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The Richtmyer-Meshkov instability of a low Atwood number, miscible, two-liquid system is

investigated experimentally. The initially stratified fluids are contained within a rectangular tank

mounted to a sled that rides on a vertical set of rails. The instability is generated by dropping the

sled onto a coil spring, producing a nearly impulsive upward acceleration. The subsequent free-

fall that occurs as the container travels upward and then downward on the rails allows the

instability to evolve in the absence of gravity. The interface separating the two liquids initially

has a well-defined, sinusoidal perturbation that quickly inverts and then grows in amplitude after

undergoing the impulsive acceleration. Disturbance amplitudes are measured and compared to

theoretical predictions. Linear stability theory gives excellent agreement with the measured

initial growth rate, _io, for single-mode perturbations with the predicted amplitudes differing by

less than 10% from experimental measurements up to a nondimensional time k?tot = 0.7, where k

is the wavenumber. Linear stability theory also provides excellent agreement for the individual

mode amplitudes of multi-mode initial perturbations up until the interface becomes multi-valued.

Comparison with previously published weakly nonlinear single-mode models shows good

agreement up to kaot = 3, while published nonlinear single-mode models provide good

agreement up to kaot = 30. The effects of Reynolds number on the vortex core evolution and

overall growth rate of the interface are also investigated. Measurements of the overall amplitude

are found to be unaffected by the Reynolds number for the range of values studied here.

However, experiments carried out at lower values of Reynolds numbers were found to have

decreased vortex core rotation rates. In addition, an instability in the vortex cores is observed.
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The time of appearance of this instability was found to increase when the Reynolds number is

decreased.

I. Introduction

Richtmyer-Meshkov (RM, Richtmyer 1960; Meshkov 1969) instability is the instability of an

impulsively accelerated planar interface separating two fluids of different density. For example,

RM instability causes small perturbations on a flat interface, accelerated by a passing shock

wave, to grow in amplitude and eventually become a turbulent flow. RM instability is closely

related to Rayleigh-Taylor (RT, Rayleigh 1900; Taylor 1950) instability, which is the instability

of a planar interface undergoing constant acceleration, such as caused by the suspension of a

heavy fluid over a lighter one in the earth's gravitational field. Therefore, RM instability is otten

referred to as impulsive or shock-induced Rayleigh-Taylor instability. The simplicity of RM

instability (in that it requires very few defining parameters), and the fact that it can be generated

in a closed container, makes it an excellent fluid flow to study nonlinear stability theory as well

as turbulent transport in a heterogeneous system.

RM instability is of importance to a variety of applications spanning a wide range of scales.

For example, at very large scales RM instability results in mixing in supernovas. During a

supernova explosion an outward propagating spherical shock wave formed in the collapsing core

of a dying star passes through stratified outer gas layers of differing density producing RM

instability. Observations of Supernova 1987A indicate that the helium and hydrogen outer layers

experienced a significant amount of RM induced mixing as a result of this event (Arnett et al.

1989; Burrows, Hayes, & Fryxell 1995). RM instability can also occur in high-speed

combustion applications such as is in supersonic combustion ramjet engines (scramjets) in which

mixing the fuel and air is a significant challenge. One proposed solution to this problem is to

pass a light gaseous hydrogen fuel jet surrounded by the (heavy) air free stream through an

oblique shock wave. The resulting RM instability increases the mixing, yielding an



augmentationof theburningrate(Markstein1957;Curran,Heiser,& Pratt 1996). At even

smallerscales,RM instability is of fundamentalimportancein inertial confinementfusion(ICF).

ICFuseshigh-energylaserbeamsto compressa shellencapsulatinga low-densitydeuterium-

tritium fuelmixture. Theshell-fueldensityinterfaceundergoesa combinationof RM andRT

instabilitiesresultingin aturbulentflow thatlimits thedegreeof compressionachievablein this

process.Theseinstabilitiesarethemostsignificantreasonwhy in theexperimentsconductedto

datetheenergyusedto drive thelasershasgreatlyexceededtheenergyoutputfrom thefusion

process(McCall 1983;Lindl, McCrory, & Cambell1992;Hogan,Bangerter,& Kulcinski 1992;

Lindl 1995).

Taylor (1950)wasfirst to uselinearstability theoryto analyzethegrowth of perturbationson

aflat interfacein aconstantgravitationalfield. Usingpotentialflow to describethevelocity

field in eachof thefluids, Taylor showedthat theamplitudeof asmallsinusoidalperturbation

r/(x,t) = a(t)cos(kx) given to a system with the heavy fluid with density P2 over a lighter one

with density p_ evolves according to the equation:

a=aocosh(_t ) (1)

where A = (P2 -P_ )/(P2 + P_ )is the Atwood number and a0 is the initial amplitude. Thus, a

system oriented with a heavy fluid over a lighter one will grow exponentially in time, and the

oppositely oriented configuration (light fluid over heavy) generates oscillating solutions,

indicating stability. Richtmyer (1960) addressed the instability of a planar interface separating

two gases that is impulsively accelerated by a planar shock wave traveling in the direction of the

interface's normal. He recognized that for relatively weak shocks, this problem could be

adequately modeled by considering incompressible fluids in an impulsive gravitational field.

Thus, he modeled the instability using the same techniques as Taylor, except using a

gravitational force in the form of a Dirac delta function (g(t)=AV _(t)) and obtained the following

expression for the growth rate of the perturbation:
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=kAAVao (2)

where AV is the velocity change imparted by the impulsive acceleration and ao is the initial

amplitude. Thus small perturbations to the flat interface result in a constant growth rate, but,

unlike the constant acceleration case, the instability occurs whether the acceleration is directed

from light fluid to heavy or vice versa. When the acceleration is directed from the lighter into

the heavier fluid the resulting body force has similar orientation to that producing Rayleigh-

Taylor instability. Thus the amplitude increases at a constant rate. Conversely, when the

acceleration is oppositely directed the amplitude first decreases until it passes through zero, after

which it emerges as a growing waveform that has been shifted in phase by 180 °.

The linear growth stage described by Richtmyer's result lasts as long as the perturbation

amplitude is sufficiently small (typically as long as ka < 1). When the amplitude becomes

comparable to the wavelength, the predicted growth rate decreases owing to the influence of the

nonlinearity of the governing equations. The effects of weak nonlinearity can be incorporated

into the stability analysis by developing a solution in the form of an asymptotic expansion using

the perturbation amplitude as the small parameter (Haan 1991). These solutions, however, have

the weakness that when truncated they produce results that quickly diverge from the exact

solution when the amplitude reaches moderate size. Zhang & Sohn (1997) have found a solution

to this problem by posing their series solution as a Pad6 approximant which significantly extends

its validity. One shortcoming ofZhang & Sohn's solution is that it does not possess the

generally accepted asymptotic behavior that the growth rate decays as 1/ t as time, t, approaches

infinity. This weakness has been addressed by Sadot et al. (1998) who present a model that both

captures the initial weakly nonlinear behavior yet also provides the correct late-time asymptotic

form.

