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ABSTRACT

The high-lift performance of a multi-element airfoil was

optimized by using neural-net predictions that were trained

using a computational data set. The numerical data was gener-

ated using a two-dimensional, incompressible, Navier-Stokes

algorithm with the Spaiart-Allmaras turbulence model. Because
it is difficult to predict maximum lift for high-lift systems, an

empirically-based maximum lift criteria was used in this study
to detemaine both the maximum lift and the angle at which it

occurs. Multiple input, single output networks were trained

using the NASA Ames variation of the Levenherg-Marquardt

algorithm for each of the aerodynamic coefficients (lift, drag,

and moment). The artificial neural networks were integrated

with a gradient-based optimizer. Using independent numerical

simulations and experimental data for this high-lift configura-

tion, it was shown that this design process successfully opti-

mized flap deflection, gap, overlap, and angle of attack to
maximize lift. Once the neural networks were trained and inte-

grated with the optimizer, minimal additional computer

resources were required to perform optimization runs with dif-
ferent initial conditions and parameters. Applying the neural

networks within the high-lift rigging optimization process

reduced Me amount of computational time and resources by

83% compared with traditional gradient-based optimization pro-

cedures for multiple optimization runs.

NOMENCLATURE

Ca drag coefficient, C a - D/(q_c)

Ct lift coefficient, C l - L/(q=c)

C m moment coefficient, C,. -- M/(q=c 2)
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pressure coefficient, Cp =-( P - P=)/ qoo

pressure difference

chord

drag force

lift force

pitching moment

overlap
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freestream dynamic pressure, q_ - _o_V_

root-mean-square p_ V .oc
Reynolds number, R e _ = --
freestream velocity la_o

angle of attack

deflection angle

coefficient of viscosity

density

Subscripts

f flap

max maximum

s slat

oo freestream value

INTRODUCTION

The design of an aircraft's high-lift system is a crucial part

of the design phase of commercial and military airplanes since

this system controls the takeoff and landing performance. The

importance of a well designed high-lift system is seen by

increased payloads which also increase the operational
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flexibilitybyextendingrangesandbydecreasingtake-off and

landing distances. Traditionally, high-lift desi_s have been

accomplished by extensive wind tmmel and flight test programs

which are expensive and difficult due to the large design space.

Recently, computational fluid dynamics (CFD) has been incor-

porated in high-lift design (Ying, 1996). For high-lift applica-

tions, CFD can also be expensive because the entire design

space is large, grids must be generated around geometrically-
complex l-figh-lift devices, and complex flow phenomena must

be resolved. In order to achieve optimum, rapid designs, new

tools for speedy and efficient analysis of high-lift configurations

are required. For these tools to be effective, they need to be

functional in all areas of design including wind tunnel, CFD,
and flight.

Artificial neural networks am a collection (or network) of
simple computational devices which are modeled after the

architecture of biological nervous systems. The ability of neural

networks to accurately learn and predict nonlinear multiple

input and output relationships makes them a promising tech-

nique in modeling nonlinear aerodynamic data. Computational
fluid dynamics in conjunction with neural networks mad optimi-

zation may help reduce the time and resources needed to accu-

rately define the optimal aerodynamics of an aircraft including
high-lift. Essentially, the neural networks will reduce the

amount of data required to define the aerodynamic characteris-

tics of an aircraft while the optimizer will allow the design space
to be easily searched for extrema.

Recently, neural networks have been applied to a wide

range of problems in the aerospace industry. For example, neu-

ral networks have been used in aerodynamic performance opti-
mization of rotor blade design (LaMarsh et al., 1992). The study

demonstrated that for several rotor blade designs, neural net-

works were advantageous in reducing the time required for the

optimization. Failer mid Schreck (1995) successfully used neu-

ral networks to predict real-time three-dimensional unsteady

separated flowfields mad aerodynamic coefficients of a pitching
wing. It has also been demonstrated that neural networks are

capable of predicting measured data with stffficient accuracy to

enable identification of instranmntation system degradation
(McMillen et al., 1995). Steck and Rokhsaz (1997) demon-

strated that neural networks can be successfully trained to pre-

dict aerodynamic forces with sufficicnt accuracy for design and

modeling. Rai m_d Madavan (1998) demonstrated the feasibility

of applying neural networks to aerodynamic design of turboma-
chineD' airfoils.

