

dOHSYXOM ג

[^0]

popley spo iv		

Room Temperature Capacity and
Forced Overdischarge Test

1
0
0
8
8
∇ O

"J. 81
yux 0008

$\frac{9}{8}$
©
पsext

$\begin{array}{ll}\square & \hat{2} \\ 0 \\ \cdots & 0 \\ & 0 \\ & 0\end{array}$

8	U	m	$=$ 8 $=$	$\begin{aligned} & \underset{\theta}{8} \\ & E \\ & \Delta \end{aligned}$	
+	\%	y			
0	\cdots	$\underset{+}{+\infty}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\theta} \\ & \frac{1}{6} \\ & \frac{1}{u} \end{aligned}$		
s	se	8	8 8 8		8
$\begin{aligned} & \omega \\ & \infty \\ & 0 \end{aligned}$	e_{x}^{∞}	m	$\begin{aligned} & \text { e } \\ & = \\ & = \end{aligned}$	$\underset{E}{E}$	$\stackrel{B}{B}$
N	\%	e]
$\frac{2}{8}$	8	2	8 2 8		
∞	$\begin{gathered} \infty \\ \infty \\ \hline \end{gathered}$	is	E e $=$	θ	
$\frac{7}{8}$	\cdots	w	$\begin{aligned} & \stackrel{\rightharpoonup}{\square} \\ & \stackrel{\rightharpoonup}{\mathrm{e}} \end{aligned}$	D	

SłInsəy 7 SəL KıIORde

Voltage, V

Voltage, V

צо	צо	SII－OLT
צо	צ0	
эq¢！вле	рэчшя	III－OLT
тqв！вяе дои	рритя	
уо	чо	pirout
yo	чо	
צо	צ0 10	SII－PLT
yo	צо	
Y0	צо	III－OIT
צо	чо	
Y0	Y0	plopul
yo	צо	
sэpo！a	sэpo！a ч⿺𠃊八刀	ədKL

„əб.ıə

Y0	$G[I-D J T$
Y0	
30	$\text { TIT }{ }_{k}^{m}$
30	
18118	$F W=0 .$
$\mathbf{Y 0}$	
Y0	GLI-DJ!
30	
Y0	
Y0	
Y0	\% Y. $\mathrm{M}=$ N, \%
30	
SOPO【@ UH:	OdAJ [D

Sł[nSə ł łSə I
ω

| Jnoy L U! uədo \||ə | КГрв!рәиu! uәdo Пәつ | SLI-PLT |
| :---: | :---: | :---: |
| Jn04 L U! uədo \||əD | | |
| dnoy L U! Uədo \\|P) | | |
| sdrysIN ON - YO | papordx | III-DIT |
| sdrusIL ON - YO | paylea | |
| sduysIW ON - YO | pepoydx] | |
| dnou I U! Uədo IPD | -U!UI 0Z U! Uədo IIPD - YO | FIT-01T |
| dnou L U! uədo IPD | - U!UI SI U! Uədo IIPD - YO | |
| dnou L U! uədo [\|Э | | |
| PIOUS WUO L | HOYS UUO 090'0 | $\partial \mathrm{d} \mathbf{K} \mathbf{L I D} \mathrm{D}$ |

„əБ.əəqun!чวs

-S.Inou 9I IOJ sәро!p ұnouq!.м

The medium rate LTC-111 tend to explode or leak when force over-
discharged at $160^{\circ} \mathrm{F}$ following high rate discharge of 500 mA . The
LTC-114 and LTC115 both survived 1 Amp over-discharge with and 0.4% capacity dispersion. The medium rate LTC-115 'sub D' had 5% capacity dispersion at 50
mA discharge, while the LTC-111 had 0.2% and the LTC-114 had

 capability.

cells that were previously discharged at rates exceeding 1 Amp.
Fresh cells tend to survive exposure to higher temperatures than cells
previously discharged at high rate (1 Amp). LTC-111 cells tend to
vent at lower temperatures than the all LTC- 114 cells and the LTC-115
HIOYS pIey \mathfrak{e}. Ohm did not. This is probably due to the activation of a resetable fuse Ohms recovered but the LTC-114 cells exposed to a soft short of 1 cutoff switch but three LTC-111cells exp
 Most cells opened during 0.05 Ohm short circuit test without incident
 hours.

[^0]: ィəбぇəqun!чวs

