AERODYNAMIC SHAPE OPTIMIZATION USING AN EVOLUTIONARY ALGORITHM

Terry L. Holst and Thomas H. Pulliam NASA Ames Research Center NASA Advanced Supercomputing (NAS) Division Applications Branch Moffett Field, CA 94035

Abstract

A method for aerodynamic shape optimization based on an evolutionary algorithm approach is presented and demonstrated. Results are presented for a number of model problems to access the effect of algorithm parameters on convergence efficiency and reliability. A transonic viscous airfoil optimization problem—both single and two-objective variations—is used as the basis for a preliminary comparison with an adjoint-gradient optimizer. The evolutionary algorithm is coupled with a transonic full potential flow solver and is used to optimize the inviscid flow about transonic wings including multi-objective and multi-discipline solutions that lead to the generation of pareto fronts. The results indicate that the evolutionary algorithm approach is easy to implement, flexible in application and extremely reliable.

AERODYNAMIC SHAPE OPTIMIZATION USING EVOLUTIONARY ALGORITHMS

Seminar California Institute of Technology

Department of Aeronautics Pasadena, California March 3, 2003

TERRY L. HOLST
TOM PULLIAM
NASA Advanced Supercomputing (NAS) Division
NASA Ames Research Center

PRESENTATION OUTLINE

- **► EVOLUTIONARY ALGORITHMS--GENERAL**
- **► SINGLE OBJECTIVE RESULTS**
- ► MULTI-OBJECTIVE ALGORITHM CHARACTERISTICS--PARETO FRONTS
- ► COMPARISON OF RESULTS FROM AN EVOLUTIONARY ALGORITHM AND AN ADJOINT GRADIENT BASED ALGORITHM
- ► ADDITIONAL COMPUTATIONAL RESULTS
- **►** CONCLUSIONS

GENERAL CHARACTERISTICS: SINGLE-OBJECTIVE EVOLUTIONARY ALGORITHMS

EVOLUTIONARY ALGORITHMS—GENERAL

- ► EVOLUTIONARY ALGORITHMS (EA) are search algorithms based on natural selection. "They combine survival of the fittest with structured yet randomized information exchange..." GOLDBERG (1989)
- ► EA optimization has many advantages:
 - **▶** Simplicity
 - **▶** Robustness
 - ▶ Wide applicability
 - ► Embarrassingly parallel implementation
- ► EA optimization works for design spaces that are
 - **▶** Function discontinuous
 - **▶** Derivative discontinuous
 - ► Multi-modal
 - ► Multi-objective
- ► EAs typically require more function evaluations than other methods especially gradient-based methods

EVOLUTIONARY ALGORITHM CHARACTERISTICS

- ► ENCODING (DESIGN SPACE PARAMETERIZATION)
 - ► Each problem being optimized must be *representable* as a set of parameters called GENES, e.g., geometric parameters used in aerodynamic shape optimization. One set of genes is called a CHROMOSOME.
 - ► Chromosomes are constructed in one of two ways:
 - **▶**Bit strings
 - ► Real number strings

▶ FITNESS

► A FITNESS FUNCTION is used to evaluate figure of merit for each chromosome, e.g., pressure integration to obtain lift

▶ SELECTION

- ► SELECTION operation is used to determine which chromosomes will be carried forward to the next generation
- ► More fit individuals are always favored in the selection process

EVOLUTIONARY ALGORITHM—SELECTION

TWO SELECTION ALGORITHMS HAVE BEEN STUDIED

Multiple pass selection ("greedy selection")

• FIRST PASS: Select all chromosomes ranked 1

SECOND PASS: Select all chromosomes ranked 1 and 2

• THIRD PASS: Select all chromosomes ranked 1, 2 and 3

And so on until NC chromosomes have been selected

Tournament selection

- Select the NOB chromosomes with the highest fitness in each objective
- Select three chromosomes at random and compare rankings
- Retain the highest ranking (in case of ties, retain the first selected)
- Repeat until NC chromosomes have been selected

EVOLUTIONARY ALGORITHM CHARACTERISTICS—CONT.