Neural networks have been used at NASA Ames Research

Center to mininlize the an_ount of data required to define the

aerodynamic performance characteristics of a wind tunnel

model (Jorgensen and Ross, 1997 and Ross et at., 1997). It was

shown that when only 50% of the data acquired from the wind
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b) Definition of flap rigging parameters"

Figure 1 Flap-Edge Geometry.

tunnel test was used to train neural nets, the results had a predic-

tive accuracy equal to or better than the experimental data. The

success of the NASA Ames neural network application for
wind-tunnel data prompted this current study (Greenman, 1998)

to use optimization with neural networks to optimize high-lift
aerodynamics of a mnlti-element airfoil.

This paper describes a process which allows CFD to impact

high-lift design. This process has three phases: 1) generation of

the training database using CFD; 2) training of the neural net-
works; and 3) integration of the trained neural networks with an

optimizer to capture and search the high-lift design space. In
this study, an incompressible two-dimensional Navier-Stokes

solver is used to compute the flowfield about the three-element

airfoil shown in Figure 1. The selected airfoil is a cross-section

of the Flap-Edge model (Storms, 1997) that was tested in the 7-
by 10-Foot Wind Tunnel No. 1 at the NASA Ames Research

Center. Within the CFD database for this flap optimization prob-

lem, there are two different slat deflection settings and for each

of these, 27 different flap riggings (refer to Figure lb) are com-
puted for ten different angles of attack. The neural networks are

trained by using the flap riggings and angles of attack as the

inputs and the aerodynamic forces as the outputs. The neural

networks are defined to be successfully trained to predict the

aerody_mmic coefficients when given a set of inputs that are not

in the training set, the outputs are predicted within the experi-
mental error. The experimental error of the total lift coefficient

(C t) is +0.02 for C t <0.95Ct_ = and +0.06 for C2 > 0.95C_, .
Finally, the trained neural networks are integrated with the opti-
mizer to allow the design space to be easily searched for points

of interest. It will be shown that this enhanced design process

minimizes the cost and time required to accurately optimize the

high-lift flap rigging.

A brief description of the training set generation is pre-

sented in the next section, including grid generation, the govern-
ing equations, maximum lift criteria, and the flow solver. Next,

the neural network training is discussed followed by the optimi-
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zationprocess.Theresultsarethenpresented,fromwhichthe
effectivenessof optimizationwithneuralnetworksasatoolto
reduceresourcesrequiredinaerodynamicdesignisdiscussed.

TRAINING SET GENERATION

Geometry Definition

Extensive wind-tmmel iIwestigations (Storms, 1997) have

been carried out for the Flap-Edge geometry shown in Figure 1.

The model is a three-element airfoil consisting of a 12%c LB-

546 slat, NACA 632-215 Mod B main element and a 30%c

Fowler flap where c is chord and is equal to 0.761 m (30.0

inches) for the undeflected (clean, all high-lift components
stowed) airfoil. As mentioned, two-different slat deflection

angles that are computed, six and twenty-six degrees. Each slat

has a gap of gaPs = 2.0%c and an overlap of ols = -0.05%c. In

this present study, only the results of the six-degree slat deflec-

tion data set are presented (detailed results for 6, = 26.0 ° are

presented by Greenman (1998)). For the computational data

base, 27 different flap riggings are created for each slat configu-

ration. The flap riggings are combinations of the following flap
iradeflection, _ p, and overlap defined in Figure lb. The flap

deflection angles are 8f = 25.0 ° , 29.0 ° , and 39.5 ° . The three

gap settings are gapf = 1.50, 2.10, and 2.70%c whereas the over-

lap settings are o{f = 0.40, 1.00, and 1.50%c. All gap mad over-
lap values in this paper are expressed in terms of percent clean

chord, %c. The range of angle of attack varies from

0.0 ° _<a _<22.0 ° andRe c = 3.7 million in this study.