The impulsive acceleration in RM instability is typically produced by the passage of a shock

wave over the interface. The most common method for generating RM instability in the

laboratory is to create a boundary between two gases in a shock tube. Early shock tube RM



experiments utilized a physical barrier to initially separate the two gases in order to prevent their

mixing. However, physical barriers subsequently introduce other difficulties. The earliest of

these methods, used by Meshkov (1969) and others (Aleshin et al. 1988; Vassilenko et al. 1992;

Benjamin 1992), employs a sinusoidally shaped thin membrane between the two gases to

separate them and provide the initial perturbation. This membrane is subsequently shattered by

the incident shock wave. However, the pieces of the membrane become incorporated into the

fluid flow, potentially affecting the development of the instability. The presence of the

membrane fragments in the flow also impedes the visualization of the flow making techniques

such as Planar Laser-Induced Fluorescence (PLIF) (Jacobs 1993), Planar Rayleigh Scattering

(Budzinski, Benjamin, & Jacobs 1994) and particle image velocimetry (Rightley et al. 1999)

difficult to implement. Furthermore, this method often produces initial growth rate

measurements that are significantly less than Richtmyer's theoretical prediction, typically by a

factor of two or more.

Another method for interface formation employs a thin plate to separate the gases

(Brouillette & Sturtevant 1994; Cavailler et al. 1990; Bonazza & Sturtevant 1996). When

extracted prior to shock tube firing, the wake produced by the plate provides a pseudo-sinusoidal

perturbation to the interface. The results of these experiments are limited by the fact that the

initial perturbation is uncontrolled, nonuniform and often unrepeatable. As is characteristic of all

fluid instabilities, the initial state of the system dictates future behavior, hence any variation in

initial conditions makes it difficult to compare experimental results from experiment to

experiment. The interfaces created by this method are also very diffuse, having thicknesses

equaling or exceeding the perturbation wavelength, which significantly slows instability growth.

An alternative method for forming the interface between two gases was developed by Jones &

Jacobs (1997). In these experiments the two gases flowed from opposite ends of the shock tube,

exiting through slots at the initial interface location. The result was a relatively thin interface

between the fluids that was sinusoidally perturbed by laterally oscillating the entire shock tube to

form a standing wave. This method eliminates the influence of a membrane, yet it also provides
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repeatableinitial conditions. These experiments have yielded initial growth rate measurements

that are in much better agreement with linear and nonlinear theories than previous experiments.

In response to difficulties associated with the generation of interfaces between gases in shock

tube experiments, a number of researchers have developed altemative experimental methods

employing shock accelerated liquids or solids to produce the instability. The use of solids is

particularly advantageous because of the relative ease in which a perturbation of known shape

can be machined onto a solid surface. However, very strong shocks are necessary in order to

make the solids behave as fluids. Benjamin & Fritz (1987) employed a shock wave generated by

an explosive charge to liquefy a layer of Wood's metal in contact with a layer of water. The

sinusoidal interface machined into the Wood's metal became RM unstable, causing the

perturbations to invert and then grow in amplitude. However, the interface in these experiments

is also stabilized by the presence of gravity, which reduces the growth rate and makes analysis

difficult. A number of investigators (Dimonte & Remington 1993; Remington et al. 1994;

Dimonte, Frerking, & Schneider 1995; Peyser et al. 1995; Dimonte & Schneider 1997, Farley et

al. 1999, Holmes et al. 1999) have conducted experiments in which very strong shock waves are

driven through targets consisting of two solids in the Nova laser facility at the Lawrence

Livermore National Laboratory. In these experiments, the rapid vaporization of one end of a

target produces a shock wave that travels through the density interface which has a machined

initial perturbation. These experiments have demonstrated good agreement with linear and

weakly nonlinear theory. However, problems associated with X-ray visualization and the

difficulty in producing a pure impulsive acceleration in a laser facility make these experiments

difficult to interpret.

Richtmyer (1960) recognized that RM instability need not be considered solely a

compressible phenomena in that the instability can be produced by impulsively accelerating

incompressible fluids. Thus a number of experimental studies have used this fact to study the

"incompressible" RM instability. These experiments have the advantage in that it is relatively

easy to produce a sharp well defined interface between two liquids. In addition, these
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experimentscan be carried out at considerably lower speed than shock generated experiments,

thus greatly simplifying flow visualization. Dimonte & Schneider (2000) developed a Linear

Electric Motor (LEM) apparatus to accelerate a container filled with two different density liquids

vertically on a rail system. The LEM is capable of producing a variety of acceleration profiles,

including constant and impulsive acceleration profiles which have been used to study RT and

RM instabilities, respectively. The interface between the fluids was initially nominally flat, thus

the primary focus of these experiments was to study the growth of the fully turbulent instability.

Jacobs & Sheeley (1996) carried out significantly lower speed RM instability experiments in

which they developed a novel technique for impulsively accelerating a system of two liquids. In

these experiments a Plexiglas tank containing two unequal density liquids is mounted to a linear

rail system constraining its main motion to the vertical direction. The tank is gently oscillated

horizontally to produce a controlled initial fluid interface shape. The sled is then released from

an initial height and allowed to fall until it bounces off of a fixed spring, which imparts an

impulsive acceleration in the upward direction. After bouncing, the tank travels upward and then

downward on the rail system while the instability develops. Note that the effects of gravity

become increasingly important as the instability growth rate is decreased. The effects of gravity

are minimized in these experiments by keeping the fluids in free-fall while the instability is

allowed to develop.

The experiments reported here utilize the method developed by Jacobs & Sheeley, improved

by the implementation of Planar Laser Induced Fluorescence (PLIF) imaging, yielding much

clearer views of the developing interface. In addition, the experimental apparatus has been

significantly improved by increasing the time duration in free-fall, direct measurement of the

acceleration profile, and by allowing the generation of more complex initial perturbations.
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2. Experimental Methods

The experiments were conducted utilizing a 3 meter drop tower and sled with attached

instrumentation, as shown in Figure 1. The drop tower's function is to provide an impulsive

acceleration to the two-fluid system, and then allow the system to travel safely in free-fall

without external disturbances. The tower was developed using experience gathered from the

earlier apparatus of Jacobs & Sheeley (1996). Note that the apparatus used in this study has also

been used in a modified form for Rayleigh-Taylor experiments (Wadell, Niederhaus, & Jacobs

2001). The tower consists of two pieces of vertical, 3 meter long, square steel tubing with

precision linear rails mounted on the inside faces. The sled travels on the linear rails at speeds

up to 6 m/s using low-friction, high-speed bearings. A retractable spring is mounted on vertical

channel behind the drop tower. The sled is able to contact the extended spring, but passes freely

when the spring is fully retracted. A shock absorber at the bottom of the rails stops the sled at

the end of the experiment. The sled center of mass is oriented to be centered between the linear

rails and directly above the spring contact point to minimize vibrations during operation.

The two fluids are contained in a clear Plexiglas tank mounted to the sled using horizontal

crossed roller bearings. The tank has interior dimensions of 254.4 mm high x 119.9 mm wide.

