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AN EXPERIMENTAL FRAMEWORK FOR EXECUTING APPLICATIONS IN

DYNAMIC GRID ENVIRONMENTS*

EDUARDO HUEDO ?, RUBEN S. MONTERO $, AND IGNACIO M. LLORENTE§

Abstract. The Grid opens up opportunities for resource-starved scientists and engineers to harness

highly distributed computing resources. A number of Grid middleware projects are currently available

to support the sinmltaneous exploitation of heterogeneous resources distributed in different administrative

domains. However, efficient job submission and management continue being far from accessible to ordinary

scientists and engineers due to the dynamic and complex nature of the Grid. This report describes a new

Globus framework that allows an easier and more efficient execution of jobs in a "submit and forget" fashion.

Adaptation to dynamic Grid conditions is achieved by supporting automatic application migration following

performance degradation, "better" resource discovery, requirement change, owner decision or remote resource

failure. The report also includes experimental results of the behavior of our framework on the TRGP testbed.

Key words. Grid technology, adaptive execution, job migration, Globus

Subject classification. Computer Science

1. Introduction. Several research centers share their computing resources in Grids, which offer a

dramatic increase in the number of available processing and storing resources that can be delivered to

applications. These Grids provide a way to access the resources needed for executing the compute and data

intensive applications required in several research and engineering fields. In this work we concentrate on the

access to a high number of computing systems to be independently exploited.

In a Grid scenario, a sequential or parallel job is commonly submitted to a given resource by taking the

following path [37]:

• Resource Discovery: A list of appropriate resources is obtained by accessing to an information service

mechanism, the discovery is usually based on a set of job requirements.

• System Selection: A single resource or a subset of resources are selected among the candidates

discovered in previous step.

• System Preparation: The Preparation at least involves setup and input file staging.

• Submission: The job is submitted.

• Monitoring: The job is monitored over time.

• Migration: The user may decide to restart its job on a different resource if performance slowdown

is detected or a "better" resource is discovered.
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• Termination: When the job is finished, its owner is notified and some completion tasks, such as

output file staging and cleanup, are performed.

The Globus toolkit [25] has become a de facto standard in Grid computing. Globus is a core Grid mid-

dleware that provides the following components, which can be used separately or together, to support Grid

applications: GRAM (Globus Resource Allocation Manager), GASS (Global Access to Secondary Storage),

GSI (Grid Security Infrastructure), MDS (Monitoring and Discovery Service), and Data Grid (GridFTP,

Replica Catalog, and Replica Management). These services and libraries allow secure and transparent ac-

cess to computing and data resources across multiple administrative domains. After installation, Globus

components must be adjusted for efficient execution on a given Grid environment or testbed. This procedure

is not straightforward, specially when setting up the information system in order to provide the attributes

needed for performing an effective and efficient resource discovery and selection.

The MDS 2.1 configuration poses a potential security risk since anonymous searches to the GRIS (Grid

Resource Information Service) servers are required to build a hierarchical GIIS (Grid Institution Index

Service). The MDS publishes important host information that could be used to gain unauthorized access to

grid hosts. This security threat has been eliminated in MDS 2.2 because it provides mutual authentication

between GIIS and GRIS servers as well as between GIIS servers in a hierarchy.

The Globus toolkit supports the stages of Grid scheduling by providing resource discovery, resource

monitoring, resource allocation, and job control services. However, the user is responsible for manually

performing all the submission stages in order to achieve any functionality [37, 38]. In the Resource Discovery

stage, the user queries MDS to filter out the resources that do not meet the job requirements. The System

Selection is usually performed by ordering the possible resources according to some priority. The Preparation

and Termination tasks involve transferring input/output files using GASS or GridFTP. The job is submitted

and monitorized using GRAM. Globus does not provide any Migration support.

Application development and execution in the Grid continue requiring a high level of expertise due to its

complex nature. Moreover, Grid resources are also difficult to efficiently harness due to their heterogeneous

and dynamic nature:

• Multiple administration domains: The Grid resource and the client system do not have to belong to

the same administrative domain. Once the job is submitted, its owner does not have total control

over it. The resource administrator could freely reclaim his resources and decide to suspend or cancel

the job.

• Dynamic resource load: The idle resources initially available may become saturated. We temporally

get access to heterogeneous resources belonging to different administrative domains that are being

also exploited by internal users, which usually enjoy higher execution priorities. Moreover, these

resources can be also exploited by other Grid users.

• High fault rate: In a Grid, resource failure is the rule rather than the exception. Moreover, resources

are added and removed continuously.

We believe that end users would improve their computational productivity if they were provided with

a friendly, efficient and reliable way to access Grid resources. We have developed a new Globus framework

that allows an easier and more efficient execution of jobs on a dynamic Grid environment. This experimental

framework has been developed in the context of the GridWay project, whose aim is to develop user-level

tools to reduce the gap between Grid middleware and application developers, and so make Grid resources

useful and accessible to scientists and engineers. Our personal framework allows users to harness dynamic

resources scattered geographically across the Internet at department, organization or global level. Once a



job issubmitted,it is initially allocatedto a computingresourceaccordingto a resourceselectionpolicy
andmaybemigratedamongtheavailableresourceswhenits requirementschange,a "better"resourceis
discovered,a remotefailureisdetectedor theresourcedoesnotprovidetheexpectedcomputingpower.

Theoutstandingfeatureofourframeworkis itsmodularandsoextensibleapproachto dealwithchanging
resourcecharacteristicsandjob requirements.Theaimsof thisreportareto describeits architectureand
to presentpreliminaryexperiencesof its behaviorwhenmanagingtheexecutionof a computationalfluid
dynamiccodeonaresearchtestbed.ThearchitectureoftheexperimentaltoolkitisdescribedinSection2.
Thefollowingsectionsmotivateanddescribeits mainfunctionalities:resourcediscoveryandselectionin
Section3,filemanagementin Section4andjobexecutionin Section5. Theapplicationmodelispresented
inSection6andtheuserinterfaceisdescribedinSection7.TheGridWayframeworkiscomparedwithother
similarapproachesin Section8. PreliminaryresultsoftheframeworkontheTRGP(TidewaterResearch
GridPartnership)testbedarepresentedinSection9. Finally,Section10includesthemainconclusionsand
outlinesourfuturework.