Grid Generation

The grids around the tlaree-element airfoil are generated

using OVERMAGG (Rogers, 1997) which is an automated

script system used to perform overset multi-element airfoil grid

generation. OVERMAGG takes as input the surface definition
of the individual elements of the airfoil. Then it creates a surface

grid for each individual element by generating and redistributing

points from the given surface definition. It calls the HYPGEN

code (Chan et at., 1993) to generate volume grids about each

element. The finite difference volume grid is generated in the

normal direction of the surface by solving a set of hyperbolic
partial differential equations. OVERMAGG also automatically

calls the PEGSUS code (Subs and Tramel, 1991) to tmite the

individual meshes into an overset grid system which is the final

output of OVERMAGG.

Figare 2 shows the grid system that is used. A grid resolu-

tion study (Greenman, 1998) is conducted to determine the grid

density required to solve the physical flow features. As a result,

a total of 121,154 grid points are used consisting of a 242 x 81

C-grid around the slat; a 451 x 131 C-grid around the main ele-

ment; and a 351 x 121 embedded grid around the flap wllich is

used to help resolve the merging wake in this region. The nor-
mal wall spacing for all grids is 5 x 10 -6 chords.
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Figure 2 Grid around three-element airfoil (every other

point shown for clarity).

Governing Equations and Numerical Methods

In order to obtain solutions for the computational training

data, 54 configurations are solved at 10 different angles of

attack. This study is performed for two-dimensional flows since

it is less computationally intensive than three-dimensional prob-

lems and allows the itwestigation of many parameters. The

incompressible Navier-Stokes equations in two-dimensional

generalized coordinates are solved using INS2D-UP (Rogers

and Kwak, 1990, 1991) flow solver. This code has been used

extensively to predict high-lift multi-element airfoil flows.

INS2D-UP uses an artificial compressibility approach to couple

the mass and momentum equations. The convective terms are

differenced using a third-order accurate upwind biased flux-

splitting. The equations are solved using a generalized minimum

residual implicit scheme. Since the flow is turbulent, the Spalan-

Allmaras (Spalart and Allmaras, 1992) turbulence model is used

in this study for closure. The Spalart-Allmaras turbulence model

has been successfully used to compute flowfields associated

with high-lift multi-element airfoils (Rogers, 1993 mid
Dominik, 1994).

Maximum Lift Criteria

The determination of maximum lift is one of the most

important results of any high-lift wing design study. Figure 3

shows the computed lift coefficient versus angle of attack for

one high-lift setting. The solid symbols show that the computed

solutions do not display the characteristic increase m c t with

increasing angle of attack up to Ct," . For angles of attack
beyond that point, the lift coefficient s_ould decrease. Valarezo

and Chin (1994) reported a hybrid method that couples cost-

effective computational fluid dy_amics teclmology with empiri-

cally-observed phenomenon in order to predict maximum

lift (C_) for complex multi-element wing geometries. Their

semi-empirical Ct_ criteria for multi-element airfoils or
wings, designated t_e pressure difference role, is applied to the

computational training data set. The pressure difference role

3 Copyright (d) 1998 by ASME
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cases that are used to train the mural

data is presented to the neural networks to lean0 required to
train the neural networks. The results of this learning curve are

presented by Greenman (1998). It was determined that 250 iter-

ations was optimal for this stud)'.

Even though the computational database that is used is

sparse, a study (Greenman, 1998) was conducted to see how

much further the training set can be reduced and still allow the

neural networks to predict within the acceptable error. Several
subsets of the computational data were used to train the neural

nets. It was shown that carefully selecting configurations to omit

from the training set, neural networks can be trained with only

50-74% of the entire data set to accurately predict the aerody-
namic characteristics of a multi-element airfoil (Greemnan,

1998). Method 1 designates the training set which contains all

the computed data (Figure 7). Figure 7 shows additional training

methods that are successful in training the neural networks and

that are presented in this paper. Here, the shaded boxes represent

the cases that are in the training set whereas the numbers in tile
wtfite boxes and in the parentheses are the cases that are omitted

from the training set.

High-Lift Flap Setting Optimization

The high-lift system is optimized by maximizing the lift

Table 1 Design Space for 6s = 6.0 degrees

Design
Variables

Lower

Bound

25.0

Upper
Bound

38.5

gap]- 1.50 2.70

overlap]- 0.40 1.50

o_ 0.0 10.0

coefficient. The design variables in tiffs study are chosen to be
the flap deflection, gap, overlap, and angle of attack. The bounds

on the design space (shown in Table 1) are chosen to be the

same as the design space that are used to train the neural net-

works with the exception that for optimization cases without
constraints, the angle of attack is bounded to et --- 10.0 ° since

this is near the range where maximum lift is predicted to occur

by the pressure difference role for most of the configurations. To

start the optimization, the initial values of the design variables
are arbitrarily chosen.