Tanks having two different thicknesses were used. A 25.4 mm thick tank was used for the initial

experiments. However, a thicker 50.8 mm tank was used for the majority of the experiments to

minimize wall effects in the center portion of the tank. An initial sinusoidal perturbation is

imposed on the density interface by gently oscillating the tank horizontally at the proper

frequency to produce n + 1/2 standing internal waves, where n was varied from 0 to 4. The

viscous boundary layers on the side walls of the tank require the slight modification of the

frequency predicted by inviscid theory. Thus, a separate experimental investigation was

undertaken to determine the precise forcing frequency necessary to ensure clean, single-mode

perturbations. The resulting perturbations have a measured wavelength prior to spring impact

that is typically 3% greater than that predicted by inviscid theory based on tank width.
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Thetankoscillationsystemhasthecapabilityto generatearbitrarymotion. Thiscapability

allowsa sinusoidalmotionwith theappropriatefrequencyandamplitudeto producea single-

modeperturbationof thedesiredwavelengthandamplitude. It alsoallowsmotioncomposedof

acombinationof differentsinewavesto producemorecomplexinitial perturbations.Multi-

modeinitial perturbationsaregeneratedby oscillatingthecontainerwith thesuperpositionof the

oscillationsrequiredfor two ormoreindividual modes.In both thesingle-andmulti-mode

experimentstheoscillation is stoppedprior to sledreleaseat thepoint wherethetankoscillation

velocity of all modesis zero. Singlemodeexperimentspresentedherearelimited to modeswith

2 1/2wavesor fewerto reducethreedimensionaleffectsthatoccurin highermodesin the

thicker (50.8mm)tank.

PlanarLaser-InducedFluorescenceis usedfor flow visualization. A lasersheetgenerated

from anargon-ionlaserwith anoutputof 2.8W at488nm illuminatesthecenterplaneof the

fluid tank. ThelasersheetintensityhasaGaussiandistributionandawidth suchthatthe

intensityis 10%loweratthetankedgesthanat thecenter. Thesheetis4 mm thick at its 50%

powerpointsatthetank location. Disodiumfluoresceindyeis addedto theheavierlower fluid

at aconcentrationof 0.84mg/L whichfluoresceswhenilluminatedby thelasersheet.The

lighterupperfluid is clearagainstablackbackground,allowing for easydistinctionof the

densityinterface.A double-speedCCD cameramountedon thesledcapturesimagesof the

fluids at aresolutionof 648 x 484pixelsat60Hz.. Theimagesaredigitizedandstoredin real-

timeby acomputervideoacquisitionsystemfor lateranalysis.

Thelighter fluid usedin theseexperimentswasawater/isoproponolmixturewith a70%

volumeconcentrationof isoproponol.Theheavierfluid wasawater/calciumnitratesaltsolution

with a25%by weightcalciumnitrateconcentration.Thesetwo fluids aremiscibleandtherefore

havenosurfacetension. Batchesof fluids weremixed with sufficient volumeto conduct5to 10

experimentswith onebatch. Thewater/calciumnitratesolutionwasmixedto matchtheindexof

refractionof thecurrentbatchof thewater/isoproponolmixture(purchasedpremixed). The

matchingof the indexof refractionwasnecessaryto eliminatedistortionof the lasersheetasit
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passesthroughthehighlycurvedinterfacepresentatlateexperimentaltimes. Theindexof

refractionandspecificgravityof themixturesvariedslightly frombatchto batch,butatypical

batchhadan indexof refractionof 1.3720anda specificgravityof 0.8731for the lighter fluid

and1.2025for theheavierfluid. TheresultingAtwoodnumberwas0.1587.Thekinematic

viscosityof thetwo liquidswasmeasuredfor onebatchusingaviscometer.Thelighter fluid

wasfoundto haveaviscosityof 3.16cSt,while theheavierfluid was1.55cSt.

To beginanexperiment,theheavierbottomfluid wasdispensedinto thetankfirst to the

desiredlevel. A water-saturatedpieceof balsawoodslightly smallerthantheinterior

dimensionsof thetankwasthenplacedon topof theheavyfluid. Thelighter fluid wasthen

dispensedat aslowrateimmediatelyabovethebalsawoodthroughasmalltubeattachedto a

funnel. Thebalsawoodcontinuedto float abovethelighter fluid duringthefilling process.The

total time required to add the lighter fluid, attach the lid, and begin the experiment was typically

between 5 and 10 minutes. The resulting interface thickness was typically 1 pixel (0.21 mm) or

less.

Figure 2 shows a sequence of three-dimensional renderings of the apparatus depicting an

animation of a typical experiment. The sled is initially held at the top of the rails and the

retractable spring mechanism is extended and locked. The tank is oscillated to produce the initial

perturbation, and the sled released at the appropriate time. When the sled is released, it travels

down the rails until it impacts the retractable spring and bounces upwards. As the sled travels

back up the rails, the upward momentum from the recoil of the spring, together with the

assistance of a bungee cord, unlocks the linkage holding the retractable spring mechanism.

Gravity and the bungee assist retract the spring flush with the wall before the sled returns to the

original spring location. The sled is then able to pass by the spring and travel down the rails until

it impacts the shock absorber at the bottom of the rails. Thus after the initial release, the fluids

experience a nearly impulsive body force in the downward direction, followed by 900 ms of

microgravity. A piezoelectric accelerometer was used to measure the impulsive acceleration,

which typically peaked at approximately 50 g (490 m/s2). A capacitive accelerometer was also
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usedto measuretheslight bearingdragduring free-fall,whichwastypically lessthan0.02g (0.2

m/s2).

3. Results and Discussion

The simplest example of Richtmyer-Meshkov instability is that resulting from a small

amplitude, single-mode, sinusoidal initial perturbation on a sharp interface. Figure 3 is a

sequence of PLIF images showing the evolution of such an instability. This particular

experiment developed from a sinusodial perturbation with a dimensionless initial amplitude of

kai = 0.23 and a wavelength _ corresponding to 1 1/2 waves inside the tank (;I. = 82.6 mm),

where k=-27r./_ is the perturbation wavenumber and ai is the perturbation initial amplitude. The

first image was taken immediately before the sled impacted the spring and thus shows the initial

interface shape. The impulsive acceleration in these experiments is directed from the heavier

fluid into the lighter fluid, with the resulting body force on the fluids acting in the downward

direction. This orientation causes the initial perturbation to invert (i.e., decrease and pass

through zero) before growing in amplitude. Immediately after inversion, the interface retains a

sinusoidal shape, but by image (b) the interface begins to become nonsinusodial. Vorticity is

deposited along the interface by the baroclinic production mechanism during the acceleration, as

given by the two-dimensional vorticity equation:

D¢o = 1 Vp x Vp. (3)
Dt p

where to is the vorticity vector, which is normal to the plane of the two-dimensional motion. In

this case the density gradient Vp is perpendicular to the interface while the pressure gradient Vp

is hydrostatic and thus aligned with the direction of acceleration. The interaction results in a

sinusoidal distribution ofvorticity. However, as the instability evolves, the vorticity begins to

concentrate at points midway between the crests and troughs which correspond to the points of

maximum initial interface slope and thus the locations of maximum vorticity (Zabusky 1999).
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Theresultingvorticesproducethesymmetricmushroompatterntypicalof theRT andRM

instability.