2. Architecture of the Experimental Framework.TheGridWaysubmissionframeworkprovides
theruntimemechanismsneededfor dynamicallyadaptinganapplicationto a changingGridenvironment.
Thecoreof theframeworkisapersonalSubmission Agent that performs all submission stages and watches

over the efficient execution of the job. Adaptation to changing conditions is achieved by dynamic schedul-

ing. Once the job is initially allocated, it is rescheduled when performance slowdown or remote failure are

detected, and periodically at each discovering interval. Application performance is evaluated periodically at

each monitoring interval by executing a Performance Degradation Evaluator program and by evaluating its

accumulated suspension time. A Resource Selector program acts as a personal resource broker to build a

priorized list of candidate resources. Since both programs have access to files dynamically generated by the

running job, the application has the ability to take decisions about resource selection and to provide its own

performance profile. The Submission Agent (figure 2.1) consists of the following components:

• Request Manager

• Dispatch Manager

• Submission Manager

• Performance Monitor

The flexibility of the framework is guaranteed by a well-defined API (Application Program Interface)

for each Submission Agent component. Moreover, the framework has been designed to be modular, through

scripting, to allow extensibility and improvement of its capabilities. The following modules can be set on a

per job basis:

• Resource Selector

• Performance Degradation Evaluator

• Prolog

• Wrapper

• Epilog

The following actions are performed by the Submission Agent:

• The client application uses a Client API to communicate with the Request Manager in order to

submit the job along with its configuration file, or job template, which contains all the necessary

parameters for its execution. Once submitted, the client may also request control operations to the

Request Manager, such as job stop�resume, kill or reschedule.

• The Request Manager checks the job template, sets up the data internal structures needed to
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FlC. 2.1. Architecture of the experimental framework.

manage the job submission and holds the job in pending state. It then waits for client requests.

The Dispatch Manager periodically wakes up at each scheduling interval, and tries to submit pending

and rescheduledjobs to Grid resources. It invokes the execution of the Resource Selector correspond-

ing to each job, which returns a priorized list of candidate hosts. The Dispatch Manager submits

pending jobs by invoking a Submission Manager, and also decides if the migration of rescheduled

jobs is worthwhile or not. If this is the case, the Dispatch Manager triggers a migration event along

with the new selected resource to the job Submission Manager, which manages the job migration.

The Submission Manager is responsible for the execution of the job during its lifetime, i.e. until it

is done or stopped. It is initially invoked by the Dispatch Manager along with the first selected host,

and is also responsible for performing job migration to a new resource. It also probes periodically

at each polling interval the connection to the GRAM Job Manager and Gatekeeper in order to

detect remote failures. Currently, Globus management components are used to support all these

actions, although another Grid middleware could be employed. The Submission Manager performs

the following tasks:

- Prologing: Preparing the RSL (Resource Specification Language) and submitting the Prolog

executable. The Prolog sets up remote system, transfers executable and input files, and, in the

case of restart execution, also transfers restart files.

- Submitting: Preparing the RSL, submitting the Wrapper executable, monitoring its correct

execution, updating the submission states via Globus callbacks and waiting for migration, stop

or kill events from the Dispatch Manager. The Wrapper wraps the actual job in order to

capture its exit code.



- Canceling: Canceling the submitted job if a migration, stop or kill event is received by the

Submission Manager.

- Epiloging: Preparing the RSL and submitting the Epilog executable. The Epilog transfers back

output files on termination or restart files on migration, and cleans up remote system.

• The Performance Monitor periodically wakes up at each monitoring interval. It requests rescheduling

actions to detect "better" resources when performance slowdown is detected and at each discovering

interval.

The state of the job is monitored and reported to tile user (figure 2.2 shows the job state diagram).
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FIG. 2.2. Job state diagram.

3. Resource Discovery and Selection. Due to the heterogeneous and dynamic nature of the Grid,

the end-u._'r mu._t (._tablish the requirements that must be met by the target resources and a criteria to

rank t|w mawh_l r[._mrces. Both may combine static machine attributes (operating system, architecture,

software availahiliLv...) and dynamic status information (disk space, processor load, free memory,...). In our

framework, t i_, fb_,_ur¢_' Selector is responsible for performing resource discovery and selection following the

preh, rvm'c,_ provid_l by the user.

3.1. The Re_,ource Selector. The Resource Selector is executed by the Dispatch Manager in order

to get a ranktul list of candidate hosts when the job is pending to be submitted, or a rescheduling action has

been retlu(.slcd. The Resource Selector is a script or a binary executable specified in the job template. The

template may al_ include additional parameters needed for resource discovery and selection, such as host

requiremvnt tih._, rank expression files or job limits. Its standard output must show a candidate resource

per line in a sp(_'ifi(" fixed format that includes: data host GRAM Job Manager, execution host GRAM

Job Manager, rank. number of slots, and architecture. The job is always submitted to the default queue.

However, the Resource Selector should verify that the resource keeps a candidate queue according to the job

limits.

This modular approach guarantees the extensibility of the resource selection. Different strategies for

application level scheduling can be implemented, from the simplest one based on a pre-defined list of hosts

to more advanced strategies based on requirement filters, authorization filters and rank expressions in terms

of performance models [31, 20]. The static and dynamic attributes needed for resource discovery and selection



mustbecollectedfromtheinformationservicesin theGridtestbed.Exanlplesof suchservicescould be:

• Globus MDS, which provides the configuration, capability and status of the resources.

• NWS (Network Weather Service) [43], which monitors and dynamically forecasts resource and net-

work performance in order to have more accurate load information and also consider network het-

erogeneity.

• Replica Location Service [19], which provides the physical locations of the logical files involved in

the execution in order to also consider file transfer costs.

The decisions taken by the Resource Selector are as good as the information provided to it. Some

testbeds, like EDG (European Data Grid) [39] and NorduGrid [6], have developed its own MDS schema.

