing the more highly delithiated 
cathode material, Li0.5CoO2, exhibited an external 
case temperature of 145°C, and an internal 
temperature of 281°C.

• Melting of lithium may be a cause of cell rupture 
on extended overcharge in standard batteries.

• Batteries that are unlikely to contain deposited 
lithium metal on the anode still ruptured on 
extended overcharge, although at a higher 
temperature.



Mechanisms Contributing to 
Battery Instability during Abuse

• Reaction of lithiated carbon and electrolyte.
• Reaction of lithiated carbon with PVDF binder.
• Melting of lithium.
• Autocatalytic exothermic reaction of LixCoO2

above 150°C. 



Mechanisms Contributing to 
Battery Instability during Abuse

• Oxidation of electrolyte due to high potential of 
cathode following complete removal of lithium.

• Reaction of highly delithiated LixCoO2 and 
electrolyte near 250°C.
– Evolution of oxygen near 230°C. 
– Decomposition of CoO2 to Co3O4 at 245�°C.



Conclusions
• Short circuit and extended overcharge reactions 

were studied in medium size prismatic lithium ion 
batteries containing graphite anodes and lithiated 
cobalt oxide cathodes.

• Placement of thermocouples within batteries can 
provide more detailed information of battery 
temperature during abusive tests.

• During short circuit tests, batteries swelled 
slightly, and the shutdown separator was capable 
of limiting the internal temperature to 132°C.



Conclusions
• The overall response of a battery during extended 

overcharge is dependent, among other things, 
upon the charge rate, indicating that the ability of 
the battery to adequately dissipate heat is an 
important design consideration.

• While reduction of lithium plating during 
overcharge via the use of a low cell balance may 
improve the safety tolerance of the battery, it 
alone is not likely to be sufficient to prevent 
rupture during abuse.



Conclusions
• The overall reactivity of lithium ion batteries is 

due to a combination of chemical reactions that 
can occur on the anode and the cathode, and that 
may also involve the electrolyte and binder.



Performance and Safety Of Lithium Ion Cells
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ELECTROCHEMICAL TECHNOLOGIES GROUP

Evaluation of Lithium-Ion Cells at JPL
• Cycle life performance at room temperature  (25oC)

•  Cycle life performance at low temperature (-20oC)
• Cycle life at alternating temperatures (40 and -20oC)
•  Discharge rate characterization (at 40, 25, 0, and -20oC)
•  Charge rate characterization (at 40, 25, 0, and -20oC)
•  Capacity retention tests
• Accelerated LEO Tests
•  Storage characterization tests (cruise conditions) 
•  VT charge characterization tests
•  Electrical characterization by  a.c. impedance
•  Thermal characterization



ELECTROCHEMICAL TECHNOLOGIES GROUP

NASA-DOD Interagency Li Ion  Program

• DEVELOP HIGH SPECIFIC  ENERGY 
AND LONG CYCLE LIFE Li -ION 
BATTERIES

• ESTABLISH U.S. PRODUCTION 
SOURCES

• DEMONSTRATE TECHNOLOGY 
READINESS

- LANDERS BY 2001
- ROVERS BY2003
- GEO MISSIONS BY 2003
- AVIATION/UAV’s BY 2001
- MILITARY TERRESTRIAL 

APPLNS’s BY 2001
- LEO MISSIONS BY 2003

Objectives
Mission Technology Driver 

Lander 

Rover 

Low Temperature Operation 

High rate Pulse Capability 

GEO S/C 10-20 Year Operating life 

Large Capacity cells (50-200 

Ah) 

LEO 

PlanetaryS/C 

Long Cycle life(30,000) 

Medium Capacity Cells (50 Ah) 

Aircraft Low temperature Operation 

High Voltage Batteries (270 V) 

UAV Large Capacity cells (200 Ah) 

High Voltage Batteries (100V) 

 
 

Technology Drivers
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Charge Characteristics of a 25 Ah cell
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Storage Characteristics
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V/T Curves of Li Ion Cells 

• Are higher charge voltages justified at lower temperature ?
• Need to define specific conditions under which lithium plating can occur (rate 

and system dependent).
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• Li Ion Cell Venting upon Inadvertent  External 
short (20-35Ah)
– No injuries to personnel
– No damage to equipment

• Li Ion Cell Venting on Extended LT Cycling (5-
10 Ah)
– No injuries to personnel
– No damage to equipment

• Venting of a pouch (Polymer) cell
– No damage to equipment

Safety Events at JPL
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• 2 Month storage in Open Circuit.

