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Abstract

Two numerical procedures, one based on artificial compressibility method and the

other pressure projection method, are outlined fbr obtaining time-accurate solutions of

the incompressible Navier-Stokes equations. The perfbrmance of the two method are com-

pared by obtaining unsteady solutions fbr the evolution of twin vortices behind a fiat plate.

Calulated results are compared with experimental and other numerical results. For an un-

steady flow which requires small physical time step, pressure projection method was found

to be computationally efficient since it does not require any subiterations procedure. It was

observed that the artificial compressibility method requires a fast convergence scheme at

each physical time step in order to satisfy incompressibility condition. This was obtained

by using a GMRES-ILU(0) solver in our computations. When a line-relaxation scheme

was used, the time accuracy was degraded and time-accurate computations became very

expensive.

Introduction

The primary objective of this research is to support the design of liquid rocket sys-

tems fbr the Advanced Space Transportation System. Since the space launch systems in

the near future are likely to rely on liquid rocket engines, increasing the efficiency and

reliability of the engine components is an important task. One of the major problems in

the liquid rocket engine is to understand fluid dynamics of fuel and oxidizer flows from

the fuel tank to plume. Turbopumps in liquid rocket engines are one of the biggest source

of vibrations. Understanding the flow through the entire turbopump geometry through

numerical simulation will be of significant value toward design. This will help to improve

safety of future space missions. One of the milestones of this effort is to develop, apply and

demonstrate the capability and accuracy of 3D CFD methods as efficient design analysis

tools on high perfbrmance computer platforms. In order to achieve flange-to-flange entire

turbopump simulations, moving boundary capability and an efficient time-accurate inte-

gration method should be build in the numerical procedure. This paper, in particular, is

concerned with the time integration procedure of incompressible Navier-Stokes equations.

The incompressible Navier-Stokes equations pose a special problem of satisfying the

mass conservation equation because it is not coupled to the momentum equations. To

satisfy incompressibility various procedures can be selected depending on the choice of for-

mulations, variables, discretization and iterative schemes. In this paper, two fbrmulations



areconsidered,the first onebasedon an artificial compressibilitymethod and the second
one on a pressureprojection method. The artificial compressibilitymethodI takes ad-
vantageof the advancesmadein conjunctionwith compressibleflow computations. This
approachrelaxesthe requirementof enforcingmassconservationequation rigorously at
eachtime iteration, however,at the expenseof introducing anartificial wavephenomenon.
This approachcanbeviewedasa specialcaseof apreconditionedcompressibleflow tbrmu-
lation. However,the computationalefficiencyis in generalbetter than that of compressible
flow solversat the incompressiblelimit. This approachhasbeenshownto bevery robust
in a wide rangeof applications2-4.

The first primitive variablemethod for incompressibleflow wasdevelopedby Harlow
and Welch5 usingpressureprojection. Numerousvariantshavebeendevelopedsince. In
this method,the pressureis usedasamappingparameterto satisfythecontinuity equation.
The usualcomputationalprocedureinvolveschoosingthe pressurefield at the current time
step suchthat continuity is satisfiedat the next time step. The time step is advancedin
multiple steps(fractional step) which is computationally convenient.However,governing
equationsare not coupledasin an artificial compressibilityapproach.This will affect the
robustnessand linfit the maximum allowabletime stepsize. Sincethis approachis time
accurate,therearecaseswherethe fractional stepsolveris computationallymoreefficient
comparedto the artificial compressibilitymethod5-9.

Various numerical algorithms associatedwith thesemethods have been developed
alongwith accompanyingflow solvers. In the presentpaper, it is intendedto outline the
time integration proceduresof the two methodsdiscussedabove. A new time integration
schemeis alsopresentedfor pressureprojection method. Numericalresultsfrom both for-
mulationsfor the developmentof the twin vorticies1°'11behindthe fiat plate arepresented
in computedresults section.

Artificial Compressibility Formulation

The artificial compressibility algorithm introduces a time-derivative of the pressure

term into the continuity equation; the elliptic-parabolic type partial differential equations

are transtbrmed into the hyperbolic-parabolic type. The artificial compressibility method

by Chorin (1967) can be written as
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where t is time, xi the Cartesian coordinates, ui the corresponding velocity components,

p the pressure, /3 artificial compressibility, and h_ contains both convective and viscous

terms. At steady state the pressure term in continuity equation drops out and thus in-

compressibility is recovered. For time accurate computations, this has to be repeated at

each time level to maintain incompressibility at each time step.