There are also projects under development, like GLUE [9] that is available within MDS 2.2, to provide unified

and standardized schemas for the testbeds to interoperate.

The Resource Selector could also access to other Grid services to negotiate a performance contract with,

for example, a service-oriented Grid architecture for distributed computational economies [35]. A contract

negotiation process could be included within the resource selection functionality and its specifications could

be continually monitored by the Performance Monitor component.

The application could be required to be aware of the Grid environment and take dynamically decisions

about its own resource selection. For example, its requirement profile could change when more resources

(memory, disk...) or different resources (software or license availability) are required, or when a lack of

capacity (disk space for example) is detected. A mechanism to deal with changing requirement profiles and

rank expressions is provided since the files processed by the Resource Selector can be dynamically generated

by the running job.

3.2. Scheduling Policy. The goal of the Resource Selector is to find a host that minimizes total

response time (file transfer and job execution). Consequently, our application level scheduler promotes

the performance of each individual application [26] without considering the rest of pending, rescheduled or

submitted applications. This greedy approach is similar to the one provided by most of the local distributed

resource management tools [22] and Grid projects [31, 20, 11]. The remote resources are "flooded" with

requests and subsequent monitoring of performance degradation allows a better balance by migration.

It is well known that this is not the best approach to improve the productivity of the Grid in terms of the

number of jobs executed per time unit because it does not balance the interests of different applications [40].

Efficient application performance and efficient system performance are not necessarily the same. For example,

when competing applications are executing, the scheduler should give priority to short or new jobs by

temporally stopping longer jobs.

Although currently not provided, the Dispatch Manager could make decisions taking into account all

pending, rescheduled and submitted jobs with the aim of making an intelligent collective scheduling of them,

that is, a user level scheduling approach. Collective scheduling becomes highly important when dealing with

parametric jobs. The Resource Selector could also communicate with higher-level schedulers or metasched-

ulers to take into account system level considerations [40].

4. Data Management. The files which do not have to be accessible to the local host (submission

client) during job execution on a remote host are referred as static files. Examples of these files are input,

output and restart files. On the other hand, the files which, being generated on the remote host by the

running job, have to be accessible to the local host during job execution are referred as dynamic files.

Examples of these files are host requirement, rank expression or performance profile files which are needed

to support dynamic resource selection and performance monitoring.



4.1. Static File Management. Data transfer of static files is performed by two executables, Prolog

and Epilog, specified by the user in the job template file:

• The Prolog executable is responsible for creating the remote experiment directory and transferring

the executable and all the files needed for remote execution, such as input or restart files correspond-

ing to the execution architecture.

• The Epilog executable is responsible for transferring back output or restart files, and cleaning up

the remote experiment directory.

These file transfers are performed through a reverse-server model. The file server (GASS or GridFTP)

is started on the local system, and the transfer is initiated on the remote system. Executable and input

files are assumed to be stored in an experiment directory. The user provides an executable file per each

architecture. Input, output and restart files are by default assumed to be architecture independent (ASCII

or HDF [5]). However, the tool is also able to manage architecture dependent formats at an efficiency cost

because the future candidate resources may be significantly reduced.

As static file transferring only depends on the Prolog and Epilog modules, an experienced user could

implement its own strategy or adapt a existing one to its particular environment:

• A "simple" file staging strategy in which files go from client to remote host before execution and

back to client after execution.

• A more complex file staging strategy in which caches and third-party data transfers are used to

minimize data thrashing between client and remote resources.

• A database strategy in which data are extracted from a remote database (for example, a protein

data bank [17]).

Prolog and Epilog are always submitted to the fork GRAM Job Manager. The Wrapper, and therfore

the actual job, is submitted to the local queue system GRAM Job Manager. In this way, our tool is well-

suited for closed systems such as clusters where only the front-end node is connected to the Internet and

the computing nodes are connected to a system area network, so they are not accessible from the client.

Other submission toolkits (Nimrod/G [16] or EDG JSS [3]) only use one executable, or job wrapper, to set

up the remote system, transfer files, run the executable and retrieve results. A comparison between both

alternatives can be found in [1].

4.2. Dynamic File Management. Dynamic file transferring is not possible through a reverse-server

model. Closed systems prevent jobs running on "private" computational nodes from updating files on the

"public" client host. This problem has been solved by using a file proxy (i.e. GASS or GridFTP server)

on the front-end node of the remote system. In this way, the running job updates its dynamic files locally

within the cluster, via for example NFS, and they are accessible to the client host through the remote file

proxy (figure 4.1).

5. Job Execution. A Grid environment presents unpredictable changing conditions, such as dynamic

resource load, high fault rate, or continuous addition and removal of resources. Migration is the key issue

for adaptive execution of jobs on dynamic Grid environments. Much higher efficiency can be achieved

if an application is able to migrate among the Grid resources, adapting itself according to its dynamic

requirements, the availability of the resources and the current performance provided by them. In our work,

we have considered the following circumstances under which a migration could be initiated:

1. Grid initiated migration

• A new "better" resource is discovered

• The remote resource or its network connection fails
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FIG. 4.1. Access to dynamic files on closed systems through a file proxy.

• Tile submitted job is canceled by the resource administrator

2. Application initiated migration

• The application detects performance degradation or performance contract violation

• Self-migration when the resource requirements of the application change

3. User initiated migration

• The u.,_r explicitly requests a job migration

5.1. Migration Policies. Our framework currently considers the following reasons for rescheduling,

i.e. situations ,ruder wilich a migration event could be triggered:

1. The/hvlm._r Manager receives a rescheduling request from the user.

2. The P_,r_rmance Monitor detects a "better" resource in a given discovering interval.

3. Tile P,.r£Jrmance Monitor detects performance slowdown in a given monitoring interval:

(a) A rr.qcht'duling action is requested if the Performance Degradation Eva]uator returns a true

va]ll(,.

(b) The Submission Manager takes count of the accumulated suspension time spent by the job on

1_'nd,ng amt suspended Globus states. A rescheduling action is requested if the suspension time

exct_t._ a given maximum suspension time threshold.