Method 9. Method 9 is used to train the neural networks

which are integrated with the optimizer. Method 9 contains only
74% of the entire configurations in the training set (Figure 7).
Five different optimization runs are shown in Table 2. Each of

these runs has different initial or starting values (orig) of the

design variables (DV). Gradient based optimizers do not guaran-

tee that the maximum which is found is the global maximum of
the design space; it only guarantees an improvement. Thus, dif-

ferent starting values of the design variables are used to search

the entire design space. Tile first optimization run, 9-A, has the

initial design variables set to the lower bounds. Whereas, the

second run, 9-B, has the initial values set to the upper bounds of
tile design space. In the ttfird run, 9-C, the initial conditions are

set to the average value of the lower and upper bounds. The last

two runs have arbitrary initial values to test different regions of

the design space. With this optimization procedure, the design

space can he easily searched with several optimization runs

because each run only requires several seconds of CPU time. A

total of 28.6 CPU seconds are used for these five optimizatiun
runs.

In this study, the optimizer found 2 different maximums.

The smaller of the two maximums is fotmd using the initial

design variables of Runs 9-B through 9-E. Tile modified high-

lift rigging is 3f = 38.5 ° , gap/= 2.04%c, o(f = 1.50%c, and
(x = 10.0 ° mid has Ct = 4.11. The other maximum for this

particular study is just slightly higher at C_ = 4.13. The modi-

fied values of the design variables for this case are 6f = 38.5 ° ,

gapf= 2.01%c, o!f= 0.56%c, and o_ = 10.0 ° . The flap deflec-

6 Copyright © 1998 by ASME



Run DV

Table 2 Optimization Results with Method 9 as the Training Set

A%
CI CI A% Cl Cl A% diff

orig rood orig orig orig rood rood rood rood
NN INS2D NN INS2D

1NS2D

CPU

(sec)

9-A _f 25.0 38.5 2.04 2.04 0.0 4.13 4.03 2.48 -14.8 6.9

gapf 1.50 2.01

olf 0.40 0.56

o_ 0.0 10.0

9-B _f 38.5 38.5 3.54 3.56 -0.56 4.11 4.00 2.75 -14.5 3.3

gap/ 2.70 2.04

olf 1.50 1.50

10.0 I0.0

9-C _f 32.0 38.5 3.19 3.20 -0.31 4.11 4.00 2.75 -14.5 6.9

gap/ 2.10 2.04

olf 0.95 1.50

ot 5.0 10.0

9-D _f 30.0 38.5 3.02 2.96 2.02 4.11 4.00 2.75 -14.5 5.5

gap./, 1.90 2.04

olf 0.75 1.50

4.0 10.0

9-E _f 27.0 38.5 2.51 2.47 1.62 4.11 4.00 2.75 -14.5 6.0

gap/ 2.10 2.04

olf 0.50 1.50

o_ 2.0 10.0

tion for both instances is optimal at the upper bound. The mod-

ified gaps are free variables (the variable lies between the upper
and lower bounds) m_d close to each other, whereas the over-

laps are quite different. The smaller maximtun has the overlap
at the tipper bound whereas the larger maximum has it as a free

variable. Both configurations have the magle of attack to be

optimal at the upper bound.

The accuracy of the neural network prediction is tested for

both the initial mad modified configurations by generating fl_e
appropriate grid and computing the INS2D solution. Then the

predicted and computed Cl are compared mad the percent dif-

ference (k%) is shown in Table 2. The initial configurations

have lower errors than the modified configurations. In Run 9-A

there is zero error and only one case has an error greater than

2%. Modified configurations have prediction errors greater

than 2%. The pressure difference rule is applied to these cases

to detem-tine if the modified configurations have a Cp,_sr less
than the acceptable value. Examining the outcome, sho_s that

the pressure difference exceeds the allowable value of

Cpa,__ = -13.0. All the pressure differences are equal to or

greater than Ced,/_ = -I 4.5. Some CFD training data may be

7 Copyright g) 1998 by ASME



Run DV

Table 3 Constrained Optimization Results for Method 9 as the Training Set

A% AC,,
CI CI A% Ct Cl A% diff diff CPU

o__,,ri_' mod orig orig ori g mad rood mod rood mad (see)