In the present study, the time derivatives in the momentum equations are differenced

using a second-order, three-point, backward-difference fbrmula.
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where u and r denote the dependent variable vector and the right hand side vector tbr the

momentum equations, respectively. After the discretization in time, the pseudocompress-

ibilty term and pseudo-time level (rn) are introduced to equations.
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Here At, At, n, and m denote physical time step, pseudo-time step, physical time level,

and subiteration time level, respectively. The equations are iterated to convergence in

pseudo-time fbr each physical time step until the divergence of the velocity field has been

reduced below a specified tolerance value. This typically requires 10 to 30 subiterations.

The matrix equation is solved iteratively by using a nonfactored Gauss-Seidel type

line-relaxation scheme, 12 which maintains stability and allows a large pseudo-time step to

be taken. Details of the numerical method can be tbund in Ret_. 2-3. GMRES scheme has

also been utilized tbr the solution of the resulting matrix equation la. Computer memory

requirement for the corresponding flow solver (INS3D-UP code) with line-relaxation is

35 times number of grid points in words, and with GMRES-ILU(0) scheme is 220 times

number of grid points in words. Extensive memory requirement tbr GMRES scheme makes

the code unpractical tbr three-dimensional applications. Writing a matrix-free GMRES
solver renmains to be one of the items tbr future enhancemets.

The original version of the INS3D code 2 with pseudocompressibility approach utilized

the Beam-Warming 14 approximate factorization algorithm and central differencing of the

convective terms. Since the convective terms of the resulting equations are hyperbolic,

upwind differencing can be applied to these terms. The current versions of the INS3D-UP

code use flux-difference splitting based on the method of Roe. 15 Chakravarthy 16 outlines a

class of high-accuracy flux-differencing schemes tbr the compressible flow equations. The

third and fifth-order upwind differencing used here is an implementation of these schemes

tbr the incompressible Navier-Stokes equations. The upwind differencing leads to a more

diagonal dominant system than does central differencing and does not require a user-

specified artificial dissipation. The viscous flux derivatives are computed by using central

differencing.

Time-accurate artificial compressibility tbrmulation has been used successfully for un-

steady calculations. The only drawback of this tbrmulation is the computational cost due

to subiteration procedure.

Pressure Projection Method

The time integration scheme is based on operator splitting, which can be accomplished

in several ways by combining the pressure, convective, and viscous terms in the momentum



equations.The tractional stepmethodis basedon the decompositionof vector field into a
divergencefreecomponentand gradientof a scalarfield. The commonapplicationof this
method is donein two steps.The first step is to solvetbr an auxiliary velocity field using
the momentumequations. In the secondstep,the velocity field is correctedby using the
pressurewhich can map the auxiliary velocity onto a divergencetree velocity field. The
momentumequationsare discretizedin time using a second-orderimplicit Runga-Kutta
method (RK2) which can alsobe viewedasa predictor-correctormethod.

1 Op _'

At (_ -- _) -- Oxi + h(u_) (5)

and a corrector step
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where u_ denotes the auxiliary velocity field. The h term in the momentum equations

includes the convective and viscous terms. By using equation (5), equation (6) can be
written as

_i (?t_+ 1 * Op n+l 1
n+l
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By subtracting equation (5) from equation (7), we obtain

2 (o n+l ' n-t-1

At,. _ -_) =-v_ + h(_ )- h(_) (8)

where p' = p_,+l _ p_. At n + 1 time level, the velocity field has to satisfy the incompress-

ibility condition which is the continuity equation.

V" U n-}-I = 0 (9)

This incompressiblity condition is entbrced by using a Poisson equation tbr pressure.

' Zv.u* (10)V2P = At

The Poisson equation tbr pressure is obtained by taking the divergence of equation (8) and

using equation (9). The only assumption is made in this procedure is that h(u_ _+1) -h(u_')

term in equation 8 is considered small. If the corrector step was explicit, this term would
vanish.

In equations (5) and (7), both convective and viscous terms are treated implicitly.

The residual term at the (,) and (n + 1) level is linearized giving the tbllowing equations
in delta tbrm

+ _ (_* - _) - o_ + h(_') (11)
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where I is the idendity matrix. Equation (12) can also be written in more familiar fbrm

of fractional-step method by substituting equation (5) in equation (12).

[ ()*]2/ Oh (?/nq-1 0/)' (13)
27 + _ -_*)- 0xi

Equations (11), (10), and (12) give the proposed time integration procedure of the pressure

projection method.

