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Late-time dynamics and morphology of a stratified turbulent shear layer are examined

using 1) Reynolds-stress and heat-flux budgets, 2) the single-point structure tensors in-

troduced by Kassinos et al. (2001), and 3) flow visualization via 3D volume rendering.

Flux reversal is observed during restratification in the edges of the turbulent layer. We
present a first attempt to quantify the turbulence-mean-flow interaction and to charac-

terize the predominant flow structures. Future work will extend this analysis to earlier
times and different values of the Reynolds and Richardson numbers.

1. Introduction

Stable density stratification poses several significant challenges for turbulence model-

ing. Unlike the case of unstable stratification (for which numerous potential turbulence

nucleation sites may trigger volume-filling motion), turbulence in stable stratification
must satisfy more difficult onset conditions, and once initiated, must combat the damp-

ing effects of the background density gradient, which acts to confine the turbulence in

the vertical direction and eventually to suppress it.

There are two primary mechanisms by which naturally-occurring turbulent motion

may be initiated in stably-stratified fluids: 1) shear instability and 2) internal gravity-

wave breaking. In both cases conditions for onset are satisfied by wind-driven forcing,

either such that a) local Richardson-number criteria are met or b) propagating waves

are generated which travel into regions of favorable shear or density variation for over-

turning. Once overturning and the consequent turbulent mixing occurs and subsides, the

resulting background velocity and density profiles are left in a restratified state that is
only marginally unstable, optimally configured to act as a nucleation site for the next

turbulence-instigating event, even if that event does not occur for a significant period of
time.

The challenge for modeling turbulence in stable environments is that the confinement

in the vertical direction is often severe (e.g., a few hundred meters in the troposphere

and stratosphere and only tens of meters in the ocean thermocline); hence the entire

process (i.e., not just the smallest scales) can be sub-grid in scale. Nevertheless, the

impact on mixing and mean flows can be significant, and because the restratified layer

is marginally unstable and will therefore probably become unstable again at some time

in the future, potential subgrid-scale (SGS) temporal coherence over very long periods
of time is possible. Even more challenging is the characterization of SGS wave transport

processes and distant overturning (possibly in remote restratification zones), implying the

necessity for non-local SGS descriptions of wave dynamics and transport and coupling

to restratified layers which will likely also be sub-grid in scale.

f Norwegian Defence Research Establishment (NDRE)
$ Colorado Research Associates Div., Boulder, CO, NorthWest Research Associates, Inc.



246B.A. Pettersson Reif, J. Werne, O. Andreassen, C. Meyer _ M. Davis-Mansour

In this report we examine some of the aspects of restratification in a turbulent mixing

layer generated by the Kelvin-Helmholtz (KH) instability. Because restratification occurs

first in the edges of the layer, much of our interest during this initial effort is focused on

the dynamics in the layer edges and in comparisons between the edges and the middle

of the layer. Our near-term goals are to characterize the dynamics of the fluctuating

fields and the flow structures during restratification, and to examine the ramifications

for modeling. To this end, we begin by making a detailed exploration of the budgets

for the Reynolds stress and heat flux and by exploring the potential of the single-point

structure tensors introduced by Kassinos et al. (2001) for describing the flow features
and morphology. If this latter effort is successful, we anticipate these structure tensors

may 1) provide a means to characterize the energy-containing structures and 2) be a

valuable component in future modeling efforts. More work is necessary to expand on the

work we begin here.

2. Numerical simulations

2.1. Problem formulation

To simulate the non-linear evolution of the Kelvin-Helmholtz instability and subsequent

turbulence dynamics, we begin with the Boussinesq approximation in a Cartesian geom-
etry. A streamwise background flow u = [7o tanh(z/h) is initiated with constant velocity

Uo and length scale h; z is the vertical dimension. The background temperature is initially

linear: T = _3z, where/3 is the constant mean gradient.