- ► New Generation is Finalized Using Various Modification Operators
 - ► PASSTHROUGH (Controlled by P₁)
 - ►Small number of chromosomes with highest rankings included without modification (ELITISM)
 - ► CROSSOVER (Controlled by P₂)
 - ▶Two chromosomes (PARENTS) are chosen at random from new generation
 - ► Genes are combined using an averaging operator to produce a CHILD with shared characteristics from each PARENT
 - **► MUTATION**
 - ▶ Random gene chosen from random chromosome in new generation
 - ► Using a small probability the chosen gene is randomly modified
 - ▶Two types of mutation used
 - ► PERTURBATION MUTATION: Changes are small (Controlled by P₃)
 - ► Standard MUTATION: Changes are large (Controlled by P₄)
 - ► MODIFICATION OPERATOR USAGE CONTROLED BY P-VECTOR--∑P_i=1.0
- *CROSSOVER is generally viewed as most important operation for producing a rapid search or exploration.
- *MUTATION adds randomness, ensuring that no part of design space is neglected.

SAMPLE RESULTS--SINGLE OBJECTIVE

- ►HILL CLIMBING PROBLEM
 - **► TWO GENES**
 - ► MULTI-MODAL (MULTIPLE HILLS AND VALLEYS)
- **▶**TRANSONIC WING OPTIMIZATION
 - **► LIFT-TO-DRAG MAXIMIZATION**
 - **► AERODYANMIC FUNCTION EVALUATIONS**
 - ► TRANSONIC OVERSET POTENTIAL SOLVER (TOPS)
 - **▶**CHIMERA ZONAL GRID APPROACH
 - ►HYPGEN USED FOR WING VOLUME GRID GENERATION
 - **► WING PARAMETERIZATION**
 - ►HICKS-HENNE BUMP FUNCTIONS USED (UPPER SURFACE ONLY)
 - ► LEADING EDGE, TRAILING EDGE AND LOWER SURFARE FIXED
 - ► FOUR BUMPS AT TWO STATIONS (ROOT AND TIP) + TWIST >> TEN GENES (GEOMETRIC DECISION VARIABLES)
 - **►LINEAR LOFTING BETWEEN ROOT AND TIP**
 - **▶FIXED PLANFORM**

HILL CLIMBING PROBLEM

ISOMETRIC VIEW OF FUNCTION USED IN HILL CLIMBING PROBLEM

SAMPLE EA CONVERGENCE β=0.01, CONV=10⁻⁵, NC=20

EA CONVERGENCE—HILL CLIMBING PROBLEM

EFFECT OF P ON CONVERGENCE CONV = 10^{-5} , $\beta = 0.01$

Ames Research Center

PRESSURE DISTRIBUTIONS—WING OPTIMIZATION

TR = 0.333

AR = 6.0

 $\Lambda_{\text{LE}} = 36.65^{\circ}$

 $RMAX < 10^{-6}$

NG = 10

NC = 20

 $\beta = 0.3$

P = (0.1, 0.2, 0.3, 0.4)

OBJ = $1/(C_D/C_L + (C_L - 0.45)^2)$

MACH NUMBER CONTOURS—WING OPTIMIZATION

 $M_{\infty} = 0.84$, $\alpha = 4^{\circ}$, RMAX < 10^{-6} , NG = 10, $\beta = 0.3$, P = (0.1, 0.2, 0.3, 0.4)

BASELINE SOLUTION

OPTIMIZED SOLUTION

EA CONVERGENCE—WING OPTIMIZATION

EFFECT OF POPULATION SIZE ON GA CONVERGENCE

 $M_{\infty} = 0.82$, $\alpha = 4^{\circ}$, RMAX < 10^{-6} , NG = 55, $\beta = 0.3$, P = (0.1, 0.3, 0.4, 0.2)

MULTI-OBJECTIVE EVOLUTIONARY ALGORITHM CHARACTERISTICS

MULT-OBJECTIVE OPTIMIZATION--GENERAL

►EAS ARE USEFUL FOR MULTI-OBJECTIVE OPTIMIZATION, E.G., MAX L/D AND MIN WEIGHT

PRESENT EVOLUTIONARY ALGORITHM—NOTATION

▶ The ith gene in the jth chromosome of the nth EA generation is indicated by

$$x_{i,j}^n$$

► The jth chromosome within the nth generation composed of NG genes

$$\mathbf{X}_{j}^{n} = (x_{1,j}^{n}, x_{2,j}^{n}, ..., x_{i,j}^{n}, ..., x_{NG,j}^{n})$$

