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ABSTRACT

A parallelized version of the Flowfield Dependent Variation (FDV) Method is developed to analyze a

problem of current research interest, the flowfield resulting from a triple shock#ooundary layer interaction.

Such flowfields are often encountered in the inlets of high speed air-breathing vehicles including the NASA

Hyper-X research vehicle. In order to resolve the complex shock structure and to provide adequate

resolution for boundary layer computations of the convective heat transfer from surfaces inside the inlet,

models containing over 500,000 nodes are needed. Efficient parallelization of the computation is essential

to achieving results in a timely manner. Results from a parallelization scheme, based upon multi-threading,

as implemented on multiple processor supercomputers and workstations is presented.

INTRODUCTION

The Flowfield Dependent Variation (FDV) Method is utilized to analyze a problem of current research

interest, the flowfield produced from a triple shock#ooundary layer interaction. Flow fields of this nature

are often encountered in the inlets of high speed vehicles such as the scramjet engine of NASA's Hyper-X

research vehicle. For this analysis, the numerical results are compared to experimental wind tunnel

measurements made by Garrison, Settles, and Horstman [1,2]. The objective of the FDV analysis is to

resolve the major flowfield structures observed during the experiment while demonstrating an efficient

parallelization scheme based upon multi-threaded programming.

FLOWFIELD DEPENDENT VARIATION (FDV) THEORY

The original idea of FDV methods began from the need to address the physics involved in shock wave

turbulent boundary layer interactions [3-5]. In this situation, transitions and interactions of inviscid/viscous,

compressible/incompressible, and laminar/turbulent flows constitute not only the physical complexities but

also computational difficulties. This is where the very low velocity in the vicinity of the wall and very high

velocity far away from the wall coexist within a domain of study. Transitions from one type of flow to

another and interactions between two distinctly different flows have been studied for many years both

experimentally and numerically. Traditionally, incompressible flows were analyzed using the pressure-



basedformulationwiththeprimitivevariablesfortheimplicitsolutionoftheNavier-Stokessystemof
equationstogetherwith the pressure Poisson equation. On the other hand, compressible flows were

analyzed using the density-based formulation with the conservation variables for the explicit solution of the

Navier-Stokes system of equations. In dealing with the domain of study which contains all speed flows with

various physical properties where the equations of state for compressible and incompressible flows are

different, and where the transitions between laminar and turbulent flows are involved in dilatational

dissipation due to compressibility, we must provide very special and powerful numerical treatments. The

FDV scheme has been devised toward resolving all of these issues.

To this end, let us consider the Navier-Stokes system of equations in conservation form,

_U _ _F_ + _G______- B
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In expanding U n+l in a special form of Taylor series about If, we introduce the variation parameters S 1 and

s 2 for the first and second derivatives of U with respect to time, respectively

where
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with AIf +1 = If+l _ If. Substituting (3) into (2),
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Notice that S1, associated with the first time derivative, is intended to provide variations as appropriate to

the convection and diffusion processes of the flowfield, whereas s 2 , involved in the second time derivative,

is to control adequate application of artificial viscosity as required in accordance with the flowfield.

In the conservation form of the Navier-Stokes system of equations, Fi and B are functions of U, and Gi is a

function of U and its gradient U k. Thus, by the chain rule of calculus, the first and second derivative of U

with respect to time may be written as follows:

_U #E _Gi
- +B

& c_xi c_xi

We denote the convection Jacobian a_, the diffusion Jacobian b_, the diffusion gradient Jacobian c_k, and

the source Jacobian d as

(1)

(2)

(3a)

(3b)

(4)

(5a)

(5b)
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Forthepurposeof generality,weassumeherethatthesourcetermsarisefromadditionalequationsfor
chemicalspeciesequations.

Thesecondderivativeof U withrespectto timemaynowbewrittenin termsof theseJacobiansby
substitutioninto(5b),
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Substituting (5a) and (6) into (4), and assuming the product of the diffusion gradient Jacobian with third

order spatial derivatives to be negligible, we have

The variation parameters s 1and s 2 which appear in (7) may be accorded with appropriate physical roles by

calculating them from the flowfield-dependent quantities. For example, if s 1 is associated with the

temporal changes (A terms, henceforth called fluctuations, not meant to be turbulent fluctuations) of

convection, it may be calculated from the spatial changes of Mach number between adjacent nodal points so

that $1= 0 would imply no changes in convection fluctuations. Similarly, if s 1is associated with the

fluctuations of diffusion, then it may be calculated from the spatial changes of Reynolds number or Peclet

number between adjacent nodal points such that $1= 0 would signify no changes in diffusion fluctuations.