The equations of motion describing momentum, heat, and mass conservation are

Otff + _ × if= Re -1V2ff - _ (P + ff "g /2 ) + Ri T, (2.1)

OfT + ft. _T = Pe-IV2T , and (2.2)

= o. (2.3)

Here ff = (u, v,w) and _ = (x, y,z) are velocity and position vectors; _ = V x ft.

All quar_tities are non-dimensional, using characteristic time h/Uo, length h, velocity

Uo, and temperature 13h scales. The non-dimensional parameters Ri = N2/max(0zu) 2,

Re = Uoh/v, and Pe = Uoh/_ are the Richardson, Reynolds, and Peclet numbers, and

Ri = Ri 2. N 2 = 9a13 is the square of the buoyancy frequency, and v and _ are the

kinematic viscosity and thermal diffaxsivity. 9 and a are the acceleration due to gravity

and the thermal expansion coefficient, respectively. Ri = 0.05 and Re = Pe = 2500 are

used for the 3D solutions presented below. Equality of Re and Pe implies Pr = u/_ = 1,

which is near the value for air (Prair _ 0.7), while Ri < 0.25 indicates dynamic instability

(Miles (1960)).

To obtain numerical solutions we proceed as follows, First, the solenoidal condition

(2.3) is satisfied exactly by employing a two-streamfunction decomposition:

= (2.4)

Here _ and 4_are given by ¢-- ¢_ and q_ = ¢2. U(z) refers to the mean velocity in the

x and y directions (the mean vertical velocity U3 (z) is identically zero).

We numerically integrate evolution equations for the scalar fields _b, ¢, and 0, which we

obtain by 1) substituting T = z +0 into (2.2) and by 2) retaining the vertical components

of the equations that result when the operators Vx and @ x Vx are applied to (2.1).

Note that this eliminates the pressure from the system of equations, since V x VP - 0.
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The boundary conditions are periodic in the horizontal directions, and stress-free

with fixed-temperature on the top and bottom boundaries. Solutions are obtained with

a pseudo-spectral Galerkin algorithm, with field variables represented horizontally by

Fourier series and vertically by either sine or cosine expansions. Nonlinear terms are

evaluated in physical space, while differentiation operations and time advancement are

carried out in spectral space. Linear terms are treated implicitly, while nonlinear terms

are handled explicitly, using the mixed implicit�explicit third-order Runge-Kutta scheme
developed by Spalart et al. (1991) with a CFL number of 0.68.

We initiate the motion with the most-rapidly-growing asymptotic linear eigenmode

(A _ 4_r) with a Kolmogorov noise spectrum added to the velocity field. Vorticity ampli-

tudes for these perturbations are 0.07 and 0.014, respectively. To accommodate the eigen-

mode and the anticipated "secondary instability" (Klaassen & Peltier (1985), Klaassen &

Peltier (1991), Palmer et al. (1994), Smyth & Mourn (2000a), Smyth & Mourn (2000b)),

horizontal dimensions of xo x Yo = 12.56 × 4.2 are used. Sufficient remoteness of top and

bottom boundaries is established with 2D tests, and zo = 25 is chosen.

Spatial resolution (i.e., number of spectral modes) is varied during the evolution so that
small-scale features are always properly represented; this includes thermal and viscous

dissipation scales. With Re = 2500, as many as 1200 x 400 x 2400 modes are required.

2.2. Basic flow evolution

Plate 1 shows the flow morphology with Re = 2500. The lower left panel shows the dis-

sipation fields at t = 77 when the primary Kelvin vortex is well formed. At this time

the depth of the mixing layer (at its deepest) is roughly 6h, and the velocity differ-

ence is 2Uo, so the layer Reynolds number is ReL _ 30,000. The initially-stable density
stratification is inverted by the primary vortex so that the flow becomes unstable in the

vortex-edge regions, and secondary rolls aligned with the streamwise direction develop

(Klaassen & Peltier (1985), Klaassen & Peltier (1991), Palmer et al. (1994), Smyth &