• 10 Month  on OCV stand.

• Extended storage at 0oC

• Mars Mission Profile

• AC impedance *

Short Circuit Incident
History of the Cell
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Storage

Cell 
Number 

and 
Storage 

Mode

Initial 
Capacity 

(After 
Cond.)

Capacity 
Prior To 

Storage (Ah)

Stored 
Capacity 

Cell Voltage 
after 10 
Month 

Storage

Capacity 
After 

Storage 
(Ah)             

1st Disch.

Capacity 
After Storage 

(Ah)               
5th Disch.

Capacity 
Loss           

(% of stored 
capacity)

Rever. 
Capacity 

(%)

Capacity 
Prior To 

Storage (Ah)

Stored 
Capacity 

Cell 
Voltage 
after 10 
Month 

Storage

Capacity 
After 

Storage (Ah)             
1st Disch.

Capacity 
After 

Storage (Ah)               
5th Disch.

Capacity 
Loss           

(% of stored 
capacity)

Rever. 
Capacity (%)

Total 
Reversible 
Capacity 
After 12 
Months       
(% from 
Initial)

151               
(0oC and 

50 % SOC)

27.879 27.609 14.000 2.565 V 0.000 27.327 100 98.976 26.972 14.000 0.578 V 0.000 27.602 100 102.337 99.006

152               
(40oC and 
50 % SOC)

28.749 28.021 14.000 3.308 V 1.968 27.479 85.943 98.065 27.918 14.000 0.482 V 0.000 27.675 100 99.129 96.263

178                  
(0oC and 

100 % 
SOC)

25.475 25.471 25.487 3.982 V 23.114 24.781 9.310 97.289 24.607 24.623 3.762 V 16.996 25.279 30.975 102.731 99.227

201               
(40oC and 

100 % 
SOC)

25.674 25.670 25.584 3.834 V 19.611 25.156 23.349 97.998 23.912 23.807 3.608 V 10.309 23.789 56.699 99.486 92.659

Initial Two Month Storage Ten Month Storage

25 Ahr Generation I Lithium-Ion Cells
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Summary
• Lithium ion cells developed under the 

DOD/NASA consortium  were found to exhibit:
• High specific energy (>120 Wh/kg) and High energy density 

(300 Wh/l)
• Long  cycle life (over 1000 Cycles)
• Excellent low temperature performance(-20 C Operation)
• Good storage characteristics

• Three minor safety incidents occurred over a 
period of three years of testing more than five 
hundred lithium ion cells of 1-35 Ah sizes. 

• Further improvements in cell design will minimize 
such safety events. 
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Secondary Lithium-ion Cell
and Battery Safety

NASA Battery Workshop 2000
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Philip Cowles, COM DEV Ltd, Canada
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Introduction

l AEA Technology and COM DEV teamed to build Lithium-ion 
batteries currently based on the Sony 18650HC (hard-carbon), widely 
regarded as the safest cell.

l This paper describes
− the safety features built into Sony 18650HC cell.

− the formal safety approval tests performed on the cell.

− safety tests performed as part of the LAT test.

− supplementary test data from on-going programmes.

l Briefly discusses safety with respect to battery level safety.
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Cell Safety Trades - 1

CAPACITY

SAFETY

CYCLE LIFE
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Cell Safety Trades - 2
l AEA Technology provides contract R&D to every major Japanese 

cell producer. 
l Secondary Lithium-ion cell design is a trade of safety, capacity and 

cycle-life.
l Optimise any two from three, but optimising all three is tough.
l Sony 18650HC, the first generation commercial cell, was principally 

optimised for cycle-life and safety.
l Most commercial cells are optimised for capacity and cycle-life, 

leaning very strongly towards capacity.
l For most new producers, safety is always a secondary concern, until 

the required capacity/cycle-life has been achieved.  This is a BIG 
MISTAKE!
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Sony 18650HC Cell

l ∅ 18mm, 65mm long
l 1.5 Ah capacity
l 5.4 Wh energy
l 133 Wh/kg
l Hard carbon anode 

with PVDF binder
l LiCo2 with PVDF 

binder
l DEC/PC electrolyte, 

1M LiPF6
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Safety Features - 1

l Over-charge Protection
− Non-reversible, triggered on over 100% overcharge
− Internal pressure rises to ~10 bar and breaks an internal connection
− Ensures that the cell fails open circuit

l Shut-down Separator
− Non-reversible
− Microporous, melts at T>120degC to shut down reaction   

l Over-current (short-circuit) Protection
− Reversible Positive Temperature Coefficient (PTC)
− Thermally operated in seconds - does not impact fuse blowing capability

l Cell vent
− Operates to release internal pressure if safety mechanisms described above fail
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Safety Features - 2

