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Abstract

A new three-dimensional mesh deformation algorithm, based on quaternion algebra, is

introduced. A brief overview of quaternion algebra is provided, along with some preliminary

results for two-dimensional structured and unstructured viscous mesh deformation.

Introduction

Mesh deformation is an important element in the analysis of moving bodies and shape

optimization. The lack of robust and efficient mesh deformation tools is still a major barrier to

routine applications of high-fidelity tools such as computational fluid dynamics (CFD) and

computational structural mechanics (CSM) for multidisciplinary analysis and optimization. For

example, CFD application for shape optimization requires a robust, automatic, and efficient tool

to propagate the boundary deformation into the field mesh. For the gradient-based optimization,

the efficiency is particularly crucial where in addition to the boundary deformation the sensitivity

of the boundary coordinates must be propagated into the field mesh. Figure 1 shows an example

of a boundary perturbation, where the boundary has been deformed, rotated, and translated.
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Fig. 1 Undeformed and deformed Meshes

The boundary deformation is defined as

6_ = ( - r__ (1)

where r uare the undeformed boundary coordinates, and r d are the deformed boundary

coordinates. There are two basic techniques to propagate the boundary perturbations into the

field mesh: 1) mesh regeneration, and 2) mesh deformation. The next two subsections provide an

overview of these techniques for structured and unstructured meshes.

Structured Mesh

Most structured grid regeneration and deformation techniques are based on transfinite

interpolation (TFI). Gaitonde and Fiddes have provided a mesh regenerating technique based on

TFI with exponential blending functions [1]. The choice of blending functions has a considerable

influence on the quality and robustness of the field mesh. Soni has proposed a set of blending

functions based on arclength [2]; such a set is extremely effective and robust for mesh

regeneration and deformation. Jones and Samareh have presented an algorithm for general

multiblock mesh regeneration and deformation based on Soni's blending functions [3].



HartwichandAgrawalhaveusedavariationof theTFI method[4]. They have introduced two

new techniques: the use of the i slave-masteri concept to semiautomate the process, and the use

of a Gaussian distribution function to preserve the integrity of meshes in the presence of multiple

body surfaces. Wong et al. have used Algebraic and Iterative Mesh 3D (AIM3D), which is based

on a combination of algebraic and iterative methods [5]. Leatham and Chappell have used a

Laplacian technique more commonly used for unstructured mesh deformation [6].
Unstructured Mesh

For unstructured meshes with large geometry changes, a new mesh may need to be regenerated

at the beginning of each optimization cycle. Botkin has introduced a local remeshing procedure

that operates only on the specific edges and faces associated with the design variable changes [7].

Similarly, Kodiyalam, Kumar, and Finnigan have used a mesh regeneration technique based on

the assumption that the solid model topology stays fixed for small perturbations [8]. Solid model

topology comprises the number of mesh-points, edges, and faces. Any change in the topology

will cause the model regeneration to fail. To avoid such a failure, a set of constraints among

design variables must be satisfied, in addition to constraints on their bounds.

During shape optimization, the boundary mesh may undergo many small deformations; it would

be too costly to regenerate the mesh in response to these deformations. In addition, the new,

regenerated mesh may not have the same number of mesh points and/or the same connectivity.

Either of these situations will result in discontinuous sensitivity derivatives. Batina has presented

a mesh deformation algorithm that did alleviate the need for mesh regeneration. Batinais

approach models mesh edges with springs [9]. The spring stiffness kjk for a given edge jk is

taken to be inversely proportional to the element edge length. Then, the field mesh movement is

computed through the static equilibrium equations:

_-_kJk_ 1
i_n+l m

,--,_'k;k where k;k = --r; -r k (2)

m

The summation is over all the edges of the elements. The coefficient kjk is relatively large for

small cells. Therefore these small cells, which are usually near the boundary of the body, tend to

undergo rigid body movement. This rigid body movement avoids rapid variations in

deformation, thus eliminating the possibility of small cells having very large changes in volume.

These large changes could lead to negative cell volumes.

Blom [10] has provided a detailed analysis for the spring method and draws an analogy between

the spring method and an elliptic differential equation approach for structured mesh generation.

Zhang and Belegundu have proposed an algorithm similar to the spring analogy that can handle

large mesh deformation [11]. They have used the ratio of the cell Jacobian to the cell volume for

the spring stiffness. Crumpton and Giles have found the spring analogy inadequate and

ineffective for large mesh deformations [ 12] and proposed a formulation based on the heat

conduction equation with the coefficient of thermal conductivity inversely proportional to cell

volume. They attributed their success to the choice of cell volume used in the criteria for a valid



mesh.In contrast,thespringanalogyusesonlyedges,whicharenotdirectlylinkedto themesh
validity.

