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ABSTRACT 

This paper investigates the suitability of the equation below for 
accuraltely defining solar cell parameter degradation as a 
function of hard particle radiation. 

Y = Y, +c, *Log(l+p/Q?r)+Cz *Log(l+p/p,),) 

The paper also provides methods for determining the constants 
in the equation and compares results from this equation to those 
obtained by the more traditionally used: 

m 

Y = Li *e&)! 
i=O 

1. IN’ImODUCTION 

The Third Edition of The Solar Cell Radiation Handbook, 
published in 1982, states that commonly used silicon solar cell 
output parameters, indicated by Y below, degrade as a hct ion 
of radiation fluence p, as: 

In this equation, Y may represent the following parameters: 
open circuit voltage, V,; short circuit current, L; peak power, 
P-; voltage at peak power, Vw; or current at peak power, J&. 
This quation may be slightly modified by dividing by Yo to 
obtained normalized functions of the parameter as a function of 
fluence. In this case the equation takes the form: 

Y = 1 + c *Log(l + p,/q+) . (2) 

Naturally, the value for C is different for equations (1) and (2) 
even if the equations describe the same parameter. 

In both equations, the quantity pxrepresents the radiation 
fluence at which Y ‘‘starts to change to a linear function of the 
logarihn of the fluence.”[l] The equations are simple, elegant 
descriptions of the fall off of any of the solar cell parameters 
with radiation. Unfortunately, the accuracy of the equations is 
sometimes not sufficient for prediction of the degradation of 
modem cells even while they continue to predict the general 
shape of the degradation. By the time the GaAs Solar Cell 
Radiation Handbook was published in 1996[2], the degradation 

curves were fit for some purposes with four or five order 
polynomials of the form: 

( 3 )  

Similarly, the degradation for some solar cells in Assessment of 
Multijunction Solar Cell Perjormance in Radiation 
Environments[3] was not precise enough to use equation (1) for 
performing estimations of degradation between data points. 

This paper describes an equation, analogous to equation (l), that 
accurately defines solar cell degradation as a function of 
radiation when (1) results in too much inaccuracy. The equation 
is: 

Y = Yo +c, *Log(l + p/p?,)+C, *Log(l+ p,/p,),) (4) 

This equation suggested itself to the one of the authors as being 
correct for V, degradation of dual junction solar cells. It tumed 
out that the equation provided an excellent fit to not only the 
open circuit voltage of dual junction solar cells but to all the 
solar cell parameters of the modern multi-junction solar cells for 
which the equation was tried. The equation provides well 
behaved predictions for any reasonable value for I, which is not 
true of polynomials which generally give completely erroneous 
results for any fluence outside of a restricted range. 

Again this equation can represent the normalized degradation of 
parameters by dividing by Y,. In this case: 

Y = 1 + c, * Log(1 + p, / px) + c, LOg(1 + p, / p y  ) ( 5 )  

The paper describes methods, which are fortunately readily 
available, for estimating the constants in equation (5). This 
paper also compares the fit of equations of the form ( 5 )  to 
polynomial equations for describing the degradation of solar cell 
parameters under hard particle irradiation. 

2 COMPARISON 

Figure 1 shows the normalized peak power decrease as a 
function of radiation for a Spectrolab Triple Junction Cell. The 
Figure uses data taken from Assessment of Multijunction Solar 
Cell Perjormance in Radiation Environments[ 31. The Figure 
also shows a third order polynomial fit to the data and a fit to the 



data using an equation of the form of (5). The sum of the 
differmces squared, between the data and the predictions of the 
polynomial fit and of the logarithmic fit, are respectively 
3.0E-05 and 1.5E-06. The fit of equation (5) is therefore better, 
which is the true for all of the data in [3] for power, open circuit 
voltage and short circuit current [4]. The fit of equation (5) was 
not attempted for voltage at peak power or current at peak 
power. 
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Fig 1 Normalized Pmax versus 1 MeV Electron Fluence for a 
Spectrolab Triple Junction Cell. Data fitted with an Equation of 
Having the Form of Equation (5) and with a Third Order 
POlynl3mial. 

Outside of the range of the data, the polynomial fit kquently 
gives mswers that exceed a reasonable estimation. However, the 
logarithmic fit continues to act as expted. For example at a 
fluence of 1E4 lMeV electrons, the polynomial used for the Fig. 
1 fit gives a value of 6.52 for the normalized Pmax, whereas the 
logarithmic fit gives 1.000. Of course, the polynomial fit is not 
intendkd for this flume; however, for some uses it is 
convenient to have an equation that will give accurate results for 
any reasonable fluence. The logarithmic fit achieves results with 
four constants, the number of constants required by the lowest 
order polynomials, namely third order, historically used to fit the 
data. 

It might be supposed that a higher order polynomial will provide 
a better fit. In terms of the sum of the square of the differences 
between the data and the polynomial prediction, this is 
undoubtedly true. However, as the order of the polynomial is 
increased, it may predict unphysical behavior between the 
points. The data plotted in Fig. 2, the same data plotted in Fig. 1, 
is fitted to a fifth order polynomial. Clearly, this result is not 
acceptable for predicting solar cell degradation. This difficulty is 
ultimately caused because the polynomial does not reflect the 
physical processes that cause the degradation. It may be possible 
to rectify this problem by placing conditions on the polynomial 
that ~mvent the slope of the curve from increasing with 
increasing fluence. However, this would make fitting with the 
polynomial more difficult than using standard methods and 

computer programs, see Section 3 on Determining Constants. (It 
is also possible that the unacceptable behavior is due to fitting 
d six data points. The third order polynomial was fitted without 
using the highest fluence. [4].) 
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Fig. 2 Normalized Pmax versus 1 MeV Electron Fluence for a 
Spectrolab Triple Junction Cell with Data Fitted with a Fifth 
Order Polynomial. 