Top Cover

Cathode Tag Mounting Disk

Cathode Tag Support

Pressure Disk

Polymeric SealCell Wall

PTC Annular Ring

Cathode Tag

Polymer Electrode Roll Isolator Disk

White Polymer  Collar

Possible Seal Extent (SONY Diag)

Cathode

Anode

Electrode  Separator

Sony US18650 Internal Cell Construction
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Overcharge Design - 1
l Cell overcharge protection is essential for safe battery operation
l For complete safety, we think the device should be - autonomous, 

highly repeatable, non-electronic, safe against inadvertent operation
l Typical properties from a constant current charge on a Lithium-ion 

cell are shown on next slide
l A protection mechanism can trigger on: temperature, pressure, 

chemical, or over-voltage
l Sony picked pressure (on the grounds of inadvertent operation)
l Downside is that to trigger on pressure, a gassing agent must be

added, Sony add LiCo2O3

l Gassing agents have an impact on capacity/cycle-life
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Overcharge Design - 2
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Overcharge Design - 3

l For the Sony 18650HC cell recommended EOCV is 4.2V +/- 50mV

l Hard-carbon + DEC/PC electrolyte, tolerant to high charge voltage

l High margin on overcharge

l Up to 4.3V little impact on cycle-life - data later

l Typically need 100% overcharge to trigger the device

l Device operates at 4.7V to 5V

l Despite many ‘incidents’ over eight years of making batteries for 
space and terrestrial applications, we have never had an explosion or 
fire with Sony cells . 
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SAFETY TESTS
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Safety Tests - 1

l Tests to standard IEC requirements performed by Sony and some 
tests repeated by AEA Technology

l All tests repeated for accreditation by Underwriters Laboratory in US 
- http://www.ul.com

l Conform to standards
− UL-1642 Lithium-ion cells
− see http://ulstandardsinfonet.ul.com/scopes/1642.html
− SU-2054 Lithium-ion battery packs 
− see http://ulstandardsinfonet.ul.com/scopes/2054.html

l Following table summarises the tests and pass/fail criteria
l All cells passed
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Safety Tests - 2
Condition Results

Spike Penetration Five Inch Spike No Gas
Crush I 13 kg Iron No Fire
Crush II φ 16 Bar No Fire
Drop I 1.5m Height No Leakage
Drop II 1.0 m Height No Difference
Drop III 10 m Height No Gas
Abnormal Voltage I +35V 46A No Gas
Abnormal Voltage II -35V 46A No Gas
Abnormal Voltage III -13V 46A No Gas
Over Charge 2A 5V No Gas
Salt Water 5% Salt, 24H No Fire
Burn Gas Burner No Explosion
Heat Hot Plate No Explosion
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Safety Tests - 3
Condition Results

Micro Wave Micro Wave Oven No Fire
Hot Water 100°C No Gas
Heated Oil 180°C No Fire
Melted Solder 230°C No Explosion
Internal Short Circuit Pin Holed Separator No Gas
Short Circuit <15 mΩ No Fire
AC Input 100 V No Explosion
Drilling φ 4 No Fire
Weak Welding No Difference
Low Pressure 1mm Hg 1 min No Difference
Weather -20°C, 1H - 25°C, 1 Day No Leakage
Hot Temperature 85°C, 72 H No Difference
Low Temperature -40°C, 3 Days No Difference
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LAT SAFETY TESTS
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LAT Safety Tests

l Lot Acceptance Test (LAT) performed by AEA Technology/COM 
DEV on samples of 84 cells taken from every batch

l LAT is adapted from ESA SCC hi-rel component specifications

l LAT includes relevant abuse testing and verification of cell safety 
features
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Overcurrent Protection - 1
l Purpose: to validate operation of the overcurrent protection
l Performed on six fully charged cells from each 84 cell sample
l Cells shorted with a 100mΩ resistor at ambient temperature
l Pass/fail is for peak current > 15 A (10C)
l Falling to < 2C in 10 seconds
l Allowed to stabilised for 1 hour
l Repeatability tested - deliver same peak current within 10%
l Following slide shows typical current history - time base 5 sec per 