Farhatet al. [13] have proposed a modification to the spring analogy algorithm to include

additional torsional spring to control mesh skewness and folding. For two-dimensional

applications, they demonstrated that the modified algorithm has advantages in terms of

robustness, quality, and performance.

Tezduyar and Behr [14] have proposed an algorithm based on linear elasticity, which includes

full stress tensor. Cavallo et al. [15] have applied this method to mesh deformation for

aero/propulsive flowfield calculations. They noted that the method preserves the mesh quality,

and it produces a better mesh than the spring analogy method. The linear elasticity approach

requires solving the complete stress tensor. In contract, the spring analogy represents only the

diagonal elements of the stress tensor. Cavallo et al. have concluded that the elasticity approach

is considerably more expensive.

Role of boundary orientation in mesh deformation

The traditional deformation algorithms, such as interpolation and spring analogy, use boundary

translation to deform the field mesh. However, the boundary deformation alters the boundary

position as well as the boundary orientation (i.e., rotation angle) as shown in Fig. (2). The

traditional mesh deformation algorithms do not use this additional information on the changes in

the boundary orientation. Morton, Melville, and Visbal [16] have proposed a TFI algorithm to

interpolate the boundary deformation as well as the changes in the orientation through Euler

angle. They concluded the inclusion of Euler angle preserves the mesh orthogonality for

significant deformations. They successfully applied the algorithm to a two-dimensional
structured CFD mesh.
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Fig. 2 Orientation changes caused by deformation

Extension of the approach of Morton, Melville, and Visbal [16] to three-dimensional applications

requires the direct interpolation of the changes in the orientation (three Euler angles).

Historically, Euler angle representation is the most popular interpolation technique for

orientation [17]. Euler angles ignore the interaction of multiple rotations about the separate axes

which could lead to i gimbal locki as described by Watt and Watt [17].



ThethreeEulerrotationscanbeaccomplishedby asinglerotationaboutavector.Thissingle
rotationsimplifiestheinterpolationprocess,but it hastheinherentproblemof non-smooth
interpolationandtheso-calledi gimbal-lock.iTo avoidtheseproblems,quaternionsareusedto
representthechangesin theboundaryorientation.

A brief introductionof quatemionalgebraispresentedin thenextsection.Then,ageneralthree-
dimensionalmeshdeformationalgorithmbasedonquatemionalgebraispresented.

What are quaternions?

Only brief review of quaternion algebra is provided here; readers are referred to the work of

Altmann [18], Shoemake [19], and Philips, Harley, and Gerbert [20] for more details. There is

some controversy on who invented quaternion algebra. The articles by Altman [18] and Philips

et al. [20] provide a very interesting history of quaternion algebra.

A quaternion is a generalized complex number (hypercomplex number) that is composed of one

real and three imaginary numbers (Q = qo + ql i + q2J + q 3k), where ii = jj = kk = -1,

ij = -ji = k, jk = -kj = i, ki = -ik = j. The following is a set quaternion properties that will be

used later:

• Conjugate of a quaternion, Q* = qo - ql i - q2J - q 3k

• Magnitude of a quatemion, H =f-fr0= =&g+q?+ +q3
• Unit quaternion, H = 1

• Associative, (Q1Q2)Q3 = QI(Q2Q3)

• Not commutative, Q1Q2 _ Q2Q1

• Inverse ofa quaternion, Q-1 = Q*/(QQ*)

• For unit quaternions, Q-1 = Q*

A quatemion can be interpreted as a scalar together with a vector (direction),

Q = [s, v], s = q0, v = (ql, q2, q3)

In this notation, quaternion multiplication has the particularly simple form

Q1Q2 = [sl, vl ][s2, v2 ] = [sis2 - vl • v2, sl v2 + s2vl + vl x v 2]

where • denotes the vector dot product, and x denotes the vector cross product.

