2000 NPSS Review

NASA Glenn Research Center October 4-5, 2000

Space Transportation Propulsion Systems

> Dr. Meng-Sing Liou Dr. Mark E. Stewart Dr. Ambady Suresh Dr. A. Karl Owen

> > 2000 NPSS Review

Outline

- Review of Engine/Inlet Coupling Work
- Background/Organization of Space Transportation Initiative
- Synergy between High Performance Computing and Communications Program (HPCCP) and Advanced Space Transportation Program (ASTP)
- Status of Space Transportation Effort
 - Planned Deliverables FY01-FY06
 - FY00 Accomplishments (HPCCP Funded)
 - FY01 Major Milestones (HPCCP and ASTP)
- Review Current Technical Efforts
 - Review of the Rocket-Based Combined-Cycle (RBCC)
 - Scope of Work
 - RBCC Concept Aerodynamic Analysis Dr. Stewart
 - RBCC Concept Multidisciplinary Analysis Dr. Suresh

2000 NPSS Review

de la de

Space Transportation Initiative

2000 NPSS Review

Background

•Growing importance of advanced space transportation propulsion systems and simulations to support development & use of advanced space systems.

•Small space transportation simulation effort begun in FY00.

- •Evaluation of advanced technologies by Advanced Space Transportation Program (ASTP) highlights importance of advanced system modeling capabilities.
- •Computing and Interdisciplinary Systems Office (CISO) proposes for funding under second- and third-generation reusable launch vehicle projects.

-Third-generation funds

-Second-generation zeroed-out in FY01 budget

ASTP Propulsion Story

Second Generation

- Currently cut out of budget by Congress
- Short-term focus out to FY06
- Huge budget ~\$5B hardware-oriented
- Four proposal cycles
- Industry-led hope to team with industry
- Proposed under Cycle 2 rocket sim. development still under consideration

Third Generation - SPACELINER100

- Third-generation Spaceliner
- FY01 budget: \$445M foundations \$9.6M
- Mature base (foundation) technologies to enable broad range of concepts to meet Gen 3 goals (FY01-06)
- Mature rocket engine components to enhance T/W, performance, etc. (FY01-06)
- Mature air-breathing components for combined-cycle vehicle thru TRL 6
- Fund university studies to identify new concepts (other than rockets or airbreathers) to meet goal 9

T/W - Thrust to Weight Ratio

Synergy

- Third-generation reusable launch vehicle funding promised in FY01. Focus on system development:
 - Begin development of rocket engine system simulation
 - Begin development of RBCC system simulation
- HPCCP to focus on high-fidelity and multidisciplinary simulation and prototyping for coupling/zooming/optimization.
- Second-generation reusable launch vehicle funding possible in FY01.
- Future integration.

Space Transportation Initiative Major Deliverables							
	2000	2001	2002	2003	2004	2005	2006
	DEM	ONSTRATE IN	TEGRATED T	ECHNOLOGIE	s (HPCCP)		
RBCC Multi- Disciplinary Coupling	Structural- German analysis of GRC RBCC analymentatics inter inter	Coupled sero- structural- bannal analysis of inist Forebody	Coupled multistants pintwy Parabody/Infer	Dev. Kit tool release			
	and diverter secodynamic ensitysis	vicualization for radiation 2 side Barnat conductivity Uni-directional	Bi-directional	Bj-divertional	Bi-directional nosicady acro-		
Disciplinary Coupling		structural passip prototype	structural pamp prototype	structural gump production	structural punip Dev. Kit tool		
Advanced Grid Generation		Beta release for robust hybrid grid code generator	Release grid code as a stand- alone package for Version 1	Grid gen- eration pro- duction demon- stration and enhancements			
Zooming					Demonstration of turbopump SS operation zoomed from NPSS rocket sim.	Demonstration of turbopamp unsteady oper- ation znomed from NP5S rocket sim.	Dev. Kit demonstratic of turbopum unsteady ope ation zoome from NPSS

FY00 Accomplishments and FY01 Milestones

- Accomplishments
 - GRC RBCC concept forebody & boundary layer diverter capability demonstrated.
 - Coupled structural-thermal analysis of GRC RBCC inlet demonstrated.
 - SRS for space transportation incremental release.
 - Acting TFG for space transportation.
- Milestones
 - Coupled aero-structural-thermal analysis of inlet (HPCCP).
 - Modify CFD forebody simulation for radiation & skin thermal conductivity (HPCCP).
 - Incremental release rocket system simulation (ASTP).
 - Formal contractual mechanisms & cooperative agreements in place.
 - Space transportation SRS for Version 2 release.

SRS - Software Requirement Specification TFG - Technical Focus Group

Technical Effort: Glenn Research Center RBCC Concept Support (HPCCP)

2000 NPSS Review

Motivations fo Scope of Work

Motivations

- **Requirements in support**
 - Complex geometry
 - Physics
 - Accuracy
 - Efficiency
 - Robustness
 - Projects
- Improved multidisciplinary integration of fluid, thermal and structural analysis codes into current design cycles.
- Multidisciplinary analysis well suited to optimization of complete vehicle designs.

Scope

- Prototyping of high-fidelity and multidisciplinary coupling of simulations as a prelude to NPSS tool development.
- Reduction of analysis time.
- Detailed high-fidelity analysis of GRC RBCC concept (GTX).

GRC RBCC 3-D Inlet-Forebody Aerodynamic Analysis

Dr. Mark Stewart

2000 NPSS Review

- RBCC, Single-Stage-to-Orbit
- Rocket and Air-Breathing RAM/SCRAM Modes
- Design Questions
- -Diverter performance -Forebody boundary layer's effect on inlet

•Design point: M=6; altitude=80,000 ft; AOA=4°; Re/ft=1.4x10⁵ •Operating range of interest: M=2.5-10.; AOA=0°

2000 NPSS Review

Validation of CFD Solutions

- Comparison with Theoretical Properties
 - Axisymmetry
 - Y⁺ values
- Comparison with Cone Shock Solutions
- Comparison with Rig 3.1 at AOA=0°; M=2.0, 2.5, 3.0, 3.5
 - Forebody boundary layer profiles
 - Forebody static pressure distribution
- Comparison with Independent CFD Solution

Observations

- Results suggest diverter design changes.
- Results clarify some rig results.