Therefore, the role of s 1 for diffusion is different from that of convection. Similarly, the role of s 1 for the

fluctuation of the sources (such as reaction rates and heat generation) should be different from convection

and diffusion. For example, we may define the fluctuation quantities associated with s 1 as

AB n+l c_AFn+I i c_AGn+I i ABn+ 1
Slc I-Sld Sls

8x _ 8x i

2 2 n+l

4]_/m ax--]_/min _AF
= +
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(6)

(7)

(8)
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whereit isseenthatthevariationparameters 1 originally adopted as a single mathematical or numerical

parameter has now turned into multiple physical parameters such as the changes of Mach numbers,

Reynolds numbers (or Peclet numbers), and Damkohler numbers (Da), between adjacent nodal points.

The magnitudes of fluctuations of convection, diffusion, and source terms are dictated by the current

flowfield situations in space and time. Similar assessments can be applied to the variation parameter s 2 as

associated with its corresponding fluctuation terms of convection, diffusion, and source. Thus, in order to

provide variations to the changes of convection, diffusion, and source terms differently in accordance with

the current flowfield situations, we reassign s 1 and s 2 associated with convection, diffusion and source terms

as follows:

slAG i _sldAGi= s3AG i , slAB _sl,AB_= ssAB

s2AG i _s2dAGi= s4AG i , s2AB _S2sAB = s6AB

with the various variation parameters defined as

s lc = s1 = first order convection variation parameter

s 2c-- s2 = second order convection variation parameter

sld = s 3 = first order diffusion variation parameter

s2d = s 4 = second order diffusion variation parameter

s is-- s5 = first order source term variation parameter

s 2s-- s6 = second order source term variation parameter

The first order variation parameters S1, $3, and s 5 are flowfield-dependent, whereas the second order

variation parameters s2, s4, and s 6 are exponentially proportional to the first order variation parameters, and

mainly act as artificial viscosity.

EXPERIMENTAL MEASUREMENTS

The analytical results are compared to experimental measurements for a triple shock interaction obtained by

Garrison, Settles, and Horstman [1,2]. The wind tunnel model used to produce the triple shock#ooundary

layer interaction consists of two vertical fins and a horizontal ramp as shown in Figure 1. The angle of

attack for the fins is 15 ° and the ramp is inclined at an angle of 10 ° with respect to the inlet flow. The inlet

flow is at Mach 3.85 with a stagnation temperature and pressure of 295K and 1500 kPa, respectively. The

fins are 82.5 mm high and are separated by a distance of 96.3 mm. The leading edge of the model is located

21 cm in front of the ramp inlet and produces a turbulent boundary layer with a thickness of 3.5 mm at the

inlet to the model. Flow through the model is characterized by three oblique shocks originating from the

leading edges of the ramp and the fins. Above the oblique ramp shock, the two inviscid fin shocks intersect

and reflect as shown in the figure. For the purposes of this analysis, the ramp is assumed to be 120 mm in

length, the distance at which the reflected inviscid fin shocks are just incident upon the exit comers of each

fin. According to inviscid flow theory, the fin shocks should intersect approximately 92 mm from the

combined ramp and fin entrance. Measurements of the flowfield structure in the x-y plane are made via the

Planar Laser Scattering (PLS) technique at various depths upstream of, coincident with, and behind the

inviscid fin shock intersection [2].
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Figure 1 Inviscid Fin Shock Reflection (Top View, X-Z Plane)

Of particular interest in this analysis is the complex shock#ooundary layer interaction produced in the x-y

planes perpendicular to the flow direction. Upstream of and coincident with the inviscid ramp shock

intersection, the fin and ramp shocks are reflected and interact with the fin and ramp boundary layers to

produce the shock structures contained in the PLS images of Figure 2. Upstream of the shock intersection

(left), the flow is characterized by the inviscid fin and ramp shocks reflecting to form a corner shock. Slip

lines separating the shock induced flow regions are also visible in the image. The flow separation from the

ramp underneath the embedded fin shock is also visible in the image. At the shock intersection (right), the

inviscid fin shocks merge, the ramp shock dissapears, and the comer shock is reflected to form the structure

shown. The curvature of the fin shocks become more pronounced and a large separation region is observed

underneath the reflected comer shocks. This is attributed to the curvature of the inviscid shocks to the finite

height of the fins (i.e. there would be no shock curvature with fins of "infinite" height) [1].
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(a)Z=6.7cm (b)Z=9.2cm

Figure 2: Fin/Ramp Shock Structure in the X-Y Plane Before (Left) and Co-incident