NN IN$2D NN INS2D
NN 1NS2D

9-C- _f 32.0 37.5

ACp
gapf 2.10 2.08

olf 0.95 0.40

ot 5.0 9.0

9-C- _if 32.0 38.5
opt

gapf 2.10 1.5

o!f 0.95 0.4

ft 5.0 8.30

3.19 3.20 -0.31 3.94 3.86 2.07 -13.0 -13.0 27.3

3.18 3.20 -0.63 3.94 3.92 0.51 -13.0 -13.4 26.1

non-physical at the tipper bound of the angle of attack since the

bound on angle of attack is chosen to be an average value of

where maximum lift occurs. Consequently, the neural networks
are not properly trained to predict the aerodynamics in this

range.

Constrained O_Dtimization. In order to test whether the

accuracy would get better if the modified configurations were

restricted within the empirically predicted pre-stall range, the

upper bound on the angle of attack design variable is removed.

Instead a constraint is placed on the value of the pressure differ-

ence, Cud >-13.0. An additional neural network is trained
with flap _eflection, gap, overlap, and angle of attack to predict

the pressure difference. In this case, the entire training data is

used to compute C_ , whereas the neural networks that com-
t'di#

pure the aerodynamic coefficients are trained with data only

including pre-stall data that is predicted by the pressure differ-

ence rule. The design variables of the optimization runs remain

the same as does the objective ftmction. The results of the case

that fotmd the best improvement by the optimizer is shown in

Table 3 for Run 9-C-ACp. The modified design variables are
_Sf = 37.5 ° , gapf= 2.08%c, o/f= 0.40%c, and ot = 9.0 ° . The
modified angle of attack is lower than in the previous case that

specified the upper bound to be a = 10.0 ° . The neural network

predicted the pressure difference value to be exactly what is cal-

culated with the INS2D solutio_t and predicted the modified lift

coefficient to be higher than 2% the actual INS2D value.

To fi_rther reduce the prediction error in the modified lift

coefficient, the INS2D data from this optimal case is added to

the training data. The neural networks are then re-trained with

this additional infommfion in hope that it will improve the accu-

racy Again, the neural network that predicts the lift coefficient

is trained with the data set that includes the data points that are

at or below the maximum lift. The optimization runs are again

constrained mad the best improvement is shown in Table 3

denoted by Run 9-C-opt. The values of the modified design vari-

ables are different for the flap deflection, gap, and angle of
attack and are the same for the overlap that in the previous case.

The modified lift coefficient predicted by the neural network

happens to be the same as in the previous optimization run,
however, the INS2D value of the modified coefficient is differ-

ent and the error is reduced to only 0.51%. Thus, by constrain-

ing the design space that the optimizer is allowed to search and

by adding one data point near maximum lift to the training data,
the prediction error is reduced and all constraints are met. The

predicted and actual pressure difference are close and differ by

only 0.4. It should be noted that the CPU time required to run a
constrained optimization run is increased, however, it is still less
than 30 seconds as shown in Table 3.

To get a better understanding of the flow physics, the pres-
sure distribution of the modified and oriNnal configurations for

optimization Run 9-C-opt are examined. Figure 8a shows the

modified and original flap positions in relation to the main ele-

ment trailing edge. Figure 8b shows the pressure distribution of

the slat, main, and flap elements in a solid line for the modified

configuration. The original configuration was initially at

ct = 5.0 ° (plotted in a dotted line) but in order to compare the

pressure distributions, the original colffignration is also plotted

at c_ = 8.3 ° (in a dashed line). The basic shape of the Cp curves
are similar for all elements for both configurations. The flow is

attached for all elements. The suction pressure on the modified

elements are clearly larger than the origi_ml configuration result-

8 Copyright (CA1998 by ASME



02 0 _ --T T

0.10

0.00

Y

-0.10

-0.20

-0.30
0.80

-18.0

-16.0 -

-14.0 -

-12.0 -

-10.0

Cp -8.0

...... Main

---- Mod Flap

- -- - Orig Flap

III2ZI::-:: ::::...................