Mourn (2000a), Smyth & Mourn (2000b)). These secondary rolls are evident in the view
from above (middle left panel), which shows tongues of intense thermal gradients in

upflow regions at the edge of the mixing layer, interleaved with downflow regions with

reduced thermal gradients. The top left panel clearly shows the secondary rolls, using the

vortex visualization technique of Jeong & Hussain (1995). The center and right panels

show the evolution of the flow at later times, when the vortex tubes interact and trigger

the development of small-scale turbulence (Fritts et al. (1998)). Note that despite the

reflection symmetry of (2.1)-(2.3), e.g., (_, 3, T) --+ -(_, zT,T), asymmetries in flow per-
turbations can produce apparent spontaneous symmetry breaking in the solutions (e.g.,

note differences in the upper and lower edges in the lower right panel).

Figure 1 shows the total kinetic energy KE and maximum vorticity for the velocity field
with the horizontal mean removed. Oscillations in KE reveal interactions between the

primary billow and the horizontal mean. Fluctuations in the vorticity maxima indicate

the turbulence intensity of the small scales of motion (Werne & Fritts (1999)).

For the study presented here, we examine the turbulence budgets and statistics during

the turbulence-decay phase of the flow evolution (t > 175) when the mean fields undergo
restratification. Figure 2 shows mean profiles for streamwise velocity and temperature

for t = 240, i.e. well into the turbulence-decay phase. We can see from the figure that

mixing in the interior of the layer has homogenized the velocity and temperature fields

there, compressing the initial mean gradients into the edge regions. Despite the enhanced

shear that results in the edge of the layer, the combined action of shear and temperature-

gradient increase results in a larger Richardson number in the edge of the layer than in
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FXGURE 1. Billow and fluctuation kinetic en-

ergy (KE) and max(w_) versus time. wl (w2)
[ws] has been shifted down by 25 (45) [65].

FIGURE 2. Mean velocity (_) and
temperature (- - -) profiles.

the middle, and, as a result, the motion in the edge regions is more effectively damped

than in the layer interior.

2.3. Flow decomposition and averaging procedure

For purposes of analysis we follow Palmer et al. (1996) and decompose the flow fields,

e.g., 8, into mean 0, residual spanwise average/_, and fluctuating components St: 0 =
+ 0 + 8 j. We identify horizontal averages, e.g., 0, with the mean field and residual

spanwise averages, e.g., 0, with the primary Kelvin vortex. Both 0 and 0 contribute to

the background environment of 0', and in what follows we lump these together into what

we will refer to as the 'background field', which we denote with upper-case symbols. To

simplify our notation, we will drop the use of primes for the 'fluctuating' fields, denoting
them by lower-case symbols; hence, 0 + _ = O and 0_ --+ 0.

3. Statistical analysis: mathematical framework

The mathematical framework for the analysis in section4 and section 5 is developed

here.

3.1. Turbulence transport equations

The budgets for the equations governing the evolution of the Reynolds stress, heat flux

and temperature variance are given by

Du-- 

- 2Re -10_u_O_uj + p (Ojui + Oiuj) +D_j (3.1)

$1j _j

Du_O
u(_OkUi + _0_0) (Pe -x ÷ Re -1)OkuiOkO -pOlO + Ril 0-_ + :Dio

Dt , • , ,
1_i# $i#

(3.2)
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DO 2
-- = --2Uk----OOkO -- 2Pe-l OkOOkO +Dee (3.3)
Dt _

_6 606

respectively, where D/Dt - O_ + Uk Ok is the total rate of change and :D_j, :D_o and 7)oo
denote diffusion terms.

3.2. Structure-based tensors

The components of the single-point Reynolds-stress tensor _ describe the 'componen-
tality' of the turbulence field, i.e., the strengths of different fluctuating velocity compo-

nents. This, however, is insufficient to completely quantify the state of turbulence because

structural information characterizing flow morphology is absent from uiuj. It is straight-
forward to describe such information with two-point or spectral descriptions; however,

because of their inherent complexity, such approaches are currently impractical for pre-

dictive modeling efforts. Kassinos et al. (2001) point out that an adequate one-point
description may be possible by utilizing the so-called structure-based tensors. These are

second- and third-rank tensors derived from correlations of gradients of a turbulence vec-
tor streamfunction @_: V2@i = -wi, where w_ is the fluctuating vorticity. The velocity

is simply ui = eijkOj@k, and continuity imposes the free condition Ok@k = O.