As time advances,thevorticesappearto grow in sizeastheinterfacerotatesaroundtheir

centersto form a spiralpattern.Theinterfaceismulti-valuedby image(c), andthevortexcenter

hascompletedseveralturnsby image(1).As theinstabilitydevelops,thetipsof thevortexspirals

evolveintoa hammerheadtypeform,whichcanbemoreeasilyobservedin Figure4. As the

vortexdevelops,the innerportionof thetip remainsat thevortexcenterwhile theouterhalf is

stretchedin lengthandeventuallyextendsoveronefull rotationbeforebecomingtoofine to

observe.Note thatthe interfaceretainsits top-to-bottomsymmetrywell into thenonlinear

regime. Thissymmetryis acharacteristicof theRM instabilitywith smalldensitydifferences.

Also notethatthe interfacebetweenthetwo fluids alsoremainssharpthroughouttheexperiment.

Theeffectsof thesidewails observedin theseexperimentsis small. A thinboundarylayeris

apparenton therightwail, anda smallvortexformson theleft wall.

Figures5 and6 showsequencessimilar to thatshownin Figure3 with differentperturbation

wavelengths.Figure5 showsthegrowthof theRM instabilitywith a 1/2waveperturbation.

Note thatin thiscasethefinal perturbationamplitudein frame(1)is aslargeasthe 1 1/2wave

caseof Figure3. However,the instability itself is notasfar developedasthe 1 1/2wavecasein

thatthe interfacehasnotyet becomedouble-valued.Thisdifferenceemphasizestheimportance

of thenondimensionalamplitudeka, which is still small in the 1/2 wave case. Figure 6 is a

sequence of images from a perturbation with 2 1/2 waves. One can see that in this case the

features are qualitatively the same as observed in the 1 1/2 wave case.

3.1. Linear Growth Regime

Richtmyer's (1960) linear stability analysis shows that the amplitude of the interface satisfies

the following differential equation:

ii(t) = -kAg(t)a(t). (4)
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Note that when the gravitational acceleration is zero, as occurs when the sled is in freefall, the

theoretical growth rate & is constant. Richtmyer assumed g(t) to be in the form of a Dirac delta

function (i.e., g(t)=AV 8(t)) and integrated Eq. (4) to obtain the post acceleration growth rate

?t = kAAVa o. (5)

The acceleration pulse imparted to the fluids in the present experiments has a triangular shape as

shown in Figure 7, with a typical duration of 26 ms, a peak magnitude of 50 g, and an integrated

impulse AVof6.4 m/s. The length of this acceleration pulse is too long to accurately use (5) to

model the early time instability growth. However, by using the measured perturbation amplitude

a and velocity ¢i prior to impact, along with the measured acceleration, Eq. (4) can be

numerically integrated to determine the theoretical post-impulse amplitude and velocity. Figure

8 shows the results of this integration for a typical experiment. As described above, the direction

of acceleration in these experiments initially results in the temporary stabilization of the

interface. Therefore, the amplitude of the crests and troughs decreases while under acceleration.

However, the momentum imparted to the fluid by this action remains after the acceleration is

removed. Thus the result is the inversion of the interface, and the subsequent rapid growth of the

perturbation.

Figure 9 shows the early time behavior of the amplitude for all of the single-mode

experiments reported here. The amplitude is nondimensionalized in this plot using the

perturbation wavenumber k, while time is nondimensionalized using the wave number and the

theoretical initial growth rate ¢i0 obtained from the integration of (4). Note that t = 0 is found by

extrapolating the integrated, theoretical post-impulse perturbation growth to zero amplitude. In

this nondimensionalization, linear theory has a growth rate of 1, and is shown by the solid line in

the plot. The experiments show excellent agreement with linear theory up to kaot = 0.3 and are

within 10% of the theory at k?tot = 0.7, where nonlinear effects begin to become important. It

should be noted that linear theory is derived assuming [ka I << 1. Thus, it is surprising how
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accurateit is atmoderatevaluesofka. Themaximuminitial amplitudes, kai, for the 1/2 wave, 1

1/2 wave, and 2 1/2 wave experiments were 0.06, 0.50, 0.66 respectively.

3.2. Weakly Nonlinear Growth Regime

Figure 10 shows the intermediate-time amplitude measurements (kaot < 5), along with lines

corresponding to two weakly nonlinear solutions developed by Zhang & Sohn (1997). The first

is a weakly nonlinear fourth order perturbation solution for the amplitude which was developed

in much the same manner as Richtmyer's (1960) original linear analysis. Perturbation theory

assumes a solution in the form of an asymptotic expansion for the surface elevation

r/= 7"/_1)+ r/(2) + ... (6)

where r/(") _ (kai) ¢"). The solution obtained by Zhang & Sohn assumes an impulsive body force

directed from the heavy fluid into the light fluid and a finite initial amplitude. The

nondimensional amplitude ka can be written in terms of the parameters kai, A, and cr = -k A AV.

The solution is not directly comparable to the present experiments which have an oppositely

directed as well as a finite duration acceleration. However, by letting the initial amplitude

approach zero while maintaining a constant post-impulse growth rate (kai_ 0

while tr kai = constant = ka0), one can obtain an expression appropriate for comparison with our

experiments. The result for the overall amplitude (the peak-to-peak amplitude divided by two)

then becomes

ka = kdot- (k_t) 3 + O(ki_ot)". (7)
3

Note that the second and fourth order terms do not contribute to the overall amplitude. Equation

(7) is plotted in Figure 10 evaluated at a representative experimental Atwood number of 0.155.

This solution agrees with the experimental data to within 10% up to kaot = 1.3, but then rapidly

diverges due to its cubic form.
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Recognizingthe limited rangeof validity of this type of solution, Zhang & Sohn (1997)

differentiated their amplitude perturbation expansion to develop a perturbation expansion for the

growth rates of the bubble, spike, and overall amplitude. A bubble is defined as the portion of

the interface where the light fluid penetrates the heavy fluid, and a spike is the portion of the

interface where the heavy fluid penetrates the light fluid. The overall amplitude is the average of

the bubble and spike amplitudes. These series solutions were then approximated with Pad6

approximants to extend their range of validity. By again taking the limit as ka_ _ 0 while

keeping o'ka_ = constant = ka0, Zhang & Sohn's expression for the overall amplitude growth rate

can be rewritten (for the case when ka_ >A 2 ±)-- 2 as

which after integration yields:

ka = kao (8)

l+(½-a2)(kdot) 2'

1 kdot) (9)
ka __ A2 tan-'(_f_- a2 .

Evaluating (9) using A = 0.155 results in the short dashed curve shown in Figure 10. This

expression extends the range of agreement (to within 10%) for this theory to kaot = 3.