division and volts 0.5V per division measured across 100mΩ
l Typical spacecraft fuse blowing requirements are easily met 
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Overcurrent Protection - 2
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Overcharge Protection - 1
l Performed on the same 6 cells subjected to overcurrent test
l Cells charged at C/10 until failure (overcharge operates)
l Typically takes 10 - 11 hours from fully charged to operate the 

disconnect, i.e. an overcharge of at least 100%
l Voltage and temperature monitored
l No significant temperature rise (<3 degrees)
l Disconnect operates between 4.7V and 5.0V
l Current drops to 0mA - high impedance tested
l Test followed by Destructive Physical Analysis to verify correct

operation of the device. 
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Overcharge Protection - 2
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Thermal Shock/High Temperature
l More demanding than IEC 5.3.2 Thermal Shock Test
l Also performed at higher temperature than IEC High Temperature 

Storage Test
l Before cycling cells are subjected to qualification level vibration 

(LLS, HLS, random at 30grms 4 minutes per axis, plus 100g 0.5msec 
shock)

l Cycle up to 80oC then down to -20oC 
l Repeated three times
l Dwell time at each temperature 2hours
l Time for temperature transition < 1 hour
l Performed on six cells from each 84 cell sample
l Full electrical performance required for a ‘pass’



PROPRIETARY INFORMATION
© 2000 AEA Technology plc & COM DEV Ltd

Burst Pressure Tests
l Really a test of the cell seal rather than 

the cell can
l Lower end of cylindrical can removed
l Active contents of cell removed
l Pressure applied hydraulically to limit of 

test set-up
l 450 p.s.i. (31 bar)
l No detectable leakage or fall in pressure
l (Additionally, as part of the LAT, the 

leak-rate of the seal is measured in a 
vacuum with a helium leak detector.) 



PROPRIETARY INFORMATION
© 2000 AEA Technology plc & COM DEV Ltd

SUPPLEMENTARY DATA
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ROSETTA Satellite Battery

l ESA Cornerstone mission to 
comet Wirtanen

l Battery of 1070 Wh
l Three modules, each 6s - 11p
l Battery mass 9.99 kg
l Battery energy 107 Wh/kg
l Qualification complete
l Flight models manufactured and 

undergoing acceptance testing
l Launch date: 2003
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Shock
l Recent spacecraft requirements 

well in excess of IEC 5.2.1
l ROSETTA qual at 2,000g at 

1.5 to 10 kHz (+9dB,-6dB)
l Actual pyrotechnic 

qualification test achieved peak 
levels >10,000g at 6kHz

l Repeated in all three axes
l Followed by sine and random 

vibration
l No failures  
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Reverse Polarity - 1
l Three batteries undergoing life-test at 0, 20, 40degC
l Battery configuration 6s-2p
l GEO throughput cycling regime - 60% constant DOD
l Accidental reverse polarity at 350 cycles following a capacity 

measurement
l Battery cells severely imbalanced 
l Half of the cells over discharged
l Half the cells overcharged to almost 4.3V
l Since completed 2,250 cycles and ongoing (equivalent to a 25 year 

life)
l The incident had no apparent effect upon battery cycle-life
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Reverse Polarity - 2
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An Alternative Crush Test!
l Sony cells from a 

mobile phone
l Phone crushed by a 

SUV - cell ends 
severely crushed!!

l Cells still work fine!
l Capacity 1.36 Ah each
l Energy 4.99 Wh
l Some capacity fade 

from 2 years use, as 
expected  
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Battery Protection

l Charge/discharge at battery 
level voltage to s x 4.2V

l Cell O/C failure
− Loose a string (not acceptable for 

‘big’ cells)

l Cell C/C failure
− Overcharge cells in the same 

string
− Each string has many other 

‘fuses’ in series with failed cell 
− Loose string O/C (for Sony cell)

l Topology is highly robust to 
cell failures

p strings define the capacity
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Conclusions

l Over 2 million cell-hours of space testing, plus many more cells used 
to make military batteries from Sony cells, without serious incident

l Safety reviews conducted by ESA and most European Primes in 
anticipation of forthcoming launches of:

− Mars-Express
− PROBA
− RoLand
− ROSETTA
− Beagle2 batteries

l STRV-1d battery also passed full safety reviews by Arianespace
l Successfully launched on Ariane 507 last night (November 15th 

2000) 
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