(Right) the Inviscid Fin Shock Intersection [1]

A detailed PLS view of the comer shock reflection physics is shown in Figure 3. [1]. As shown in the

figure, the inviscid fin (a) and ramp (b) shocks reflect to form the comer (c) shock. Both the embedded

ramp (d) and fin (g) shocks split into separation (e,h) and rear (f,i) shocks above the ramp and fin

boundary/separation layers. The ramp separated region (j) and the slip lines (k) dividing the different

velocity regions as induced by the shock structure are also visible in the image.
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PLS Image of Corner Flow
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Figure 3: Fin/Ramp Shock Structure in the X-Y Plane [ 1 ], a) Inviscid Fin Shock, b)

Comer Shock, c) Inviscid Ramp Shock, d) Embedded Ramp Shock, e) Ramp Separation

Shock, f) Ramp Rear Shock, g) Embedded Fin Shock, h) Separation Fin Shock, i) Rear

Fin Shock, j) Separated Region, k) Sliplines

COMPUTER MODEL

Since the two fins are symmetric about the centerline, only half of the wind tunnel model is included in the

computational model. Two finite difference computational grids, varying in resolution, are developed for
the FDV analysis. The coarse grid model, consisting of a non-uniform nodal resolution of 31 x 41 x 55 (in
the x, y, and z directions) is shown in Figure 4. The viscous grid is clustered close to the fin and ramp
surfaces. Results from the coarse grid analysis are used as the starting condition for the fine grid model.

The fine grid model is obtained by interpolating the flow variables against the coarse mesh. Doubling the
number of grid points in each direction produces a fine grid with over 538,000 nodal points (61 x 81 x 109).
Recall that the most important aspect of the FDV theory is that the shock capturing mechanism and the
transition and interaction between compressible/incompressible, viscous/inviscid, and laminar/turbulent

flows are incorporated into the FDV formulation. No special treatments are required to simulate these
physical phenomena. Thus, the finite difference discretization requires no special schemes. Simple central
differences can be used to discretize the FDV.
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Figure 4: Three Dimensional Finite Difference Models

The inlet conditions to the model are fixed with the freestream conditions described above (M=3.85,

Po=1500 kPa, and To=295 K) and include a superimposed boundary layer 3.5 mm in height[l]. At the fin

and ramp surfaces, no-slip velocity boundary conditions are imposed and the normal pressure and

temperature gradients are set to zero. In the symmetry plane and for the bounding surface on top (x-z

plane), all of the flow variables are computed such that the normal gradients vanish except for the normal

flux, which is explicitly set to zero. At the exit, all of the flow variables are extrapolated from interior grid

points.

PARALLELIZATION STRATEGY: MULTI-THREADED PROGRAMMING AND DOMAIN

DECOMPOSITION

Multi-threaded programming is utilized to take advantage of multiple computational elements on the host

computer. Typically, a multi-threaded process will spawn multiple threads which are allocated by the

operating system to the available computational elements (or processors) within the system. If more than

one processor is available, the threads may execute in parallel resulting in a significant reduction in

execution time. If more threads are spawned than available processors, the threads appear to execute

concurrently as the operating system decides which threads execute while the others wait. One unique

advantage of multi-threaded programming on shared memory multiprocessor systems is the ability to share

global memory. This alleviates the need for data exchange or message passing between threads as all global

memory allocated by the parent process is available to each thread. However, precautions must be taken to

prevent deadlock or race conditions resulting from multiple threads trying to simultaneously write to the
same data.

Threads are implemented by linking an application to a shared library and making calls to the routines

within that library. Two popular implementations are widely used: the Pthreads library [6] (and its

derivatives) that are available on most Unix operating systems and the NTthreads library that is available

under Windows NT. There are differences between the two implementations, but applications can be

ported from one to the other with moderate ease and many of the basic functions are similar albeit with

different names and syntax.
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Domaindecompositionmethods[7]canbeusedinconjunctionwithmulti-threadedprogrammingtocreate
anefficientparallelapplication.Thesub-domainsresultingfromthedecompositionprovideaconvenient
divisionoflaborfortheprocessingelementswithinthehostcomputer.Inthisapplication,anAdditive
Schwarzdomaindecomposition[7]methodisutilized.Themethodisillustratedbelow(Figure5)foratwo
dimensionalsquaremeshthatisdecomposedintofoursub-domains.Thenodesbelongingtoeachofthe
foursub-domainsaredenotedwith geometric symbols while boundary nodes are identified with bold

crosses. The desire is to solve for each node implicitly within a single sub-domain. For nodes on the edge

of each sub-domain this is accomplished by treating the adjacent node in the neighboring sub-domain as a

boundary. The overlapping of neighboring nodes between sub-domains is illustrated in Figure 6. Higher

degrees of overlapping, which may improve convergence at the expense of computation time, are also used.