3.3. Fully Nonlinear Growth Regime

3.3.1. Vortex Model

Jacobs & Sheeley (1996) noted that the vorticity in these experiments eventually coalesces

into discrete vortices. They subsequently modeled the flow as a row of line vortices of

alternating sign, assuming an Atwood number of zero and obtained a relationship between the

overall growth rate and amplitude that can be rearranged into the following form

d 2
- sech(ka)

a0 7r
(9a)
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Figure11showsthederivativeof the latetimeamplitudedata(kaot< 30)plottedversus

dimensionlessamplitudealongwith acurvecorrespondingto (9a). Notethatthevortexmodel

givesaninitial growthratethatis lowerby afactorof zr./2 than that given by linear theory. This

is consistent with the fact that in the linear stability analysis the vorticity is assumed to have a

sinusoidal distribution, rather than a discrete distribution assumed by the vortex model.

However, at late times, the model appears to yield excellent agreement with the experimentally

observed growth rate, differing by less than 25%. This small difference at late times can be

attributed to the fact that this model assumes an Atwood number of 0, while the experiments

have a small but nonzero Atwood number of 0.155

Equation (9a) can be integrated to obtain an expression for the overall amplitude

ka= sinh-_(2kao(t - t,)+sinh(kG,)). (10)

where tp and ap are the time and amplitude, respectfully, when the vorticity is assumed to

concentrate. Since sinh -_(x) ___-ln(2x) for large values of x, this model gives logarithmic late

time growth. Thus the late time velocity becomes

1
v=--. (ll)

kt

Figure 12 compares the late-time amplitude measurements (ki_ot < 30) with a curve generated

from (10) assuming the vorticity concentrates immediately after impact, i.e. kaotp= O. However,

since the vorticity in the experiments does not concentrate until much later the curve

underestimates the amplitude. Thus, the condition kaot p = 0 can be considered a lower bound on

the amplitude. Nevertheless, the curve appears to have the same general shape as the

experimental data, and differs from the measurements by less than 10% at late times. Also

shown in Figure 12 is a curve generated assuming the vorticity concentrates at k&ot_, = 6 (kap =

2.4), at a point corresponding to Figure 3, frame (f) and Figure 6, frame (g). This assumption

reduces the difference between the model and the late-time amplitude to less than 5% over the
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rangetested.Thisdifferencemayagainbeattributedto thefactthatthemodel is strictly valid

only for Atwood number of 0. It is interesting to note that increasing the initial growth rate in

(10) by a factor of n/2 yields, ka = sinh-_(ka0t), which has the same functional form as (10), but

also captures the correct initial growth rate. This function is also plotted in Figure 12 showing

that even though it assumes an incorrect value of the circulation, it provides an excellent fit to the

data.

3.3.2. Interpolation Model

Sadot et al. (1998) proposed the following rational function interpolation between existing

early time and late time models for the bubble and spike velocities:

where

l+Bt
U_,.,.(t)=Uo"

l + Dt + Et 2'

Bh, = Uo k ,

Db/_ =(I + A)Uo k,

I+A 1 U2k2
Eh/" =]+A 2n'C "

(12)

(13)

(14)

(15)

and U0 is the initial velocity. In these expressions, the plus sign is used for the bubble velocity

and the minus sign is used for the spike velocity. At small time the bubble and spike velocities

are given by:

Uh,, =Uo(lraAkUot). (16)

which is identical to the first two terms of the fourth order weakly nonlinear perturbation

solution ofZhang & Sohn (1997). At large time the bubble and spike velocities are given by:

2 zr C (1 + A)
Uh/., = (17)

k(1 + A)t
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Thus they possess the 1/t dependence of the vortex model discussed above. The constant C is a

function of the asymptotic velocity of the bubbles and spikes. The values for C given by Sadot

et aL (1998) are obtained from the computations ofAlon et al. (1995), in which they found C =

1/3n forA _ 0.5, and 1/2n forA -_ 0. However, these values can also be obtained using

methods similar to those used by Takabe & Yamamoto (1991) and Alon et al. (1995) to model

the motion of an RT bubble. The differential equation governing the motion of a two-

dimensional bubble in a gravitational field (see Figure 13) is:

(p, + Icp2) Vh_ = -½ Co Sh P2 U2 + (P2 - P, ) Vhg (18)

where Vb is the bubble volume, Sb is the bubble frontal area, Co is the bubble drag coefficient,

and tcis the virtual mass coefficient. The densities of the light and heavy fluids are Pt and p2,

respectively. Equation (18) is a simple force balance with acceleration, drag, and buoyancy

terms. In the case of RM instability in the post-impulse stage, the acceleration g = 0. Thus, if K"

= 1 as would be the case if the bubble had the shape of a circular cylinder, and it is assumed that

Vb/Sb o_ X o_ l/k, the solution for the bubble velocity is:

1

Uh _ k(1 + a)-'t" (19)

This same procedure can be used for a RM spike, employing a slightly modified form of (18),

yielding:

1

U,. _ k(1 - A)t " (20)

Note that Equation (I 1), developed using the vortex model with A = 0, yields the asymptotic

velocity U = 1/k t for both the bubble and the spike. Therefore, the constant of proportionality in

(19) and (20) may reasonably be assumed to be 1 for both the bubble and the spike in the small

Atwood number limit. Also note that Equation (20) for the spike velocity does not apply when A

= 1, in which case the drag is theoretically zero and the solution to the force balance differential
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equation(18)hasadifferent form. Equations(19)and(20)canbeusedwith Equation(17) (with

theproportionalityconstant= 1) to solvefor C, yielding:

1
C - (21)

(1 + A)2n""

This constant C equals 1/3_ at A = 0.5 and 1/2rt at A = 0. Thus it is in agreement with the

computational results in Alon et al. (1995) in this range of Atwood numbers. However, it should

be noted that (21) yields a value C = 1/47r in the limit A ---) 1 which is in disagreement with

previous numerical and theoretical studies which give C = 1/3zr (Hecht, Alon & Shvarts 1994;

Alon et al. 1995). This difference implies that the constant of proportionality in (19) and (20)

may only be 1 for small or moderate values of the Atwood number. Note that Alon et ai. report

using the same analytical procedure as described above but obtained different expressions for the

asymptotic velocities (Equations (19) and (20)). This discrepancy was later corrected by Oron et

al. (2001). However, this more recent analysis uses a much larger value for the added mass

coefficient. Thus they obtain expressions for Uh/_ that differ significantly in form from ours.

The perturbation amplitude can be obtained from (12) by integrating the bubble and spike

velocities separately. The result of this integration for the overall amplitude (the average of the

bubble and spike amplitudes) is plotted on Figure 12 for C = 1/2re. The curve shows good

agreement with the early-time data, but overestimates the late-time amplitude by 10%. Also

shown on Figure 12 is a curve generated by integrating Equation (12) using C = 1/(1 + A)2tr

with the experimental value ofA = 0.155. This curve appears to correctly model the initial

growth rate, as well as the late-time asymptotic velocity. This modified form of Sadot et al.'s

model shows much better agreement with the late-time amplitude measurements and appears to

accurately predict the perturbation amplitude data over the entire time duration investigated. The

improved agreement with the modified form of this model can be attributed to the fact that the

value C = 1/27r is strictly true only for Atwood number zero. Note that Alon et al. acknowledged

that C varied with Atwood number, but did not give a specific function for Atwood numbers less
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than1/2. It shouldbestressedthatthis modeldoesnot intrinsicallysolvetheflow field, but is

simply aninterpolationthatmatchesboththeearly-timeandlate-timegrowthrates.