Quatemions are ideal for modeling rotations. The last three components of a quaternion represent

the axis around which the rotation occurs, and the first component represents the magnitude of

the rotation. There are three steps involved in rotating a point, p, about a unit vector, u, by an

angle, 0. First, a quaternion is constructed for the point as P = [0,p]. Second, a quaternion is

constructed for the rotation as

0 0

Q = [s, v],s = cos_-, v = usin-2 (3)

Third, the point is rotated as Prouted= QPQ-_. If Q is a unit quaternion, then we can use the

conjugate of the quaternion to perform the rotation, Prouted= QPQ*. Multiple rotations can be



simplifiedby usingasinglequaternion.Forexample,if Q1and Q2 are unit quaternions

representing two rotations, the two rotations can be combined as

Q2 (Q1PQ( 1)Q2-1 = (Q2Q1)P(Q;1Q2-1) = (Q2Q1) P(Q2 Q1 )-1

Quaternion coordinates represent rotation as Cartesian coordinates represent translation as a

single vector. This characteristic has been fully exploited in representing attitude of aircraft

kinematics [20]. Quaternion coordinates are best for interpolation of orientation as used in

computer animation. Shoemake has presented a robust and efficient application of quaternions

for BFzier interpolation of orientation used in computer animation [19].

Quaternions and Mesh Deformation

This section presents a technique to model the boundary deformation by quaternion algebra.

When these boundary quaternions are applied to the undeformed boundary mesh, they produce

the deformed boundary mesh and orientation.

The deformation vectors, 6, represent the boundary translation, which is defined in the Euclidian

space. In traditional mesh deformation algorithms, these vectors are used to propagate the

deformation into the field mesh. In a similar manner, we will use the boundary quaternions to

propagate the deformation into the field mesh. The process of determining boundary quaternions

is divided into three steps, as shown in Fig. (3).
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Fig. 3 Process of boundary quaternion construction



In step1,themeshpointsfortheundeformedboundary(r__), thedeformedboundary( d ), and
theneighboringpoints( r_ andr d) aretranslatedto theorigin.

r"1=r" - r_, r dl = r d - l_d (4)

In the second step, r _1is rotated so that the undeformed boundary normal vector aligns with the

deformed boundary normal vector. This rotation is modeled with a quaternion. First, the normal

vector of a plane shared by both deformed and undeformed normal vectors share (defined as

u = n x n d ) and the angle a between two normal vectors is determined. Then, a quaternion is

defined for the rotation as Q1 = [c°sa/_2,n" x nd sin a/_2]. Points r "1 are rotated by quaternion to

u2
form r , such that

r "2 = QI[0,r"I]Q1-1 (5)

In the third step, points r "2 are rotated about the deformed boundary normal vector to minimize

the angle between corresponding neighboring points. The optimum rotation angle, 0, is defined

as the average angle between corresponding edges of r "2 and the edges of deformed boundary.

Another quaternion can then be defined for this rotation, Q: = [cos0/_ ,n d sin 0/_].

These two quaternions are combined to form a single quaternion as Q_ = Q1Q2. The total

translation vector for the boundary can now be defined as A_ = r_d - d_, where

-1.[d_, 0] = Q_[0, rid Q_

Quaternions and total translation vectors for all boundary mesh points have been computed. The

translation vectors account for the translation, and quaternions account for the changes in the

boundary orientation.

The translation vectors and quaternions are propagated into the field mesh by one of the

traditional deformation algorithms such as TFI or the spring analogy. Then, the field mesh is

updated based on the field values for the translation vectors and quaternions as

d = R4dd ]Q}dd (6)R_l d A_l d +Q_ld[0 ' , -1

Results

The results are presented for structured and unstructured viscous mesh deformations. Figure (4)

shows a viscous structured mesh with 257x65 mesh points. The undeformed mesh lines are

orthogonal to the boundaries. The boundary mesh is deformed, rotated, and translated to simulate

aeroelastic deformation. Figure (4) shows comparisons of TFI (left side of figure) and quaternion

approach (right side of figure). Unlike the traditional TFI, the quaternion approach can clearly

preserve the boundary orthogonality. Because the boundary quaternions are based on the changes

in the boundary mesh point positions as well as the orientations, the algorithm can guarantee that

the mesh near the boundary has the same characteristics as the undeformed mesh. Figure (4)

clearly demonstrates this important property.



Next,thequaternionapproachis appliedto anunstructuredviscousmesh,wheretheflaphas
beenrotated.Thespringanalogywasusedtopropagatetheboundaryquaternionsto thefield
mesh.Theresultsareshownin Fig.(5).Again,theuseof quaternionhaspreservedthemesh
characteristics.

Conclusions

A new three-dimensional mesh deformation algorithm based on quaternion algebra has been

presented. These preliminary two-dimensional results indicate the traditional algorithms such as

TFI and spring analogy can be easily augmented with the quatemions to preserve mesh quality

near the viscous boundary. We plan to apply this method for three-dimensional structured and

unstructured viscous meshes. We also plan to evaluate the quality of meshes deformed by

quaternion approach by means of CFD applications.
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Fig. 4 Deformation comparison for structured mesh

Fig. 5 Deformation comparison for unstructured mesh
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