4. The Submi.<sion Manager detects a failure:

(a) .lob cancellation or premature termination are assumed if a non-cero exit code is captured by

the ll'rapper.

(b) Wrapper cancellation or premature termination are assumed if the job exit code is not received

by the Submission Manager.

(c) The Submission Manager probes periodically at each polling interval the connection to the

GRAM Job Manager and Gatekeeper to detect remote host, network or GRAM Job Manager

crashes

The reason for rescheduling is evaluated to decide if the migration is feasible and worthwhile. Some

reasons, like job cancellation or failure, make the Dispatch Manager immediately trigger a migration event

with a new selected host, even if the new host presents lower rank than the current one. Other reasons, like



newresourcediscovery,maketheDispatdJ Manager trigger a migration event only if the new selected host

presents a higher rank. Other conditions, apart from the reason for rescheduling and the rank of the new

selected host, could be also evaluated: time to finalize, restart file size...

5.2. Performance and Job Monitoring. A Performance Degradation E_'aluator is periodically ex-

ecuted at each monitoring interval by the Performance Monitor to evaluate a rescheduling condition. The

Performance Degradation Evaluator is a script or a binary executable specified in the job template, which

can also include additional parameters needed for the performance evaluation. This modular approach guar-

antees the extensibility of the performance and job monitoring. Different strategies could be implemented,

from the simplest one based on querying the Grid information system about workload parameters to more

advanced strategies based on detection of performance contract violations [41].

The application could be required to have the ability to provide its own performance profile. These

profiles keep a performance measure which describes the performance activity of the running job. A mecha-

nism to deal with application own metrics is provided since the files processed by the Performance Degrada-

tion Evaluator could be dynamic and therefore generated by the running job. For example, a performance

profile file could maintain the time consumed by the code in the execution of a set of given fragments,

in each cycle of an iterative method or in a set of given input/output operations. The rescheduling condi-

tion verified by the Performance Degradation Evaluator could be based on the performance history using

advanced methods like fuzzy logic or comparing the performance with the initial performance attained or a

base performance. This technique can be also applied for self-migration when, for example, a job changes

its dynamic requirement file.

A running job could be temporally suspended by the administrator or by the scheduler of the remote

resource manager. The Submission Manager takes count of the overall suspension time of its job and requests

a rescheduling action if a given threshold is exceeded. Notice that the maximum suspension time threshold

is only effective on queue-based resource managers.

In order to detect remote failure, we have followed an approach similar to that provided by Condor/G [27].

The GRAM Job Manager is probed by the Performance Monitor periodically at each polling interval. If

the GRAM Job Manager does not respond, the GateKeeper is probed. If the GateKeeper responds, a new

GRAM Job Manager is started to resume watching over the job. If the GateKeeper fails to respond, a

rescheduling action is immediately requested.

5.3. Execution Management. When a migration order is received by the Submission Manager, it

cancels the job (if it is still running), invokes the Epilog on the current host (if the files are accessible)

and the Prolog on the new remote host. The local host always keeps the last checkpoint files in case the

connection with the remote host fails. Due to the size of the checkpoint files, migration may be an expensive

operation that is not suitable for given applications or situations.

The Submission Manager uses a wrapper to submit the job on a remote host. The Wrapper executes

the submitted job and writes its exit code to standard output, so the Submission Manager can read it via

GASS. Three situations can occur:

* The exit code is set to a zero value: the job is considered to be done with a success status.

• The exit code is set to a non-zero value: the job is considered to be done with a failed status.

• The exit code is not set: the job has been canceled and, consequently, a job rescheduling action is

requested.

We would like to remark that the capture of the remote execution exit code allows users to define

complex jobs, where each depends on the output and exit code from the previous job. They may even



involvebranchingandloops.

6. Application Model. Wenextdescribethe requiredmodificationsin anapplicationsourcecode
for itsexecutionthroughtheexperimentalframework.Figure6.1showsastandardapplicationmodel.The
applicationprocessesinputfilesinordertogenerateresultswritteninoutputfiles.Standardinput,standard
outputandstandarderrorarebydefaultredirectedto theuserterminal.Additionally restart files can be

generated to provide user level checkpointing. Checkpoint data may be periodically recorded in long-running

applications to provide basic fault tolerance. This technique is a common practice in scientific codes involving

iterative methods.

InputFiles

Standard Input APPLICATION

Standard Output / Error

FIG. 6.1. Standard application model.

The execution of an application in a Grid environment requires modifications in the previous model.

For example, standard input, standard output and standard error can no longer be redirected to user

terminal and have to be redirected to files. Moreover, restart files are highly advisable if dynamic scheduling

is performed. Our migration framework assumes user-level checkpointing managed by the programmer.

Migration is implemented by restarting the job on the new candidate host. Therefore, the job should

generate restart files at regular intervals in order to restart execution from a given point. If these files are

not provided the job is restarted from the beginning. The restart files have to be architectural independent

(ASCII or HDF [5]). In the current version of our tool, users must explicitly manage their own checkpoint

data. We expect in future versions to incorporate the Grid Checkpoint Recovery Application Programming

Interface under specification by the Grid Checkpoint Recovery Working Group of the Global Grid Forum [4].

The application source code does not have to be modified if the application is not required to be aware

of the Grid environment. That is, if the resource selection is based on static requirements and rank ex-

pressions, and performance slowdown is detected by performance profiles not generated by the running

job. However, our infrastructure requires changing the source code or inserting instrumentation instruc-

tions in compiled code when the application takes decisions about resource selection and provides its own

performance profile. Both the Resource Selector and the Performance Degradation Evaluator are always

executed on the local host but they may process dynamic files generated by the running job on the remote

host. Hence, the application model to fully exploit the capabilities of our submission framework is shown in

figure 6.2.

7. User Interface. The current version of the experimental framework is a submission command for

a single job. The user must perform the following operations:
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APPLICATION__ --_

FIG. 6.2. Application model for the submission framework

• Build executables for target platforms and place them in the experiment directory. The command

is based on Globus and so it is not able to do interactive input/output. The standard input/output

can be redirected to files.

• Place input files in the experiment directory.