3.3.3. Bubble and Spike Measurements

The overall amplitude measurements presented in the previous sections ignore differences

between the bubble and spike amplitudes. As the Atwood number of the system approaches

zero, the bubbles and spikes become symmetrical about the mean interface location. Thus, the

bubbles and spikes have identical amplitudes, growth rates, and shapes. However, at larger

Atwood numbers, differences between the bubbles and spikes become apparent. The heavier

spikes grow faster than the lighter bubbles. The spikes also have smaller widths than the

bubbles. In the experiments presented here with Atwood number of 0.155, there is a small but

measurable difference between the bubble and spike amplitudes.

Figure 14 shows the separate bubble and spike amplitudes for the experiments. The

amplitude is measured relative to the location of the fiat interface prior to impact. The growth

rates of the bubbles and spikes are initially the same, as predicted by weakly nonlinear theory.

However, the spike amplitude becomes 10% greater than the bubble amplitude when kaot = 0.8,

and 30% greater when kitot = 15. Also shown on Figure 14 are curves corresponding to the

bubble and spike amplitudes found by integrating (12). These results use our derived constant C

(Equation (21)) that more accurately models the late-time growth rate. Again, this modified

model shows good agreement with the experimental measurements. However, experiments at

other Atwood numbers would be necessary to determine whether the expression has the correct

Atwood number dependence.

3.4. Multi-Mode Initial Perturbations

While single-mode perturbations are the most often studied in laboratory experiments, real

applications involving RM instability are inevitably composed of disturbances with many
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wavelengths.Multi-modeinterfacialperturbationsweregeneratedin thepresentinvestigationby

oscillatingthefluid containerwith acombinationof two or moredifferent frequencies.Figure

15 isa sequenceof imagesshowingtheevolutionof anexperimentinitiatedwith a combination

of a 1 1/2wavemodeanda2 1/2wavemodeastheinitial perturbation.Image(a)wastaken

slightly beforetheimpulsiveaccelerationandshowstheinitial interfaceshaperesultingfrom the

combinationof thesetwo modes.Accordingto lineartheory,at smallamplitudesthetwo modes

evolve independentlyandthemodewith theshorterwavelengthgrowsmorerapidly

(sinceti o¢ kai). In image (b), the long wavelength mode has decreased to nearly zero amplitude,

while the short wavelength mode has inverted and thus is the dominant mode visible. In images

(c) through (1), this multi-mode instability evolves, forming a more complex structure than that

observed in the small amplitude single-mode experiments. Note that the vorticity concentrates at

points where the initial perturbation has local maxima in slope, which are also the points of

maximum baroclinic vorticity generation. Also note the unusual symmetry of the interface about

the center of the tank due to the small density difference of the fluids.

3.4.1. Multi-Mode Analysis

To analyze the multi-mode experiments, the interface was parameterized by finding the

coordinates of a set of points (x_, y_) lying on the interface using an edge detection routine,

neglecting points near the sides of the tank to reduce the possible wall effects. These points were

then curve-fit to a function of the form,

y(x) = Yo + al sin[k_ (x - x0)] + a2 sin[k2(x - x0)] + ... (22)

to determine the individual mode amplitudes, assuming kl, k2, ... to be equal to that of the

imposed initial perturbation. An example of the coordinates and resulting curve fit is shown in

Figure 16. As mentioned above, at small amplitudes the various modes should act independently

of each other and their evolution should be described by linear theory. Therefore, the method of

analysis utilized for the single-mode experiments was also employed for the multi-mode
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experiments.Figure17showsthetime dependenceof thenondimensionalmodeamplitudefor

ninemulti-modeexperiments.Themodesshowexcellentagreementwith lineartheoryfor k_t

< 0.3. Beyond that time the interface becomes multi-valued (at different times depending on the

initial conditions) making the curve fitting of (22) no longer valid. The agreement between the

measurements and theory at early times in the plot confirms that the multi-mode perturbations do

act independently and follow linear theory in the small amplitude regime.

3.4. 2. Multi-Mode Examples

Other examples of multi-mode RM instabilities are shown in Figures 18 through 20. Figure

18 shows the RM instability resulting from the combination of a 1/2 wave and 2 1/2 wave initial

perturbation. The two different wavelengths are clearly present in image (a), taken before the

impulsive acceleration. This initial perturbation produces three vortices of the same sign with

the center vortex larger in size. The development of an initial perturbation with 1 1/2 waves and

4 1/2 waves is shown in Figure 19. Note that the 4 1/2 wave mode is the second harmonic of the

1 1/2 wave mode. Thus it produces two vortices per fundamental half wavelength in contrast to

one vortex per half wavelength produced the single-mode experiments. This mode combination

evolves to form a double-mushroom shape with vertically stacked vortices. The detailed

development of this and all multi-mode experiments depended strongly on the relative

amplitudes of the initial modes.

Figure 20 shows the RM instability produced by a 1/2 wave and 4 1/2 wave initial

perturbation. Five vortices of the same sign are formed over the half wavelength of the

fundamental perturbation. The central three vortices appear to be the same strength, thus this

flow closely resembles Kelvin-Helmholtz instability. Image (a) shows that the amplitude of the

1/2 wave perturbation is much larger than that of the 4 1/2 wave perturbation. The large 1/2

wave perturbation produces a shear flow across the tank, with the small 4 1/2 wave perturbation

serving as an initial perturbation for the Kelvin-Helmholtz instability.
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3.5. Reynolds Number Effects

3.5.1. Reynolds Number Definition

An important aspect of RM instability that has not been discussed in earlier investigations is

the dependence of the Reynolds number on the flow. The Reynolds number is defined

as Re = U 1/19, where U, l, and v are characteristic values of velocity, length, and kinematic

viscosity. Obvious length and velocity scales appropriate in RM instability are the perturbation

a_i

Re, (°l +192)/2" (23)

Figure 21 shows a plot of Reynolds number defined using (23) for a typical single-mode

experiment from this investigation which shows that (23) yields a time dependent value. Thus,

defined this way, the Reynolds number initially grows linearly in time (as is indicated by linear

theory) peaking at kitot = 1.6 and then decays toward zero. It is important to recognize that the

flow at late time is dominated by the vortices that form at the nodes of the perturbation. Thus, an

alternative Reynolds number more appropriate to the vortical flow may be defined using the

circulation of one of the vortices and the average kinematic viscosity of the two fluids:

F
Re - (24)

(19_+192)/2"

Note that the circulation cannot be easily measured in the present experiments. However, it can

be estimated from measurements of the initial growth rate as was done by Jacobs & Sheeley

(1996). If one assumes the flow field to be that given linear stability theory, the circulation can

be found by integrating the vortex sheet strength over one-half wavelength of the interface. The

result is that the circulation strength of a vortex is given by:

F = --,4a° (25)
k

amplitude a and growth rate a, yielding
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which is constantduringtheexperimentif viscousdissipationandthebaroclinicgenerationof

secondaryvorticity is negligible. Therefore,thevortexReynoldsnumbercanbecalculated

using:

Re-
8ao

k(o, + v2) _
(26)