The algorithm tbr the pressure projection method is based on a finite-volume formu-

lation and uses the pressure in the cell center and the mass fluxes across the faces of each

cell as dependent variables. The discretization of the mass conservation equation in finite

volume tbrmulation gives

(S_ •u)j+l,k,_ - (S_ •u)j_+,k,_+

(S_ •u)_,k++,_ - (S_ •u)j,__+,_+

(S_ • u)j,k,_+_ - (S_ •u)j,k,__l = 0

(14)

where S is the surface area vector. The mass conservation equation is evaluated over the

faces of a computational Each term in equation (14) approximates the mass flux over the

corresponding cell face. If the mass fluxes are chosen as unknowns, the continuity equation

is satisfied automatically in generalized coordinate systems. The mass fluxes over the _, _!

, and _ faces of the computational cell are

U _ =S _ • u

U _ =S _ • u

U _ =S ¢ • u

(15)

The continuity equation with this choice of the dependent variables takes a tbrm identical

to the Cartesian case. Theretbre, the mass fluxes are considered as the 'natural' depen-

dent variables tbr projection methods in curvilinear coordinates. The mass conservation

equation with new dependent variables in a generalized coordinate system becomes

- - vj,k-½,l @

U_¢,k,l+½ ¢- 1 = 0
(16)

Treating the mass fluxes as dependent variables in finite volume tbrmulation is equivalent

to using contravariant velocity components, scaled by the inverse of the transtbrmation

Jacobian, in a finite-difference tbrmulation. This choice of mass fluxes as dependent vari-

ables complicates the discretization of the momentum equations. In order to replace u

by the new dependent variables U l, the corresponding area vectors are dotted with the

momentum equations. Then the integral momentum equation is evaluated on different

computational cells tbr each unknown U z. Each cell has the dimensions of A_ x A_j x AC,
1

1 /g,l) (j,/_ q- _,l), and (j,k,l + ½) tbr g e, U r_, gildbut the centers are located at (j + _, ,



U c momentum equations, respectively. The staggered grid orientation eliminates pressure

checker-board-like oscillations in pressure and provides more compact stencils. The deriva-

tion of momentum equations and the solution procedure is outlined in reference 9. Since

each equation is solved in a segregated fashion, memory requirements for GMRES solver

in INS3D-FS is not as big as INS3D-UP code. Required memory fbr INS3D-FS is 70 times

number of grid poins in words.

Computed Results

In this section, numerical results tbr the time evolution of twin vortices behind a fiat

plate are presented in order to verify the time-dependent features of the two algorithms.

In order to investigate different features of the algorithms, several cases are needed to

run with various code related parameters. To speed up this process, a two dimensional

test case is selected here. It should be noted that associated flow solvers, INS3D-UP

fbr artificial compressibility method and INS3D-FS fbr pressure projection method, are

written fbr three-dimensional applications. With this numerical experiment, it is intended

to give some basis fbr selecting a method fbr large three-dimensional unsteady applications

where computing resources become a critical issue.

Computed results from both methods are compared with the experimental data by

Taneda and Honji 1°. The experiment has carried out in a water tank 40 cm wide. A thin

test plate of size H = 3cut immersed in the water was started from the rest impulsively at

the velocity U = 0.495c_/s. Reynolds number tbr this case is 126 based on U = 0.495cut/s

velocity and the plate height H. Computational grid with with size of 181x81x3 is presented

in figure 1. Since INS3D-FS is written in finite volume staggered grid fbrmulation, it

requires one additional ghost cell in each direction. Figure 2 shows calculated velocity

vectors obtained from INS3D-FS at various times. The flow separates the plate at each

edge and fbrms a vortex pair. The twin vortices become longer in the flow direction with
time.

The calculated time history of the stagnation point is compared with experimental

results and other numerical results in figure 3. Symbols represent experimental mea-

surements, solid line and dashed line represent results from INS3D-UP and INS3D-FS,

respectively. Dotted line show the numerical results from finite element tbrmulations of

Yoshida and Nomura 11. The interval fbr time integration was 0.5 sec, which corresponds

to nondimensional value of 0.0825, tbr all computations in figure 3. Eventhough the plate

started impulsively in the experiment, the computations presented in figure 3 have a slow

start procedure. Figure 4 shows prescribed velocity tbr an impulsive start (4a) and tbr

a slow start (4b) used in INS3D-UP and INS3D-FS calculations. Reference 11 also used

same slow start procedure in their calculations. When nondimensional time step of 0.0825

was used with an impulsive start, large discrepancies were observed between numerical

results and the experimental mesurements. This can be seen in figure 5a. When the time

step is decreased, fairly good agreement was observed between numerical results and the

measurements as seen in figure 5b. For the slow start case, the velocity profile shown in

figure 4b is prescribed and the origin of time of calculation is appropriately shiRed from

the time of experiment. This unsteady computations with INS3D-FS (At = 0.0825) was

completed in two hours of CPU time on single processor Cray-J90.