• Create the job configuration file that specifies the following settings:

- Modules: Resource Selector, Performance Degradation Evaluator, Prolog, and Epilog

- Resource Selector and Performance Degradation EvMuator parameters: host requirement

files, rank expression files, performance profile files...

- Static files: input files, executable file, output files, and restart files.

- Submission agent tuning: monitoring, scheduling, polling and discovering intervals.

- Job execution parameters: application arguments, standard input file, standard output file,

standard error file, execution environment, job limits...

• Run the grid-proxy-init to set up globus credentials.

The command watches over the execution of the job on the Grid. A log file is updated with changes in

the job state, execution host or error condition. The installation of the prototype can be performed by the

end user in his home directory without administrator intervention. Although users could write their own

modules, the best approach is to provide users with a resource selector, performance degradation evaluation,

prolog and epilog module library. In this way, the end user does not have to know about the deployment

details of a given Grid. Moreover if a module requires the job to generate dynamic files, a programming

API should be also provided to be directly applicable to code developers. They could include its functions

to access the adaptive functionality offered by the module.

8. Related Work. The management of jobs within the same department is addressed by many re-

search and commercial systems [22]: Condor, Load Sharing Facility, Sun Grid Engine, Portable Batch

System, LoadLeveler... Some of these tools, such as Sun Grid Engine Enterprise Edition [10], also allow the

interconnection of multiple departments within the same administrative domain, which is called enterprise

interconnection, as long as they run the same distributed resource management software. Other tools, such

as Condor Flocking [24], even allow the interconnection of multiple domains, which is called worldwide in-
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terconnection.However,theyareunsuitablein computationalGridswhereresourcesarescatteredacross
severaladministrativedomains,eachwith its ownsecuritypoliciesanddistributedresourcemanagement
systems.

TheGlobusmiddleware[25]providestheservicesneededto enablesecuremultipledomainoperation
withdifferentresourcemanagementsystemsandaccesspolicies.Therearedifferentprojectsunderway,like
Condor/GandEveryWare,whicharedevelopinguser-orientedsubmissiontoolsovertheGlobusmiddleware
to simplifytheefficientexploitationofacomputationalGrid.

TheCondor/G[27]systemcombinestheadvancesof the Globus toolkit, security and resource access

in multi-domain environments, with the features of the Condor system, management of computation and

harnessing of resources within a single administrative domain. The focus of the Condor/G project is to

simplify the exploitation of Grid resources by job monitoring, logging, notification, policy enforcement, fault

tolerance and credential management.

The EveryWare [42] toolbox is a set of processes and libraries designed to allow an application to

harness heterogeneous Grid infrastructures. A single application can simultaneously combine the useful

features offered by Globus, Legion, Condor, Netsolve, Java, Windows NT or Unix to form a temporary virtual

computational Grid for its own use. EveryWare consists of services implemented over whatever infrastructure

is present: communication and process control, performance sensing and forecasting, scheduling agents and

persistent state management.

Other submission tools, like AppLeS, Nimrod/G, and ILab, provide extra functionalities like management

of array jobs for parametric studies or definition of dependencies between jobs for complex tasks. Since our

tool currently does not provide this feature they cannot be compared in this context. F_ture versions will

include support for parametric studies and complex tasks.

AppLeS (Application Level Scheduling) [18] is a job submission tool that predicts the state of a system

when the application will be executing by using NWS, user preferences and application performance models.

The focus of the AppLeS project is on scheduling, it builds scheduling agents for each application class. For

example, the AppLeS Parameter-Sweep Template (APST) targets Parameter Sweep Applications (PSAs)

and is composed by a Controller (similar to our Request Manager), a Scheduler, similar to our Dispatch

Manager, an Actuator, similar to our Submission Manager, and a Meta-Data Bookkeeper to provide access

to several information services.

Nimrod/G [15], Grid-enabled version for Nimrod, creates parameter studies, performs resource discovery

and scheduling, and manages job submission and remote storage. The focus of this tool is on scheduling

schemes based on computational economy. Individual resources are agglomerated to satisfy deadline or

budget user requirements. The ILab [21] project is focused on the development of an advanced graphical

user tool for parameter study creation that includes a Globus job model.

All aforementioned application schedulers share many features, with differences in the way they are

implemented [29]. We believe that there is no better tool, each focuses on a specific issue and contributes

significant improvements in the field. The outstanding feature of our framework is its modular and so

extensible approach for adaptive execution of applications on dynamic Grid environments. In fact, to the

best of the authors' knowledge, none of previous tools addresses adaptation to changing environments.

The need of a nomadic migration approach for job execution on a Grid environment has been previously

discussed in [30]. The prototype of a migration framework, called the "Worm", was executed in the Egrid

testbed [23]. The "Worm" was implemented within the Cactus programming environment. Cactus is an open

source problem solving environment for the construction of parallel solvers for partial differential equations
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that enablescollaborativecodedevelopmentbetweendifferentgroups[13].Theextensionof the "Worm"
migrationframeworkto makeuseof Gridservicesisdescribedin [30].

Adaptiveexecutionisalsobeingexploredin thecontextoftheGridApplicationDevelopmentSoftware
(GRADS)project[14].TheaimoftheGRADSprojectsisto simplifydistributedheterogeneouscomputingin
thesamewaythat theWorldWideWebsimplifiedinformationsharingovertheInternet.GRADSprovides
newexternalservicesto beaccessedbyGridusersand,mainly,byapplicationdevelopersinorderto develop
grid-awareapplications.Its executionframework[28]is basedon threecomponents:ConfigurableObject
Program,whichcontainsapplicationcodeandstrategiesforapplicationmapping,ResourceSelectionModel,
whichprovidesestimationoftheapplicationperformanceonspecificresources,andContractMonitor,which
performsjobinterruptingandremappingwhenperformancedegradationisdetected.GRADSisanambitious
projectthat involvesseveraloutstandingresearchgroupsin Gridtechnology.TheGRADSprojectis under
development.However,twopreliminaryversionsof thisexecutionmodelhavebeenprototypedin twowell-
knownapplications:Cactus and ScaLAPACK.