SUMMARY OF RESULTS 

Tables I and 11 summarize the results of fits using equations of 
the types (2), (3), and ( 5 )  for the cell types used in reference [4]. 
In all cases, equations of type (5) provide the best fit. 

Table I shows the largest error that the fitted curve has with 
respect to any data point in the set, or the maximum residual. 
With the exception of the Spectrolab three junction cell 
optimized for end of life power (Spectrolab 35 EOL), the data 
provided by Dean h4arvin[4] was for six fluences: lE12,6E13, 
2E14, 8E14, 1.9E15 and 4.1E15). All of these data were taken 
unda the direction of the Systems Planning and Engineering 
Group of The Aerospace Corporation at the request of the Air 
Force Research Laboratory. The cells are roughly of 1997 
vintage. The triple junction solar cells have an efficiency of 
approximately 25%. The polynomial was not fitted using the 
highest fluence. However, the log equations were generally 
successful in fitting well to all six points. As a result the results 
for equations (2) and (5 )  were for all the data generated. Even 
so, these equations always show less error than do the 
polynomial fits. (The error of the polynomial to the highest 
fluence was not considered in Table I.) 

The data for the Spectrolab 3J EOL cell was taken by 
Spectrolab. Its data is nonetheless reported in [3].The data for 
these cells was taken at: 1E13,1E12, 1E14,5E14, and2E15. For 
the fits shown in the table, an additional point was added at 
1 El 2 that showed no degradation. 

Table 11 provides a similar summary to that of Table I, except 
the parameter is the sum of the squares between the fitted curve 



and each of the data points. Again equations (2) and (5) are 
fitto3 and compared to more data points and so if all else were 
equrl would show a greater sum of squares. However, their fit is 
s a  ciently superior that the opposite happens. 

- Table I. Largest Error Of Fits (Maximum Residual) 
Two Four 

Parameter Parameter 
Polynomial Log Fit Log Fit 
FitAgainst Against Against 

SPoints 6Points 6Points 
Cell Type (%) (%) (%) 

Spectrolab 25 .53 1 .o .15 
- 

Spe&lab 2J EOL 1.1 2.1 .32 
Tecstar 35 .33 2.0 .23 

Spectrolab 3 J .56 3.1 .08 
Spectrolab 3 J EOL .85 .60 .66 

Tablle IL Sum of Squares Multiplied by 1E5 - 
Two Four 

Parameter Parameter 
Polynomial Log Fit Log Fit 
FitAgainst Against Against 

Cell Type 5P0ints 6points 6Points 
Spectrolab 2J 3.8 14 .35 
- 

Spkrolab 25 EOL 16 62 2.8 
Tecstar 3 J 1.7 83 1.2 

S pectrolab 3 J 3.0 90 .15 
Spectrolab 3 J EOL 17 11 .6 

3. DIETERMINING CONSTANTS 

One advantage of the polynomial is that there is a well 
established closed form solution for detamuung the constants 
that will minimize the sum of the differences squared hetween 
the tiata and the predictions of the polynomial fit. These 
methods are readily available in a number of computer programs 
and ;spreadsheets. 

the constants in non-linear equatlons 
such as equation (5) is more difficult even though there are 
several widely used methods to solve this problem. These are 
the method of steepest descent, the Gaussian-Newton method, 
and the more comprehensive method of Levenberg-Marquardt 
[5], 161. Fortunately, the method of Levenberg-Maret is 
availilble in several programs to &tennine param- such as 
C1 and CZ in user defined equations [7]. Even so, the procedure 
is not quite as straightforward as that of detamining the 
predictions of a polynomial fit- 

To successllly use the programs that use Marquardt’s method, 
it is :mnetimes necessary to divide the lMeV electron tluence 
by 11!15 for the prognun to work. It is also necessary to use 
equations of the form of equation (6), because if the programs 
use 1/ +x they will sometimes halt due to division by zero. 

. .  In gelleral, dekmmlg  

In addition, initial guesses must be provided for the constants. If 
the guesses are not sufficiently accurate, the program will not 
converge to a solution. After using equation (a), the coflstants 
qXand py are manually recomputed to obtain the desired 
ValW. 

As stated above, the initial form of equation C3 and C4 WBS 
derived fiom physical considerations regardug the degradabon 
of the cell’s open circuit voltage. However, the best fits 
sometimes do not match a physical solution. Specifically, CJ or 
C4 will sometimes be negative for the best fits. Nonetheless, the 
fits are generally excellent. 

In addition to the commercial programs, one of the authors 
wrote a computer program which estimates the values of C1 and 
Cz. Because of knowledge of the specifics of the problem, the 
user does not need to enter initial guesses regarding the 
consfants and convergence is assured The program has not yet 
been l l l y  optimized; its final results are not quite as accurate as 
those provided by the commercial program. 

CONCLUSION 

Equations of the form: 

may be used to accurately fit data representing the degradation 
of multi-junction solar cells after exposure to hard particle 
radiation. This equation form is more accurate than a polynomial 
within the rauge of the data and can be used to extrapolate 
outside the rauge of the data. It is slightly more difficult to 
determine the constants in this equation than the collstants in a 
polynomial. 
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