INS3D-UP computationswith line-relaxationschemeis presentedin figure 6. Vari-
ousartificial compressibilityparametersand numberof subiterationswereused.Figure 6
showsthe effectsof numberof subiterationsand the effectsof usingtwo differentartificial
compressibilityparameters/d. When the incompressibility conditions is not satisfied at

each physical time step, numerical results can be erronous in time-accurate computations.

With line-relaxation scheme, INS3D-UP calculations required between 4 hours of CPU

time (10 subiterations at each physical time step) and 14 hours (40 subiterations) on a

single processor Cray-J90 computer. Our observation tbr the time-accurate computations

from this numerical example is that the artificial compressibility method requires a fast

convergence scheme at each physical time step in order to satisfy incompressibility condi-

tion. If this is not satisfied as seen in line-relaxation scheme, the time accuracy is degraded

(see figure 6). In addition, artificial compressibility method with line relaxation scheme

can be expensive tbr 3D time-accurate computations. In figure 7, INS3D-UP results with

GMRES-ILU(0) solver are presented. These results were obtained less than 4 hours on a

Cray-J90 computer. Fairly good agreement was obtained between the computed results

and experimental data. With GMRES-ILU(0) solver, the mass flow ratio between inflow

and exit was always satisfied. In addition, the discrepancies between numerical results

are very small when two different values of artificial compressibility parameter were used.

Figure 8 shows the results from artificial compressibility method with and without Poisson

equation correction tbr the pressure. In artifical compressibility method, after the first

sub-iteration, the Poisson equation is employed tbr the pressure correction. Chain-dashed

line in figure 8 represents the results from this new procedure. With the Poisson equation

correction, the line relaxation results compare well with experimental data and the GM-

RES results with 10 subiterations. With this new procedure, both computing time and

memory requirement are substantially reduced (at least three times).

Concluding Remarks

Unsteady computations were perfbrmed using two different solution algorithms, which

are artificial compressibility method and pressure projection method. When a fast converg-

ing scheme, such as GMRES-ILU(0) solver, was incorparated in artificial compressibility

method, fairly good agreement was obtained between computed results and experimental

data. Our numerical experiment showed that incompressiblity condition was satisfied in

10 subiterations at each physical time step. Memory requirement of this scheme is the

major drawback tbr three-dimensional large applications. However, memory requirement

may not be an issue on the paralel platfbrms, such as SGI Origin 2000. The line-relaxation

scheme in artificial compressibility method becomes very expensive and results in erronous

solution tbr time-accurate computations. For an unsteady flow which requires small physi-

cal time step, pressure projection method was tbund to be computationally efficient since it

does not require any subiterations procedure. However, governing equations are not fully

coupled as in the artificial compressibility approach. This may affect the robustness and

limit the maximum allowable time step size. A new method is developed by combining

pressure projection method with artificial compressibility method. With Poisson solver



correction,the numberof subiteration wasreducedto two iterations at eachphysicaltime
step.
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Figure 1 : Computational grid for
the flow past a 90-degree flat plate.

(plate tickness = 0.03H)
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Figure 3 : Calculated time history

of the stagnation point.

VELOCITY VECTORS AND MAGNITUDE CONTOURS (INS3D-FS)

Figure 2a : Velocity vectors at vari-

ous non-dimensional times (INS3D-
FS).
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Figure 2b : Velocity vectors at vari-

ous non-dimensional times (INS3D-
FS).
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slow start 4-b

l u = U (l-cos(_t/T))/2

Figure 4 : Prescribed velocity for
an impulsive start (a) and for a slow

start(b).
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Figure 5a : Effects of starting pro-
cedure.
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Figure 5b: Effects of time-step size

for impulsive start.
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Figure 6 : Evaluation movement of

stagnation point from INS3D-UP cal-
culation with line-relaxation scheme.

H - .._...._..........._...'" !'"""

" ...'..."
2 _=;"

;=

1

• .... BETA=100, SLOW START

I." ....... BETel0, IMPULSIVE START

0 0 _ _ 6
Time (sec)

Figure 7 : Evaluation movement of

stagnation point from INS3D-UP cal-

culation with GMRES-ILU(0) scheme.
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Figure 8 : Artificial compressibility
results with and without Poisson equa-
tion correction.