Cactus incorporates adaptive resource selection mechanisms (Resource Locator Service) that allow auto-

matic application migration to "better" resources (Migrator Service) to deal with changing resource charac-

teristics and adaptive resource selection mechanisms [12]. The adaptation to dynamic Grid environments has

been studied by job migration to "faster/cheaper" systems, considered when better systems are discovered,

when requirements change or when job characteristics change.

In the context of the GRADS project, it has been demonstrated the usefulness of a Grid to solve large

numerical problems by integrating numerical libraries like ScaLAPACK into the GRADS system [33]. The

Resource Selector component accesses MDS and NWS to provide the information needed by the Performance

Modeler to apply an application specific execution model and so obtain a list of final candidate hosts. The

list is passed to the Contract Developer that approves the contract for the Application Launcher. The

submitted application is monitored by the Contract Monitor through the Autopilot manager [36] that can

detect contract violations by contacting the sensors and determining if the application behaves as predicted

by the model. In the future, a Scheduler could receive this information and migrate the application if the

contract is violated.

The aim of the GridWay project is similar to that of the GRADS project: simplify distributed heteroge-

neous computing. However, its scope is different. Our experimental framework provides a submission agent

that incorporates the runtime mechanisms needed for transparently executing jobs on a Grid. In fact, our

framework could be used as a building block for much more complex service-oriented Grid scenarios like

GRADS. Other projects have also addressed resource selection, data management, and execution adaptation.

We do not claim innovation in these areas, but remark the advantages of our modular architecture for job

adaptation to a dynamic environment:

• It is not bounded to a specific class of application generated by a given programming environment,

which extends its application range.

• It does not require new services, which considerably simplify its deployment.

• It does not necessarily require code changes, which allows reusing of existing software.

• It is extensible, which allows its communication with the Grid services available in a given testbed.

We would like to remark that the experimental framework does not require new system software to

be installed in the Grid resources. The framework is functional on any Grid testbed based on Globus.

We believe that is an important advantage because of socio-political issues; cooperation between different

research centers, administrators and users can be difficult.
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9. Experiences.Wenextdemonstratethecapabilitiesofthepreviouslydescribedexperimentalframe-
work.Thebehaviorofitsadaptationfunctionalityisdemonstratedin theexecutionofacomputationalfluid
dynamics(CFD)code.Thetargetapplicationsolvesthe3DincompressibleNavier-Stokesequationsin the
simulationof a boundarylayerovera flat plate.Thenumericalcoreconsistsin an iterativerobustmulti-
gridalgorithmcharacterizedby a compute-intensiveexecutionprofile[32,34]. Theapplicationgenerates
checkpointfilesat eachmultigriditeration.A partof thejob templateisshownin figure9.1.

Job Template, CFD simulation
...............................

EXECUTABLE FILE=NS3D

EXECUTABLE_ARGUMENTS=input

STDOUT FILEzns3d.out

STDIN_FILE=/dev/null

STDERR FILE=ns3d.err

INPUT FILES="input grid"

OUTPUT_FILES="residual profile"

FIG. 9.1. Job template for the target application.

The experiments have been carried out on the TRGP (Tidewater Research Grid Partnership) Grid. The

TRGP Grid is made up of two virtual organizations (VO), ICASE and The College of William and Mary

computational facilities, that provide an overall performance of 209 Gflops, 116 GB of RAM memory and 3.4

TB of disk. This testbed is a highly heterogeneous environment consisting of different processor architectures

(UltraSPARC and Intel), operating systems (Solaris and Linux), local resource managers (PBS and fork)

and interconnection networks (Fast Ethernet, Gigabit Ethernet, Myrinet and Giganet). See appendix A for

a detailed description of TRGP.

9.1. Description of the Experiment. The experiments have been performed with the following

settings:

1. Resource Selector. Resource selection consists in a shell script that queries MDS for potential

execution hosts, attending the following criteria:

• Host requirements are specified in a host requirement file, which can be dynamically gen-

erated by the running job. The host requirement setting is a LDAP (Lightweight Directory

Access Protocol) filter, which is used by the Resource Selector to query MDS and so obtain a

preliminary list of potential hosts. In the experiments below, we will impose two constraints,

an SPARC architecture and a minimum main memory of 512MB, enough to accommodate the

CFD simulation. The host requirement file will be of the form:

(& (Mds-Comput er- isa=spar c)

(Mds-Memory-Ram-freeMB>=512 ))

The Resource Selector also performs an user authorization filter (via GRAM dry-run) on those

hosts.

• A rank is assigned to each potential host. Since our target application is a computing in-

tensive simulation, the rank expression benefits those hosts with less workload and so better
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,

performance. The following expression was considered:

FLOPS if CPU15 > 1;(9.1) rank = FLOPS.CPU15 if CPU15 < 1.

where FLOPS is the peak performance achievable by the host cpu, and CPU15 is the total

free CPU time in the last 15 minutes, as provided by the MDS default scheme. It is interesting

to remark that in the case of heterogeneous clusters FLOPS is the average performance of

all computing nodes. However other alternatives have been proposed in the literature. For

example, in the NorduGrid project [6] a more conservative approach is taken, equaling FLOPS

to the performance of the slowest node.

Performance Degradation Evaluator. The performance of the target application is based on

the time spent in each multigrid iteration. The time consumed in each iteration is appended by

the running job to a performance profile file specified as dynamic in the job template. The

Performance Degradation Evaluator verifies at each monitoring interval if the time consumed in

each iteration is higher than a given threshold. This performance contract (iteration threshold) and

contract monitor (Performance Degradation Evaluator) are similar to those used in [12].

File Staging. The Prolog and Epilog modules were implemented with a shell script that uses

Globus transfer tools (i.e. globus-url-copy) to move files to/from the remote host. These files

include the executable itself and a computational mesh (needed for the CFD simulation) in the stage-

in step (Prolog), and the output solution or restart file in the stage-out step (Epilog). Transfer sizes

and Prolog/Epilog execution times between TRGP VO's are shown in table 9.1, for both first and

restart executions.