,N ;

<_ @ Sub-domain 1

+ Sub-domain 2

Sub-domain 3

+ Sub-domain 4

_ BoundaryNode

Figure 5: Multiple Subdomains

01% 01% 0"_ 0"_
Nodes shaded in

white are solved

implicitly within in "*"

each sub-domain.

.&

.&

Nodes from neighboring

.;. sub-domains (shaded)

are treated as boundary

nodes and allowed to lag

_:" "_i_:" / one timestep.

/
.& .::. .:. .:.

Figure 6: Domain Decomposition

In a parallel application, load balancing between processors is critical to achieving optimum performance.

Ideally, if a domain could be decomposed into regions requiring an identical amount of computation, it

would be a simple matter to divide the problem between processing elements as shown in Figure 7 for four

threads executing on an equal number of processors.
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Timestep #1 Timestep #2 Timestep N

/_ End of Timestep
Synchronization

CPU #1

CPU #2

CPU #3

CPU #-4

Thread #1 Thread #2

Thread #2 Thread #4

Thread #3 Thread #1

Thread #4 Thread #3

00O

/X

Execution Time

Thread #3

Thread #2

Thread #1

Thread #4

Figure 7: Ideal Load Balancing

Unfortunately, in a "real world" application the domain may not be decomposed such that the computation

for each processor is balanced, resulting in lost efficiency. If the execution time required for each sub-

domain is not identical, the CPU's will become idle for portions of time as shown in Figure 8.

CPU #1

Timestep #1 Tim estep #2

Thread #1 Thread #2 _'._q_£\\N

CPU #2 Thread#2 _\_q-q-_q-q-_Thread#4
I_-.\\\\\\\\\\\\\'_

C PU #3 Thread #3 __ Thread #1

CPU #4 Thread #4 ._ Thread #3 _

/_ End of Timestep
Synchronization

N CPU Idle

000

Execution Time

Timestep N

Thread #3 kit

Thread #2 _\<_£q_£_

Thread #1

Figure 8: "Real World" Load Balancing

One approach to load balancing, as implemented in this application, is to decompose the domain into more

sub-domains than available processors and use threads to perform the computations within each block. The
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finer granularity permits a

shown in Figure 9.

CPU #1 I #1

more even distribution of work amongst the available processing elements as

opus2 I

opus3 l

CPU #-4

CPU #1

CPU #2

CPU #3

CPU #-4

I #1 I #2

I #6Ii

X

Execution Time --

J

>- 4 Sub-domains

> 8 Sub-domains

/_ End of Timestep
Synchro nization

N CPU Idle

Figure 9: Domain Decomposition Improves Parallelism

In this approach, the number of threads spawned is equal to the number of available processors with each

thread marching through the available sub-domains (which preferably number at least two times the number
of processors), solving one at a time in an "assembly-line" fashion. A stack is employed where each thread
pops the next sub-domain to be solved off of the top of the stack. Mutual exclusion locks are employed to
protect the stack pointer in the event two or more threads access the stack simultaneously. Each thread

remains busy until the number of sub-domains is exhausted. If the number of sub-domains is large enough,
the degree of parallelism will be high although decomposing a problem into too many sub-domains may
adversely affect convergence. This approach is illustrated in Figures 10 and 11.
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 iiiiii 

1) Decompose the domain 2) Push each sub-domain onto a software stack

Figure l O: Decompose the Domain and push onto Stack

Stack Pointer

_iiiNiiiiiiiiiiiiiiiiiiiiiiiiiii_iiiiiiiii__iiiiii_iiiiiiiiiiiiiii _iiiiiii_iiiiiii_iiiiiii

:_:_:_:_:_:_:_:_ :: ::::::::::::::::::::::::::::::::::::: :::::::::::::::::::::::::::::::::::::: _:_:_:_:_:_:_:_:_:_:_:_:_:_:_:_:_:_:_:

3) Spawn threads and execute until stack is exhausted

Figure 11: Allow Threads to Process each Sub-domain

The coarse mesh computations were performed on a four processor Alpha TM based workstation located at
the University of Alabama in Huntsville and on a dual processor Pentium TM II workstation located at the
Marshall Space Flight Center. The fine mesh computations were conducted on SGITM Origin 2000 and
Power Challenge XL supercomputers (each containing twelve processors) located at the Marshall Space
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Flight Center. The FDV application solver is based upon the Generalized Minimum Residual (GMRES)

algorithm described by Shakib [8]. The application is coded to be multi-threaded to take advantage

parallelism in the host computer. The number of threads is specified at run time and is based upon the

expected number of available CPU's. The results for three different architectures are provided in Table 1.