▶ The fitness vector associated with the jth chromosome and the nth generation

$$\mathbf{F}_{j}^{n} = [f_{1}^{n}(\mathbf{X}_{j}^{n}), f_{2}^{n}(\mathbf{X}_{j}^{n}), \dots, f_{NOB}^{n}(\mathbf{X}_{j}^{n})]$$

where NOB is the number of objective functions.

MULTIPLE OBJECTIVE OPTIMIZATION PARETO FRONT DEFINITIONS

- ► PARETO OPTIMAL SET or PARETO FRONT :
 - ► The optimal result of a multi-objective optimization
- ► Membership in the Pareto Optimal Set determined using the concept of DOMINANCE:

Chromosome X_a dominates chromosome X_b iff $f_{a,k} \ge f_{b,k}$ for all k with $f_{a,k} > f_{b,k}$ for at least one k

- ► Chromosome rank tied to dominance.
 - ► Several ranking algorithms available:
 - **▶**Goldberg ranking
 - ▶ Fonseca and Fleming ranking
 - **▶**Others

MULTI-OBJECTIVE OPTIMIZATION RANKING

► Goldberg ranking using maximization for two objectives

MULTIPLE OBJECTIVE OPTIMIZATION ACTIVE AND ACCUMULATION FILES

► ACTIVE FILE:

▶Current collection of chromosomes (nth population)

► ACCUMULATION FILE:

- ► Collection of all #1 ranked chromosomes discovered during EA iteration
- ► ACCUMULATION FILE development and use:
 - ► Add all newly discovered #1 ranked chromosomes
 - ► Cull old individuals that lose dominance
 - ►Increases in size with EA iteration
 - **▶**Used in active file ranking
 - ► Not used in the EA selection/crossover/mutation process (Some variations do use accumulation file in selection)

COMPARISON OF ADJOINT GRADIENT AND EVOLUTIONARY ALGORITHM APPROACHES

COMPARISON OF EVOLUTIONARY AND ADJOINT GRADIENT METHODS

- ► ADJOINT GRADIENT (AG) METHOD
 - ► ADJOINT METHOD USED TO DETERMINE DESIGN SPACE GRADIENTS
 - ▶BFGS QUASI-NEWTON APPROACH USED FOR GRADIENT OPTIMIZATION
 - ► WEIGHTED OBJECTIVE FUNCTION (WOF) USED FOR "MULTI-OBJECTIVE" OPTIMIZATIONS, i.e., OBJ^{NEW} = W*OBJ₁+(1-W)*OBJ₂
- ► EVOLUTIONARY ALGORITHM (EA)
 - ►WOF AND DOMINANCE PARETO FRONT (DPF) APPROACHES BOTH USED
- ► MULTI-OBJECTIVE VISCOUS AIRFOIL OPTIMIZATION:
 - ►ALL FUNCTION EVALUATIONS PERFORMED USING ARC2D
 - ▶STEADY STATE SOLUTIONS TO NAVIER-STOKES EQUATIONS
 - ► SPALART-ALMARAS TURBULENCE MODEL
 - **▶**B-SPLINE REPRESENTATION OF AIRFOIL USED
 - FIVE SPLINE KNOTS ON EACH SURFACE PLUS α -- TOTAL OF 11 GENES (DECISION VARIABLES)
- ▶ Details found in Pulliam, Nemec, Holst, Zingg, AIAA Paper 2003-0298.