TABLE 9.1

Prolo9 and Epilog execution times between TRGP virtual organizations

Stage Step

First Prolog

Execution Epilog

Restart Prolog

Execution Epilog

Size Trans_r Time (sec.)

(Kbytes) ICASE_-_WMCOMPSCI ICASEoICASE

3080 57 34

13 17 11

4037 75 45

970 29 19

4. Intervals. Monitoring, polling and scheduling intervals were set to 10 seconds.

9.2. Results. The scenarios described below were artificially created. However, they resembles real

situations that may happen in a Grid.

1. Periodic rescheduling to detect new resources.

In this case, the discovering interval has been deliberately set to 60 seconds in order to quickly

re-evaluate the performance of the resources. The execution profile of the application is presented

in figure 9.2. Initially, only ICASE hosts are available for job submission, since SciCIone has been

shutdown for maintenance. The Resource Selector chooses urchin to execute the job, and the files are

transferred (prolog and submission in time steps 0s-34s). The job starts executing at time step 34s.

A discovering period expires at time step 120s and the Resource Selector finds SciCIone to present

higher rank than the original host (time steps 120s-142s). The migration process is then initiated
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(cancellation, epilog, prolog and submission in time steps 142s-236s). Finally the job completes its

execution on SciCIone.

Figure 9.2 shows how the overall execution time is 42% lower when the job is migrated. This speedup

could be even greater for larger execution times. Note that migration time, 95 seconds, is about

20% of the overall execution time. We would like to remark that the framework also allows the user

to force a job reschedule to detect new resources.
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FIC. 9.2. Execution profile of the CFD code when a new "better" resource is detected.

2. Performance degradation detected using a performance profile dynamic file.

The Resource Selector finds whale to be the best resource, and job is submitted (prolog and sub-

mission in time step 0s-34s). However, whale is overloaded with a compute-intensive workload at

time step 34s. As a result, a performance degradation is detected when the iteration time exceeds

the iteration time threshold (40 seconds) at time step 209s. The job is then migrated to SciCIone

(cancellation, epilog, prolog and submission in time steps 209s-304s), where it continues executing

from the last checkpoint context. The execution profile for this situation is presented in figure 9.3.

In this case the overall execution time is 35% lower when the job is migrated. The cost of migration,

95 seconds, is about 21% of the execution time.

3. Self-migration when job requirements change. The multigrid method in the CFD code is

a full multigrid algorittnn (FMG). The computations are initiated in the coarsest grid, once the

discrete system is solved the solution is transferred to the next finer level. The prolongated solution

is then used as initial guess of the multigrid method in such level, this procedure is repeated until

the finest grid is reached. The running job requests a higher amount of RAM memory, from 512 MB

to 2 GB, before processing the finest grid in order to assure that it will fit in main memory. The

job changes the host requirement dynamic file into:

(& (Mds-Computer-isa=spar c)

(Mds-Memory-Ram- freeMB>=2040) )

and requesta reschedulingby writinga high iterationtime in the performance profile dynamic

file.As resultofthisupdate the job ismigrated from urchin,where was initiallysubmitted,to whale.
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FIG. 9.3. Execution profile of the application when a workload is executed.

4. The remote resource or its network connection fails. The Resource Selector finds whale to

be the best resource, and the files are transferred (Prolog and submission in time steps 0s-45s).

Initially, the job runs normally. At time step 125s, whale is disconnected. After 50 seconds, a

connection failure is detected and the job is migrated to SciCIone (Prolog and submission in time

steps 175s-250s). The application is executed again from the beginning because the local host does

not have access to the checkpoint files generated on whale. Finally the job completes its execution

on SciCIone.

10. Conclusions and Future Work. The exploitation in an aggregated form of geographically dis-

tributed resources is far from being straightforward. In fact, the Grid will be for many years a challenging

area due to its dynamic and complex nature. We believe that the GridWay submission framework is a step

forward to insulate the application developer from the complexity of the Grid submission.

The experimental framework provides the runtime mechanisms needed for dynamically adapting an

application to a changing Grid environments. The core of the framework is a personal Submission Agent that

transparently performs all submission stages and watches over the efficient execution of the job. Adaptation

to the dynamic nature of the Grid is achieved by implementing automatic application migration following

performance degradation, "better" resource discovery, requirement change, owner decision or remote resource

failure. The application has the ability to take decisions about resource selection and to self-migrate to

a new resource. Its design is based on a modular architecture to allow extensibility of its capabilities.

An experienced user can incorporate different resource selection and performance degradation strategies to

perform job adaptation.

The experimental results are promising because they show how application adaptation achieves enhanced

performance. The response time of the target application is reduced when it is submitted through the

experimental framework. Simultaneous submission of several applications could be performed in order to

harness the highly distributed computing resources provided by a Grid. Our framework is able to efficiently

manage applications suitable to be executed on dynamic conditions. Mainly, those that can migrate their
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state efficiently.

The described submission toolbox addresses important issues: performance and job monitoring, mi-

gration by job restarting, data movement, resource selection and remote connection failure. However, the

toolbox should address other desirable issues like: credential expiry, improved checkpoint management, client

failure tolerance, improved API and command line interface, graphical user interface and array jobs.
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Appendix A. The Tidewater ResearchGrid.1
TileTidewaterResearchGridPartnership(TRGP)[8]wasstartedinsummer2001to fosterthedevelop-

mentanduseofGridcomputingforavarietyofapplicationsin thecomputationalsciences.TRGPmembers
at theendof August2002,whentheexperimentalresultsweretaken,includeICASEandtheCollegeof
William& Mary(seefigureA.1foraschematicrepresentation).

intel/linux

spare/solaris

FIG. A.1. Schematic representation o[ the TRGP Grid.

The TRGP Grid is highly heterogeneous. It consists of systems with different processor architectures

(UltraSPARC and Intel), operating systems (Solaris and Linux), local resource managers (PBS and fork)

and interconnecting networks (Fast Ethernet, Gigabit Ethernet, Myrinet and Giganet). The workload is

dynamic since resources are mainly exploited by internal users. Each resource provides Globus 2.0 GSI,

GRAM, GridFTP, GASS and MDS components. The hierarchical TRGP information service is shown in

figure A.2.