Thus this definition yields a Reynolds number that has a constant value. This vortex Reynolds

number (Rev) can be related to the perturbation Reynolds number (Rep). Figures 9, 11, and 12

demonstrate that the dimensionless amplitude ka in the experiments is a function of only the

dimensionless time scale k?tot, i.e.

ka = f (k(tot ) , (27)

therefore

k& = ka o f ' ( kaot ) ,

and the perturbation Reynolds number can be written as

(28)

Rep (1)1 + 1)2)/2

1 2kaka

k 2 o_ + 02

2ti0

-k(_+o2) ff

ff"
= Re_

4

(29)

Therefore, the perturbation Reynolds number is equal to the vortex Reynolds number multiplied

by a function of time, the value of which ranges from 0 to 0.16. This vortex Reynolds number is

also proportional to the Reynolds number defined using initial growth rate and perturbation

wavelength as velocity and length scales. Unless specifically noted, values of the Reynolds

number quoted in the following text refer to the vortex Reynolds number (24). Note that the
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valueof Reynoldsnumberachievablein anexperimentvariesgreatlywith theperturbation

wavelength.Thusit is possibleto achievemuchlargervaluesof circulationandReynolds

numberusing longerwavelengthperturbations.TheReynoldsnumberfor theexperiments

presentedhererangefrom 1000to 8500.

3.5.2. Vortex Turning Rate

The experiments in this study spanned a wide range of initial amplitudes and Reynolds

numbers. It is therefore remarkable that the nondimensional scaling used in Figures 9, 11, and

12 effectively collapses the amplitude measurements for the entire range experimental

parameters investigated. This degree of collapse indicates that the late time amplitude is

determined only by the perturbation wavenumber and initial growth rate. Thus, the Reynolds

number does not appear to influence the amplitude measurements. However, the Reynolds

number was observed in the experiments to have an effect on the evolution of the vortex cores.

This effect became apparent when examining the experimental images to quantify the vortex

core turning rate (i.e. the rate of rotation of the vortex cores). One method of quantifying the

turning rate is to determine the nondimensional time when the interface becomes multi-valued

and when the center of the vortex completes a specified number of turns. Figure 22 shows

measurements of the time when the interface first becomes multi-valued and when the vortex

core has completed 1, 2, and 3 turns plotted as a function of the Reynolds number. The interface

is considered multi-valued when its maximum slope becomes infinite, i.e. when it has rotated 90 °

from a horizontal position. Defining the number of turns is more difficult and subjective in part

because of the non-symmetrical form and rapid rate of the initial vortex development. After

attaining infinite slope, the interface in a small region near the vortex core rapidly rotates 180 °

and develops a fold, that forms the tip of the coil that eventually becomes the vortex spiral. For

consistency, this folded condition is considered to be the starting point in the rotation process.

Turning is then defined as the angular rotation of this heavy (dyed) fluid tip. A completed turn is

defined as when the heavy fluid tip of the spiral is vertical and has rotated n × 360 ° from the
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initial foldedcondition. Referringbackto Figure3, the interface is nearly vertical in image (b),

and the vortex core has completed slightly more than 1 turn in image (e), and slightly more than

2 turns in image (h). The vortex core shown earlier in Figure 4 has completed slightly over 2

turns. Note that this definition yields a nearly constant time between turns and thus a constant

rotation rate.

Figure 22 shows that the interface becomes multi-valued at kaot --- 1.5 for all the experiments

in the Reynolds number range tested for both the 1 1/2 and 2 1/2 wave cases. The time to

complete 1, 2, and 3 turns appears to be independent of the Reynolds number for experiments

with Reynolds numbers greater than 6000 over the times investigated. Therefore, the flow

appears to be inertia dominated above a Reynolds number of 6000. At lower Reynolds number,

the turning rate is observed to decrease as the Reynolds number is decreased indicating that the

fluid viscosity is important. Thus the primary effect of viscosity in these experiments is to

reduce the number of coils observed in the vortex cores. Viscosity causes the vorticity to diffuse

out from the vortex centers, leading to a decrease in the turning rate of the vortex cores. This

process will eventually cause the vorticity from adjacent vortices to merge reducing the

circulation, and thus, the overall growth rate. The fact that the amplitude measurements in this

study appear to be independent of the Reynolds number suggests that vortex core sizes must still

be small when compared to the vortex spacing for these experiments.

Note that the rotation rate measurements are very consistent for experiments carried out with

a particular perturbation wavelength. However, there appears to be an inconsistency between

experiments carried out with different wavelengths. This inconsistency is most easily observed

in Figure 22 when comparing the time to attain 3 turns for the 1 1/2 and 2 1/2 wave experiments.

This discrepancy may have been caused by the fact that the dimensionless initial amplitudes of

the shorter wavelength experiments were generally larger than their longer wavelength

counterparts in order to obtain the same value of Reynolds number. In other words, a 2 1/2 wave

experiments must have larger dimensionless initial amplitude in order to achieve the same

Reynolds number as a 1 1/2 wave experiments with the same impulsive acceleration. Thus the
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effectsof nonlinearity may have produced the small differences in the tuning rate observed in

Figure 22.

3.5.3. Vortex Instability

Experiments carried out early in this investigation with relatively low values of the Reynolds

number consistently showed a laminar spiraling of the interface around the vortex center.

However, later experiments carried out with significantly larger initial amplitudes and thus larger

Reynolds numbers showed the appearance of an apparent secondary instability inside the vortex

cores. Figure 23 shows a series of images with kai = 0.29 and a Reynolds number of 4830

exhibiting this behavior. The instability initially develops very similarly to the lower amplitude

cases. However, at frame (h), one can see the beginning of a secondary instability in the core of

the vortex. By frame (k) the instability has spread throughout the core and the interface is no

longer sharp, indicating that the fluids have begun to mix on a smaller scale. Thus it appears that

this is the beginnings of the transition to turbulence of the vortex cores.

Figure 24 shows a close-up of the core of an unstable vortex. The secondary instability

initially takes the form of waves superimposed on the core spiral. These waves initiate near the

center of the core and grow in size and extent until all layers of the core spiral are effected. The

nondimensional time when the amplitude of these secondary instability waves equals the spiral

thickness is shown plotted in Figure 25 versus the Reynolds number. Also shown is the

dimensionless duration of the experiments in which the vortices remained stable throughout the

experiment. One can clearly see that the experiments with larger Reynolds numbers develop the

secondary instability sooner. Furthermore, this transition time appears to be well correlated to

when the core has made approximately three complete turns.
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4. Conclusions

Incompressible Richtmyer-Meshkov instability is studied in a novel experimental apparatus

that allows for a quantitative analysis of the two-dimensional instability from the early linear

stages, through the nonlinear regime, and into the initial stages of the transition to turbulence.

Miscible liquids with moderate Atwood number were employed in this investigation. The use of

liquids avoided many of the experimental difficulties previously limiting the study of the RM

instability. The instability was generated by elastically bouncing a fluid-filled container off a

vertical spring, imparting an impulsive acceleration. The subsequent free-fall permitted the

instability to evolve in the absence of gravity far into the nonlinear stages. Planar Laser-Induced

Fluorescence allowed for extremely clear observations of the flow through the nonlinear regime.