PARETO FRONT COMPARISONS

$$M_{\infty}$$
= 0.7, Re = 9X10⁶, C_{l}^{*} = 0.55, C_{d}^{*} = 0.0095

COMPARISON OF AG-WOF AND EA-DPF RESULTS

$M_{\infty} = 0.7$, Re = 9X10⁶, $C_i^* = 0.55$, $C_d^* = 0.0095$

W = 0.2

W = 0.5

AG AND EA COMPARISON CONCLUSIONS

- ► ALL METHODS PRODUCED CONSISTENT PARETO FRONTS
- ► AG-WOF RESULTS ARE MORE TIGHTLY CONVERGED THAN EA-BASED RESULTS
- ► AG-WOF APPROACH INVOLVES A SIGNIFICANT AMOUNT OF CODING FOR EACH IMPLEMENTATION WHEREAS THE TWO EA APPROACHES DO NOT
- ► SPEED COMPARISONS:
 - ► AG-WOF ~ 30 TIMES FASTER THAN EA-WOF FOR SINGLE-OBJECTIVE OPTIMIZATION
 - ► AG-WOF ~ 4 TIMES FASTER THAN EA-DPF FOR TWO-OBJECTIVE OPTIMIZATION
 - ► AG-WOF 15 POINTS ON PARETO FRONT POINTS
 - ► EA-DPF 500 POINTS ON THE PARETO FRONT

EA RESULTS IN THREE DIMENSIONS

▶CASES PRESENTED

- **► SINGLE-OBJECTIVE DRAG MINIMIZATION**
- **▶**TWO-OBJECTIVE SINGLE-DISCIPLINE MINIMIZATION
- **▶**TWO-OBJECTIVE MULTI-DISCIPLINE MINIMIZATION

WING PARAMETERIZATION

- Wing defined using N airfoil defining stations
- Each airfoil defined using Sobieczky parameterization (see definition below)
- Twist angle added to each defining station >> total number of parameters = 11N
- Linear lofting used between each defining station

$$z = \sum_{n=1}^{6} a_n \bullet x^{n-1/2}$$

FUNCTION EVALUATIONS

- **► AERODYNAMIC FUNCTION EVALUATIONS**
 - ► TOPS (TRANSONIC OVERSET POTENTIAL SOLVER)
- ► TWO STATIONS (ROOT AND TIP) USED, I.E., NUMBER OF GENES (NG) IS 22
- **▶ WEIGHT FUNCTION EVALUATIONS**
 - **► SIMPLE BOX BEAM MODEL**
 - ► USES AERODYNAMIC LOADS TO ESTIMATE WEIGHT SO THAT MAX STRESS*FOS NOT EXCEEDED
 - ► SHEAR AND BENDING INCLUDED BUT NOT TORSION

SINGLE-OBJECTIVE WING OPTIMIZATION

 $M_{\scriptscriptstyle \infty} = 0.84,\, C_L = 0.45,\, RMAX < 10^{-6}$, NG = 22, NC = 20

GA CONVERGENCE CHARACTERISTICS DRAG MINIMIZATION

 $M_{\infty} = 0.84$, $C_L = 0.45$, RMAX < 10^{-6} , NG = 22

ON GA CONVERGENCE

GA OPERATOR EFFECTIVENESS NC = 20

GA CONVERGENCE CHARACTERISTICS TWO-OBJECTIVE, SINGLE DISCIPLINE OPTIMIZATION

 $M_{\infty} = 0.84$, $C_{L} = 0.45$, RMAX < 10^{-6} , NG = 22

GA CONVERGENCE CHARACTERISTICS TWO-OBJECTIVE, TWO-DISCIPLINE OPTIMIZATION

 $M_{\infty} = 0.84$, $C_L = 0.45$, RMAX < 10^{-6} , NG = 22

CONCLUDING REMARKS

EVOLUTIONARY ALGORITHMS REPRESENT AN ATTRACTIVE ALTERNATIVE FOR FINDING OPTIMAL SOLUTIONS IN ENGINEERING DESIGN

Strengths include:

- **▶** Robustness
- **▶** Flexibility
- ► Ease of implementation
- ► Embarrassingly parallel (ideal for heterogeneous distributed computing)
- ► Amenable to multi-modal design spaces
- ► Ability to work for multi-objective cases (pareto fronts)

Weaknesses include:

- **▶** Potentially expensive
- ▶ Difficult to know when convergence is reached

Future focus on:

- ► Efficiency improvements especially for multi-objective cases
- ► Parallel implementation (load balancing)
- Application to other problems