The TRGP Grid consists of the following computing resources:

• Coral [2] is a 68-node Linux Intel Pentium cluster with a total of 103 processors, 55GB of RAM

memory, 1.9TB of raw disk and 89 Gflops peak floating-point performance. Table A.1 summarizes

the main features of its architecture.

• SciCIone [7] is a 108-node Solaris Sun UltraSPARC cluster with a total of 160 processors, 54 GB of

1This section presents the TRGP configuration at the end of August 2002, when the experimental results were taken.
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, I
rnds.vo- name=WMCOMPSCI Isciclonewrn.edu

$clclorm.wn.edu

mds-vc-narne=TROP, o= grid

I whale icase edu

!
mds-vo-narne=lCASE
whale.lcase.edu

server coral icase eelu

urchin.icaSeredU

carp t¢_se edu

A = GRIS

= GIIS

tetra icase.edu

FiG. A.2. TRGP GHS hierarchy configuration.

RAM memory, 1.6 TB of disk capacity and 115 Gflops peak floating-point performance. Table A.2

summarizes the main features of its architecture.

• 5 Sun Solaris workstations (whale, urchin, carp, tetra and bonito) with a total of 7 processors, 5.7

GB of RAM memory, 0.2 TB of disk and 4.9 Gflops peak floating-point performance.

The complete Grid brings together 181 nodes with 271 processors, 116 GB of RAM memory, 3.4 TB of

disk and 209 Gflops of peak performance. The interconnection between both sites is performed by a "public"

non-dedicated network. The ICASE workstations and servers are interconnected by a Fast Ethernet switched

network.
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TABLE A.1

Coral cluster

Subcluster Nodes CPU Type Storage (per node) Network

RAM HD

Phase I 8 Single 400MHz/0.5MB PII 384MB 6.5GB (EIDE) Fast Ether.

Phase II 16 Dual 500MHz/0.SMB PIII 512MB 14.4GB (EIDE) Fast Ether.

Giganet

Phase III 16 Dual 800MHz/0.SMB PIII 1GB 30GB (EIDE) Fast Ether.

Giganet

Phase IV 24 Single 1.7GHz/0.25MB P4 1GB 6.5GB Fast Ether.

or 2GB or 20GB (EIDE)

_ont-end 1 Dual 400MHz/0.5MB PII 512MB 76GB* (EIDE) Gigabit Ether.

File Server 2 Dual 500MHz/0.5MB PIII 512MB 108GB* (SCSI) Gigabit Ether.

384MB 640GB* (EIDE)

18GB* (SCSI)

Dual 400MHz/0.5MB PII

Subcluster

interconnection

• Phase II and Phase III nodes share a 32-port Fast Ethernet and a 32-port

Giganet switches

• Phase I and Phase IV nodes share a 32-port Fast Ethernet switch

• There is a dual Gigabit Ethernet link between both (Phase II/III and Phase I/IV)

Fast Ethernet switches

• A Gigabit Ethernet switch interconnects both (Phase II/III and Phase I/IV) Fast

Ethernet switches, the front-end server, and the file server

O.S. Linux Red Hat 7.2

GRAM service Fork Job Manager

PBS Job Manager

* Unformatted capacity
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TABLE A.2

Sciclone cluster

Subcluster Nodes CPU Type Storage (per node) Network

RAM HD

Typhoon 64 Single 333MHz/2MB 256MB 9.1GB (EIDE) Fast Ether.

UltraSPARC IIi (Sun Ultra 5)

Tornado 32 Dual 360MHz/4MB 512MB 18.2GB (SCSI) Fast Ether.

UltraSPARC II (Sun Ultra 60) Myrinet

Hurricane 4 4GB 18.2GB (SCSI)Quad 450MHz/4MB

UltraSPARC II (Sun Enterprise 420R)

512MB 18.2GB (SCSI)Dual 360MHz/4MB

UltraSPARC II (Sun Ultra 60)

Gigabit

Myrinet

Front-end 1 Dual 400MHz/4MB 1GB 91GB (SCSI) Gigabit

UItraSPARC II (Sun Ultra 60) Myrinet

File Server 6 Dual 360MHz/4MB 512MB 45.5GB or Gigabit

(Gulfstream) UltraSPARC II (Sun Ultra 60) 63.7GB (SCSI) Myrinet

Subcluster

interconnection

• Typhoon nodes are interconnected by two 36-port Fast Ethernet switches

• Tornado nodes are interconnected by one 36-port Fast Ethernet switch

• Gulfstream nodes are interconnected by one 12-port Gigabit Ethernet switch

• Hurricane nodes are interconnected by one 12-port Gigabit Ethernet switch

• A 12-port Gigabit Ethernet switch interconnects Typhoon and Tornado 36-port Fast

Ethernet switches, and Gulfstream 12-port Gigabit Ethernet switch

• Three Gigabit links interconnects Gulfstream and Hurricane 12-port

Gigabit Ethernet switches

• A 64-port Myrinet switch interconnects Tornado, Gulfstream, and Hurricane nodes

O.S. Sun Solaris 7

GRAM service Fork Job Manager

PBS Job Manager
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Workstation O°S, GRAM

TABLE A.3

ICASE workstations

CPUs Storage (per node)

RAM HD

Whale Sun Solaris 7 Fork Dual 450MHz/4MB 4GB 40GB (SCSI)

UltraSPARC II (Sun Ultra 80)

Urchin Sun Solaris 7 Fork Dual 168MHz/0.5MB 1GB 150GB (SCSI)

UltraSPARC I (Sun Ultra 2)

Carp Sun Solaris 7 Fork Single 450MHz/0.2MB 256MB 8.1GB (EIDE)

UltraSPARC IIi (Sun Ultra 5)

Tetra Sun Solaris 7 Fork Single 400MHz/0.2MB 256MB 19GB (EIDE)

UltraSPARC IIi (Sun Ultra 5)

Bonito Sun Solaris 7 Fork Single 360MHz/0.2MB 256MB 8.1GB (EIDE)

UltraSPARC IIi (Sun Ultra 5)
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