Using 9i, Kassinos et al. (2001) introduce the following set of single-point tensors:

Dij - Oi@kOjgik (Dimensionality); Fi i = Ok_iOk_I_j (Circulicity); Ci i - OkgiOjg2_
(Inhomogeneity); and Qiik - --UiOk_i (Stropholysis). These tensors characterize the

large-scale turbulence field. Together with _ they form a minimal tensorial base for a

complete single-point turbulence theory. Members of the subset u-T_, Dij, Fij, and Cii

are linearly independent and can be related to the trace of _ through _ + Dij +

The informationcontentofthe individualtensorsismost easilyunderstood by consid-

ering the specialcase of homogeneous turbulence.Here we justmention the highlights:

see Kassinos efaL (2001)for details.

The dimensionalitytensorD_i describesthe anisotropy of wave-vectors in spectral

space, i.e.,itcontains informationthat isdistinctfrom that in ului; if,e.g.,Dn = 0,

then the large-scaleturbulencefieldisindependent of the streamwise directionx. The
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inhomogeneity tensor Cij is a measure of departure from local homogeneity. For homo-

geneous turbulence, Cij -- O. The circulicity tensor Fij describes the large-scale vorticity
field. If one of the diagonal components dominates the others, then the largest turbu-

lence scales create rotation predominantly about that direction. Finally, the third-rank

stropholysis tensor Qijk contains information that is distinct from the other structure

tensors. It relates to the pressure-strain correlation ¢ij appearing in (3.1) and is of par-

ticular importance in situations where there are significant contributions from mean or
frame rotations.

4. Dynamics in the near-edge region

4.1. Shear-layer-interior homogeneity

We begin by examining the flow inhomogeneity Cij + Cji during turbulence decay and

restratification in figure 3. Here we see from Cn/Dkk _ 0 that the flow is nearly homo-

geneous in the streamwise direction across the layer, justifying the streamwise-averaging
procedure we have adopted. The two other diagonal components, C22/Dkk and C._3/D_k,

are also nearly zero in the core region, indicating local homogeneity in these directions

as well when ]z I < 3.

4.2. Edge-region flux suppression

Figure 5 shows the shear-stress components for the same time shown in figure 3. Note
the reduction in the fluctuation KE near the edges of the layer where density stratifi-

cation is elevated (cf. figure 2). Note also the significant asymmetry that has appeared

between the upper and lower edges due to the relatively larger density stratification

which has developed spontaneously in the upper edge region. Animations reveal that

this asymmetry results when reminants of the primary KH billow descend (by random

advection), increasing the turbulence intensity of the lower edge relative to the upper

edge and triggering the early collapse and restratification of the upper edge.
The enhanced stratification in the upper edge leads to the development of a significant

region of flux suppression (see _ for z > 2 in figures 5 and 6), with flux reversal being

observed momentarily. Much of the discussion that follows concentrates on the nature
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and consequences of the edge-region flux reduction as a case study in the impact of

stratification. We will extend this analysis in future work to examine the behavior at
earlier time and for varied Ri and Re.

4.3. Turbulence production and mean-field evolution

As a result of the more rapid restratification near the upper edge of the shear layer,

the background Richardson number is higher here and the turbulence kinetic energy is

reduced. We see from the turbulence-kinetic-energy production terms

Pk = Pk + Gk _ -_--_03U + RiwO (4.1)