Typical utilizations (defined as CPU time/elapsed time) range from 180% to 380% for two to eight threads.

It should be noted that both the number of threads and number of processors impose theoretical limits on

the maximum performance gain. Obviously, the normalized performance increase can not exceed the

number of threads and, aside from tertiary performance issues (such as on processor cache), nor can the

normalized performance increase exceed the number of processors. For the coarse mesh model, actual

speed increases range from 1.77 to 3.44 for 2 to 4 processors. The results are encouraging when

considering the CPU contention between multiple users on the host machines. For the coarse mesh model

on a dual processor Pentium II workstation (with no other users) a CPU utilization of 196% is observed

with a real time speedup of 1.92. The four processor machine did exhibit a significant amount of overhead

when moving beyond a single thread. Utilizing four threads for the fine mesh model resulted in CPU

utilizations of 357% and 370% for a domain decomposed into 27 and 64 regions, respectively. The fine

mesh model was not run with a single processor or thread so no relative speed-up data is available. The

CPU utilization is encouraging considering the high CPU contention on the twelve processor machine.

Table 1. Computational Performance Summary

Threads Grid Decomposition

55x41x31 4x4x4

55x41x31 4x4x4

55x41x31 4x4x4

55x41x31 4x4x4
55x41x31 4x4x4

55x41x31 4x4x4

55x41x31 4x4x4

109x81x61 3x3x3

109x81x61 4x4x4

CPU Time Elapsed Time

(hours)
5.0_

5.12

4.6_

5.1_
5.3C

5.3C

5.1E

37.4C

52.7E

CPU Utilization

(hours)
5.05

2.62

4.72

2.66
1.42

1.40

1.37

10.47

14.25

Speed-up

100%

196%

99%

195%
373%

378%

377%

357%

370%

1.00

1.93

1.00

1.77
3.32

3.36

3.44

NA

NA

Processor

Pentium II

Pentium II

Alpha

Alpha

Alpha

Alpha

Alpha

R10000

R10000

Number of Proc

12

12

Density contours for the inviscid shock interaction (x-z plane, as viewed from above the wind tunnel model)

are shown in Figure 12. The 15 ° fins produce inviscid shocks that are predicted to intersect and reflect

approximately 92 mm from the ramp entrance. The reflected shock does not intersect with the exit comer

of the ramp as expected. Two cross sections, located at 67 mm and 92 mm, respectively, from the entrance

are noted on the plot.
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Figure 12: Density Contours for X-Z Cross Section (Top), Slip Boundary

Density contours for the flow in x-y planes located 67 mm (upstream of the inviscid shock intersection) and

92 mm (coincident with the inviscid shock intersection) from the combined fin/ramp entrance are shown in

Figure 13. It appears that the upstream predictions correlate well with the experimental images. The

inviscid ramp and fin shocks, as well as the comer reflection, are easily discernible in the upstream figure

(see left). Interestingly, it appears that the triangular shaped slip lines are present in the numerical results of

the upstream plane. Since the slip-lines divide constant pressure regions with differing velocities, this

feature is not visible in the static pressure plots. As in the experimental imagery, the inviscid fin shocks

merge together in the symmetry plane at the point where the inviscid shocks intersect (see right). No

curvature of the inviscid fin shock intersection is observed in the numerical predictions. The reflection of

the comer shock about the symmetry plane is observed, but the ramp embedded shock is lower relative to

the height of the fin than in the experimental results.
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Plane A-A (Ahead of the 15° Fin Shock Intersection)
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Figure 13 Density Contours for Y-Z Cross Section, Slip Boundary

CONCLUSIONS

The comparison of the FDV method to the actual measured flowfield for the triple shock interaction is

encouraging. Many of the flowfield features observed in the experimental imagery are resolved in the

computation including the inviscid shock corner reflections. Particularly good results are obtained for the

shock structure in the cross sectional x-y planes upstream of the inviscid shock intersection. The numerical

results did not exhibit the shock curvatures evident in the experimental images, but this may be rectified

through increased grid resolution or a different boundary condition for the top surface (x-z plane) may be

required. It is concluded that the multi-threaded domain decomposition approach provides an efficient

strategy for parallelizing the FDV code and it is expected to be implemented on problems of increasing size

in the future.
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