* , L , [ , i ,

0.90 1.00 1.10 1.20

x/c

a) Optimized Flap Setting

-- Mod

Orig _=5.0

- - - Orig (_ = 8.3

o-4.0 i._.
-2.0 .......?' '_

0.0

2.0

..... i ..... i'4"00.3 -0.1 0.1 0 3 0.5 0.7 0 9 1.1
X/C

b) Pressure Distribution
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ing in greater lift. There are interesting features on the original

and modified flap elements. The sharp spike at the trailing edge

occurs from the sharp point at the trailing edge of the flap geom-
etry. The numerical grid comes to a sharp comer at the trailing

edge, the flow must accelerate at this point causing the pressure

to drop. The multiple spikes that are located at the leading-edge

of the flap element are associated with the original definition of

the geomeUT. The flap at this region is faceted due to the high

ct_,ature. The pressure spikes are representative of what the

flow is actually doing. The flow is tunfing around at these facets

and accelerating.

BENEFITS OF NEW PROCESS

The aerodynamic design space of a nmlti-element airfoil is

very complex and may have many local maximums and mini-

mums. When a gradient-based optimizer is used to search the

design space, many starting points need to be examined in order

14U

120

100

6o
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NN optimization
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Optimization Rtms

Figure 9 Comparison of CPU time required for traditional

and neural network optimization procedures.

to find the greatest improvement. This cm_ be very computation-

ally expensive in traditional optimization.

Computational Resources

The advantage of using neural networks in the optimization

process versus the traditional optimization process is the turn

around time and the CPU time that is saved for many optimiza-

tion runs. In the traditional optimization process, every time that

the design variables are perturbed, the gradient needs to be cal-
culated to determine the search direction. In order to calculate

the gradient, a grid needs to be generated and the aerodynamic

coefficients must be calculated by solving the flowfield with

INS2D. Even though, the traditional optimization method will

have shorter turn around time and CPU time when doing one or

two optimization nms, there is no guarantee that one or two

optimization runs will find the global maximum. On the con-

wary, the neural networks will have less overall turn arotmd time

and CPU time for many optimization nms and there is no major
increase in overall turn around or CPU time for additional runs.

Once the neural networks are trained, only 5-10 seconds are

required for each additional optimization run. The CPU time

that is used in this optimization study for the different training

methods used is shown in Figure 9. Also plotted in this figure
are the calculated CPU time that would have been used in tl_e

traditional optimization process. The CPU time for the tradi-

tional method is estimated by using the sanle number of func-

tion calls that is used in the neural network oplimization

procedure. Then for each iteration it is estimated that the CPU

time will consist of 4.3 seconds to generate a grid and 600 sec-

onds (on a Cray C90) for each flow solution. If more than three

optimization runs are executed, then the neural network optimi-

zation procedure should be used. The neural network optimiza-

9 Copyright © 1998 by ASME



Table 4 Neural Network Optimization Procedure Cost

Method

1

5

9

Generating Training Optimization Total Cost
Training Set CPU time CPU time

(dollars)
CPU (hours) (seconds) (seconds)

40.08 281.0 263.0 6466.50

20.78 207.0 93.5 3353.50

29.69 232.0 176.6 4790.16

tion procedure curves are nearly flat. Thus, the major

contributor to the CPU time in the neural network optimization

is traimng the neural networks to learn and to predict the aero-

dynamics of the airfoil. Many more optimization runs can be

executed with this procedure without requiring large additional

amount of CPU time. On the other hand, the traditional optimi-

zation procedure will continue to increase at a fairly linear rate
as shown.

Cost Analysis

Another advantage of using the neural network optimiza-

tion procedure is reduction of cost. There are many factors con-

tributing to the total cost of a research job including the cost of

the engineer support, computer resources, and wall clock turn

around time. One of the largest contributors to turn around time

is waiting for a computer job to he completed especially if the

job executes within a batch queue. The average tum around time

for the computers used in this study at the Numerical Aerospace
Simulation Facility (NAS) at NASA Ames Research Center is

23.45 hours for an eight-hour queue job.