½p,, ½G,,

which we obtain from the trace of (3.1), that reduction in turbulence kinetic energy is
intimately tied to flux suppression. We also note that the shear production term Pk is

normally positive, and the buoyancy production term G_ = RiwO usually acts to enhance

the background temperature field ® at the expense of the turbulence. This is the behavior

near midlayer. However, when flux reversal occurs, as it does for a period of time near the

up__peredge of the layer, the terms exchange rol__es,with buoyancy acting as a source in the
w 2 equation and shear behaving as a sink for u 2. Figure 7 shows the relative contributions

of Pk and Gk for kinetic energy production, demonstrating that, despite the exchange

in roles for the two terms during flux reversal, shear consistently dominates buoyancy

effects throughout the lay__er; i.e., IPkJ._ IGkl. The shift in the turbulence kinetic energy
production from Pn in u 2 to G._3 in w 2 has interesting consequences for stably-stratified
shear-flow dynamics when flux suppression and reversal occur. First, when Pn _ 0,

energy transfer from the background flow is abruptly shut off; see figure 8. Secondly and

perha..pps more interestingly, the intercomponent energy transfer in (3.1) between u2, v _,
and w 2 (via pressure-strain correlations ¢ij) is fundamentally different from homogeneous

shear flow. Figure 9 demonstrates this by showing the normal components of ¢ij. The
majority of the layer exhibits Cn < 0 and ¢22, ¢33 > 0, consistent with homogeneous

shear-flow dynamics; however the upper edge region, where flux reversal is occuring,

exhibits a change in sign of the vertical component, with the other two components

retaining their midlayer signs; i.e. Cn < 0, ¢_2 > 0, and ¢33 < 0. The peculiarity of this
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behavior is not that ¢33 has changed sign, but rather that Ctz has not. To understand the

ramifications, consider the case of homogeneous shear flow unaffected by body forcing.

In this case Pn > 0 and P22 = P33 = 0, and Cxt < 0, ¢22,¢a3 > 0. Background-flow

energy is thus transferred directly to the streamwise stress componen,t and orthogonal

components are subsequently fed via pressure-strain correlations. In contrast, for the

case near the upper portion of the shear laye_.r presented infigures__8 and 9, pressure-
strain correlations redistribute energy into v 2 from both u 2 and w 2, despite the fact

that Pn + Gn is negative. The importance of this result is that pressure-strain models

employed by traditional RANS closures fail in this situation because they cannot predict

sign(Pij + Gij) = sign(¢ij). This is similar to the blocking effect in turbulent boundary

layers, except in that case wail-normal- and shear-stress components are affected, see e.g.
Durbin & Pettersson Reif (2001).

4.4. Turbulence production and u 2 damping

An apparent oddity of the normalized Reynolds-stre__ss components (figure__6) near the

edges of the shear layer is the sharp reduction in u 2 relative to v _ and w 2 as the far

field is approached. This is particularly striking given the well-established damping of w 2
in stable stratification when background shear is not present (Thoroddsen & Van Atta

(1992)). Clearly, background shear introduces a fundamental change in the dynamics.
In order to explain the reduction of u"_ and demonstrate its relation to flux su__ppression

(____dpossible reversal), we must examine the dominant production terms for u 2, _ and
w0:

Pn = Pn + Gn _, -_-'w03U (4.2)

P13 ---- P13 "[" G13 ,_ -w"'_O3U + Riu--O (4.3)

P3e = P3e + RiO-'-_ '_, --w---_030 + RIO--2. (4.4)

We see that it is also instructive to consider the generation terms for _--0, 0_, and w'-'_:

Pze _ -w-'OOaU - _-'_030, Pee = -2w--OOaO, _°33 = Pa3 + G33 _ Riw-O. (4.5)

From (4.3) we see that u--0and a reduction in w 2 will act to reduce -_-C, which in turn

through (4.2) will decrease u--_. As -_'_ decreases, the background shear generation of
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turbulence kinetic energy is reduced, and therefore so is w 2. It is important to note
however that a change in sign of _ does not promote high positive levels of _ due to

the second term Pie (4.5), suggesting that high levels of _ alone cannot be responsible

for flux reversal when it occurs. Nevertheless, from Pie (4.5) we see that for fixed or

slowly-varying values__of -w8 and -_--_, increases in the background gr___.adientsdo result
in elevated values of uS, which can participate in reducing -_'E and u 2.