Amplitude measurements are found to be in excellent agreement with linear stability theory

for small amplitudes, differing by less than 10% up to a nondimensional time kaot of 0.7. Linear

stability theory also shows excellent agreement for multi-mode experiments until the interface

became multi-valued. The fourth order, single-mode perturbation solution of Zhang & Sohn

(1997) is found to provide good agreement with amplitude measurements up to k&ot of 1.3.

Zhang & Sohn's Pad6 approximation to their perturbation solution is found to extend the range

of agreement for amplitude up to k?tot of 3. A discrete vortex model (Jacobs & Sheeley 1996)

and the model of Sadot et al. (1998) are also compared to experimental amplitudes in the

nonlinear regime. These two models were are shown to be within 10% of the amplitude

measurements up to ki_ot of 30. The best agreement between experiments and theory is obtained

from Sadot et al.'s model modified by using a new, estimate for the asymptotic velocity.

Previous studies have not considered the influence of Reynolds number on the RM

instability. This study examines the effects of Reynolds number defined using the vortex

circulation. The time dependence of the overall perturbation amplitude is found to be

independent of Reynolds number. However, the evolution of the vortex cores is found to be

influenced by the Reynolds number when its value is sufficiently low. For the time duration
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studied,experimentswith Reynoldsnumbersgreaterthan6000arefoundto be independentof

Reynolds number, indicating the flow is inertia dominated. Decreasing Reynolds number is

found to lower the vortex turning rate. A secondary instability is observed to occur in the vortex

cores of experiments with higher values of the Reynolds number. Measurements of the time

when the secondary instability was first manifest appear to correlate well with the Reynolds

number and is observed to occur when the core has made approximately three complete turns.

This research was supported by Lawrence Livermore National Laboratory and by NASA's

Microgravity Fluid Physics Program.
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FIGURE 1. Close-up picture of the 3 meter drop tower with the sled at the top.



FIGURE2. A sequence of images showing the sled traveling on the rail system during a typical experiment.



FIGURE3. A sequence of images from an experiment with l 112 waves and ka; = 0.23. Times relative to the
midpoint of spring impact are (a) -14 ms, (b) 102 ms, (c) 186 ms, (d) 269 ms, (e) 353 ms, (f) 436 ms, (g) 520 ms,
(h) 603 ms, (i) 686 ms, (j) 770 ms, (k) 853 ms, and (1)903 ms.



FIGURE 4. A close-up of a vortex core showing the distortion of the vortex tip.



FIGURE5. A sequcnceofimagesfromanexperimentwitha1/2waveandka i = 0.06. Times relative to the midpoint

of spring impact are (a) -13 ms, (b) 120 ms, (c) 204 ms, (d) 270 ms, (e) 354 ms, (f) 437 ms, (g) 504 ms, (h) 587 ms,

(i) 67l ms, (j) 738 ms, (k) 821 ms, and (I) 904 ms.



FIGURE6. A sequenceof imagesfromanexperimentwith2 1/2wavesandka; = 0.16. Times relative to the

midpoint of spring impact are (a) -25 ms, (b) 92 ms, (c) 175 ms, (d) 259 ms, (e) 342 ms, (f) 426 ms, (g) 509 ms, (h)
592 ms, (i) 676 ms, (j) 759 ms, (k) 843 ms, and (1) 909 ms.
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FIGURE 7. Plot of the acceleration of the system versus time for a typical experiment.



FIGURE 8.

experiment.
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FIGURE 9. Plot of early-time, nondimensional amplitude versus time data along with linear theory.
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FIGURE 10. Plot of intermediate-time, nondimensional amplitude versus time data along with two curves
based on perturbation theories.
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FIGURE 12. Plot of late-time, nondimensional amplitude versus time data along with curves from several
nonlinear theories.



FIGURE 13. Configuration used for the bubble force balance model.
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FIGURE 14. Plot of separate bubble and spike amplitudes versus time data along with a theory from Sadot
et al. with modified constant C.



FIGURE 15. A sequence of images from a multi-mode experiment with a combination of 1 I/2 waves and 2 I/2

waves as the initial perturbation. Times relative to the midpoint of spring impact are (a) -15 ms, (b) 18 ms, (c) 101

ms, (d) 185 ms, (e) 285 ms, (f) 368 ms, (g) 452 ms, (h) 552 ms, (i) 635 ms, (j) 719 ms, (k) 8]9 ms, and (I) 902 ms.
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FIGURE 16. Multi-mode sinusoidal curve fit to an edge-detected image from an experiment with a combination of 1
1/2 and 2 1/2 waves.
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FIGURE 17. Plot of nondimensional amplitude versus time for nine multi-mode experiments with ]9 total
modes. Mode combinations include: 1/2 & 2 1/2; 1/2 & 4 1/2; I 1/2 & 2 1/2; 1 1/2 & 4 1/2; 1 1/2, 3 1/2 ,&
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FIGURE18.A sequenceofimagesfromamulti-modeexperimentwithacombinationofa1/2waveand21/2waves
astheinitialperturbation.Timesrelativetothemidpointofspringimpactare(a)-27ms,(b)23ms,(c)107ms,(d)
190ms,(e)290ms,(f)374ms,(g)457ms,(h)557ms,(i)641ms,(j) 724 ms, (k) 824 ms, and (1) 907 ms.



FIGURE19. A sequenceof imagesfromamulti-modeexperimentwithacombinationof 1 1/2wavesand4 1/2
wavesastheinitialperturbation.Timesrelativetothemidpointof springimpactare(a)-18ms,(b)16ms,(c)99
ms,(d)182ms,(e)282ms,(f)366ms,(g)449ms,(h)549ms,(i)633ms,(j)716ms,(k)816ms,and(1)900ms.



FIGURE20.A sequenceof images from a multi-mode experiment with a combination of a 1/2 wave and 4 I/2 waves

as the initial perturbation. Times relative to the midpoint of spring impact are (a) -20 ms, (b) 30 ms, (c) I ! 3 ms, (d)
197 ms, (e) 297 ms, (f) 380 ms, (g) 464 ms, (h) 564 ms, (i) 647 ms, (j) 731 ms, (k) 831 ms, and (l) 914 ms.
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FIGURE 21. Plot of perturbation Reynolds Number (based on amplitude and velocity) versus time for a typical
experiment.
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FIGURE 22. Plot of Reynolds Number versus time describing the vortex core evolution.



FIGURE 23. A sequence of images from an experiment with I 1/2 waves where the vortex core exhibits a secondary

instability. Times relative to the midpoint of spring impact are (a) -24 ms, (b) 93 ms, (c) 176 ms, (d) 260 ms, (e)

343 ms, (f) 426 ms, (g) 510 ms, (h) 593 ms, (i) 677 ms, (j) 760 ms, (k) 843 ms, and (I) 910 ms.



FIGURE24.Close-upof a vortex core during the early stages of a secondary instability.
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FIGURE 25. Plot of Reynolds Number versus time for the vortex core to become unstable. Also shown is the time
for the vortex to complete 3 turns.