To calculate the cost that is related to the two types of opti-

mization procedures considered, it is assumed that an experi-

enced engineer is executing both optimization processes. This

engineer is familiar with the different components to each pro-

cess such as grid generation, flow simulation, neural networks,

and optimization. The set-up time is assumed to be equal for

both processes. The engineer is a full time equivalent of

$200,000 per year and there are 2080 working hours in a year.

Thus, there is a charge of $96.15 per hour for an engineer.

Another expense which must be considered is computer

resources. For this comparison, assume the cost of a computing
hour is $39.00.

First, the cost of the neural network optimization procedure

is calculated. A grid is generated for each configuration
included in the training method and soltltions are calculated for

10 different angles of attack for each configuration. The grid

generation requires 4.3 CPU seconds per grid and 269.0 CPU

seconds per flow solution (the co_wergence time is low since
these solutions are below maximum lift). The CPU time

Table 5

Method

1

Traditional Optimization Procedure Cost

CPU
Hours

94.31

93.13

110.31

Number of Wall Clock Total Cost

8 hour jobs (hours) (dollars)

11.79 276.45 30,261.21

7.83 272.96 29,876.98

13.79 328.30 35,391.83

required to train each method and used to optimize all five opti-
mization rims (see Table 4) must also be added to the total wall

clock time and the charged CPU time. The total cost of the neu-

ral network optimization procedure is shown Table 4. The major
element in the cost is the time and computer resources required

to set-up the training matrix data. Consequently, it is vet 3,

important to determine the level of prediction accuracy that is
required and to choose the proper method to train the neural net-
works.

Second, the cost of the traditional optimization procedure is
calculated with the same assumptions. The wall clock time and

the CPU hours charged are calculated based on the number of

iterations (or gradient calls) that are made by the optimizer for
each optimization ran. For each method that is used in the neu-

ral network optimization procedure, the traditional optimization

cost is calculated for the same five optimization starting runs.

The total turn around (wall clock) time that the engineer waits

for the job to be finished is multiplied by $96.15 and is added to

the total CPU hours that are charged. The traditional optimiza-

tion procedure is performed on the Cray computer in the batch

queue. This is one of the reasons that the cost is higher than the
neural network optimization procedure as shown in Table 5.

The total costs are compared in Figure 10 for the two opti-

mization procedures. For five optimization runs for each train-

ing method, the neural network optimization procedure does

cost less. Again, if only one or two optimization runs are per-

formed, then the traditional optimization procedure would cost

less, however, for multiple runs, the neural network optimiza-

tion procedure uses less resources. The biggest advantage now

is that many more optimization runs can be performed with the

neural network optimization procedure while oNy adding sec-
onds to the CPU time and turn around time.

The neural network optimization procedure should be used

for design because several designs with different constraints or

design space can be considered without driving the cost and tun_

around time up. Also, once a design is chosen, the design space

can be altered and the optimization procedure can now be per-
formed again with minimum additional cost and turnaround
time.

10 Copyright © 1998 by ASME
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Figure 10 Comparison of total cost for the neural

network and traditional optimization procedure.

CONCLUSIONS

An enhanced design process was developed wlfich inte-
grates neural network and optimizer technologies together with

a computational database. The process is modular, allowing

insertion of emerging neural network, optimization, and CFD

technoloNes within its framework. This design process was

tested for a typical high-lift design problem to optimize flap rig-

ging for maximum lift. Initial studies showed that although opti-

mization could be conducted using a sparse traii_ing dataset,

unconstrained optimization of the high-lift system produced
unacceptably high errors. Due to the complexity of the high-lift

flow physics near the maximum lift condition, an empirically

based constraint, which identifies COlUfigurations at the maxi-

nmm lift condition within the computational database, was

required in order to achieve accurate neural net predictions for

this design problem. Using the empirical constraint together

with an iterative optimization procedure which re-inserted the

optimized configuration into the training database and repeated

the optimization produced an optimal configuration with only

0.5% error. A cost analysis was conducted by comparing the

optimization with neural networks procedure to the traditional

optimization procedure. It was found that the optimization with

neural networks procedure resulted in a reduction of turnaround

time, CPU time, and cost if more than two optimization nms

were conducted. Using the optimization procedure, the average
cost reduction is 83%.
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