Similarly we can understand the su__ppression (and possible reversal) of w-@ by noting
that for relatively fixed values of -w8 an elevated value of 030 will result in enhanced

82, which combined with a reduction in w 2 will reduce -w'_ via (4.4). But, as can be

seen from Pe0 (4.5), and similar to the case for -E_, reduced -_ acts to decrease _-,
suggesting that high levels of 82 alone cannot be responsible for a reversal in -_ when

it occurs. This su__ggests that a reduction in w 2 is the most important instigator for flux
reversals, both w_ and E_.

5. Anisotropies and large-scale structures

The second invariant II= = -½x_jx_j of a second-rank tensor zij quantifies the depar-

ture from isotropy (II= = 0). In particular x_j +Sij/3 = u-q_/_ (I/r), D_j/Dk_ (IId),

and _/_ (II,) reflect the character of the large (u-q-_, D_) and dissipative (e_j) scales,

respectively. The profiles displayed in figure 4 reveal that the small-scale anisotropy can

be comparable to, or even larger than, the integral-scale anisotropy in the strongly in-

homogeneous edges of the shear layer, whereas the small-scale motion is significantly

more isotropic near mid-layer. D_ is less anisotropic than u_uj throughout the layer,

and IIId = _ _jx_x_i < 0 indicates cigar-shaped features near the layer edges.

By examining the individual components of u_u-'--7,D_, and F_j (figures 6-12), we can
gain further insight into the large-scale turbulence structures (Kassinos et al. (2001)). For

example, in the upper near-edge region with D22 _ D33 and D,_ _ D22/6, we anticipate

that the cigar-shaped features are aligned in the streamwise direction,___e roughly six
times longer in the x direction than in the other directions, and since u _ >> v = _ w 2,

these features are strongly 'jetal' in character. At mid-layer the diagonal components

of D_i are roughly in the ratio (D_I : D22 : Ds3) _-- (2 : 5 : 3.4) and we expect less
elongated structures here, extending roughly 2.5 times in the streamwise direction as in
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FIGURE 13. Streamwise fluctuations in the

center of the layer. Dark (light) regions with
light (dark) cores represent u > 0 (u < 0).

FIGURE 14. Streamwise fluctuations at the
edge of the layer. Dark (light) regions with
light (dark) cores represent u > 0 (u < 0).

the spanwise, and possessing ,-, 30% greater height than spanwise extent. Figures 13 and

14 support these expectations. In particular, note the nearly circular (spanwise-flattened)

y - z cross-sections of features at the x = 12.56 (x = 9.0) cutting plane in the upper-edge

(mid-layer) region.

The circulicity tensor (figure 12), which quantifies large-scale turbulence circulation,

exhibits a tendency for large-scale vertical vorticity at mid-layer with Fss > Fn _ F22.
This results from jetal motions in the horizontal plane and is identical to the behavior in

the unstratified case (Kassinos et al. (2001)). Near the edges of the layer Fn decreases

while F22 grows until F22 _, F33, and just outside the layer F22 surpasses Fs3 to become
the dominant circulation direction. This behavior results from the strong vortex sheet

adjacent to the turbulent layer which acts as the transition interface between turbulent
and irrotational flow.

6. Conclusions

We have presented Reynolds-stress and heat-flux budgets for stratified shear flow dur-

ing layer restratification. During this time the outer regions of the shear layer exhibit flux
suppression and reversal, both for _-_ and --wO;we offer an explanation for this behav-

ior. The reversals are most pronounced at the top of the layer where turbulence kinetic

energy is severely damped by the action of stable stratification.

We also examined the ability of single-point structure tensors to describe the features

exhibited by 3D volume-rendered depictions of the flow. The structure tensors appear to

capture and quantify the relevant flow morphology.

We will extend this analysis to earlier times and different Re and Ri so we can evaluate

the robustness of the result. Furthermore, because the edges of the shear layer appear to

pose important challenges for modeling, it is imperative that we insure that quantification

of the edge regions is reliable. For this reason future characterization will adopt the

conditional-sampling technique of Bisset et al. (2002).
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