Publication
1124
1984

Outgassing Data

 for Selecting Spacecraft MaterialsWilliam A. Campbell, Jr., Richard S. Marriott, and John J. Park
Goddard Space Flight Center
Greenbelt, Maryland

TECHNICAL LIBRARY BUILDING 45

JAN 281985
Johnson Space Center
Houston, Texas 77058

This document makes use of international metric units according to the Systeme International d'Unites (SI). In certain cases, utility requires the retention of other systems of units in addition to the SI units. The conventional units stated in parentheses following the computed SI equivalents are the basis of the measurements and calculations reported.

CONTENTS

Page
INTRODUCTION 1
EQUIPMENT 1
DATA PRESENTATION 2
USE OF THE DATA 3
REFERENCES 5
SECTION A: MATERIALS 7

1. Adhesives 9
2. Cable Insulation and Shrink Tubing 30
3. Conformal Coating 35
4. Electrical Components 42
5. Electrical Shields 46
6. Films and Sheet Materials 48
7. Foams 52
8. Greases and Lubricants 56
9. Lacing Tape and Cord Cable Ties 58
10. Laminates and Circuit Boards 61
11. Marking Materials and Inks 65
12. Molding Compounds 68
13. Paints, Lacquers, and Varnishes 72
14. Potting Compounds 81
15. Rubbers and Elastomers 90

CONTENTS (continued)

Page
16. Tapes 96
17. Thermal Greases 101
18. Miscellaneous 102
SECTION B: MATERIALS-ALPHABETICAL LISTING 105
SECTION C: MATERIALS HAVING A TML OF 1.0 PERCENT OR LESS AND A CVCM OF 0.10 PERCENT OR LESS 189

1. Adhesives 191
2. Cable Insulation and Shrink Tubing 199
3. Conformal Coating 202
4. Electrical Components 204
5. Electrical Shields 206
6. Films and Sheet Materials 208
7. Foams 210
8. Greases and Lubricants 212
9. Lacing Tape and Cord Cable Ties 213
10. Laminates and Circuit Boards 214
11. Marking Materials and Inks 217
12. Molding Compounds 218
13. Paints, Lacquers, and Varnishes 221
14. Potting Compounds 223
15. Rubbers and Elastomers 228

CONTENTS (continued)

Page16. Tapes 230
17. Thermal Greases 232
18. Miscellaneous 233
APPENDIX: CODE LIST OF MANUFACTURERS 235

OUTGASSING DATA FOR SPACECRAFT MATERIALS

William A. Campbell, Jr., Richard S. Marriott, and John J. Park
Goddard Space Flight Center
Greenbelt, Maryland

INTRODUCTION

The fifth compilation of outgassing data of materials, intended for spacecraft use, supplements the data in the previous Reference Publication 1061 which it replaces. The data were obtained at the Goddard Space Flight Center (GSFC), utilizing equipment developed at Stanford Research Institute (SRI) under contract to the Jet Propulsion Laboratory (JPL). This publication contains data generated in addition to data from the previous reports.

SRI personnel developed a system for determining the mass loss in vacuum and for collecting the outgassed compounds. Their report (Reference 1), which contained data from June 1964 to August 1967, served admirably as a foundation for selecting spacecraft materials with low outgassing properties. The equipment was also constructed at GSFC and, based on the SRI data and GSFC data, a GSFC report (Reference 2) was published that included data for those materials meeting two criteria: a maximum total mass loss of 1.0 percent and a maximum of 0.10 percent condensable materials.

After a series of tests and verification of procedures, an American Society for Testing and Materials (ASTM) Standard Test Method was developed, based upon this apparatus. The method, "Total Mass Loss (TML) and Collected Volatile Condensable Materials (CVCM) from Outgassing in a Vacuum Environment," is identified as E 595-77. The data developed have been reported (References $3,4,5$, and 6) as a means of assisting engineers in selecting materials for spacecraft use.

EQUIPMENT

The equipment used at GSFC is the Micro-VCM apparatus, as described by SRI. The title is derived from the testing of micro-quantities as opposed to larger amounts (macro-quantities) and from the technique of condensing the volatile products to determine the amount of volatile condensable materials.

The testing is done in vacuum at stated temperatures for specific times. The apparatus presented in ASTM E 595-77 has a number of critical dimensions to ensure that similar systems should produce similar results. These critical dimensions are as stated in E 595-77.

A number of samples can be tested at one time in the vacuum system. Each sample, of about 100 to 300 milligrams mass, is placed into a preweighed aluminum foil boat which has been thoroughly cleaned and dried. Following a 24 -hour preconditioning in 50 -percent relative humidity atmosphere to ensure that the samples receive a common preliminary treatment, the individual samples are weighed. The samples are then loaded into individual compartments in a solid copper bar that can be heated. Each compartment is closed by a solid copper cover, requiring that all volatile materials escape through a $6.3-\mathrm{mm}$ ($0.25-\mathrm{in}$.) diameter exit port only.

The copper heater bar, having 12 sample compartments, is heated to $398 \mathrm{~K}\left(125^{\circ} \mathrm{C}\right)$ for 24 hours. The sample, being heated by conduction and radiation, also is heated to $398 \mathrm{~K}\left(125^{\circ} \mathrm{C}\right)$. This heating causes the volatile materials to be driven off with their only escape being through the exit port. At a distance of 12.7 mm (0.5 in .), a chromium-plated collector is in direct line of sight of the exit port and is maintained at $298 \mathrm{~K}\left(25^{\circ} \mathrm{C}\right)$. The escaping volatile compounds collect on the chromiumplated disk if their condensation temperature is $298 \mathrm{~K}\left(25^{\circ} \mathrm{C}\right)$ or above. Barriers are near the collector plate to prevent cross-contamination between adjacent samples.

The mass loss of the sample is determined from the weights before and after the $398 \mathrm{~K}\left(125^{\circ} \mathrm{C}\right)$ exposure, and the percentage loss is calculated to provide the TML. In a similar manner, the difference between the weight of a clean collector and of the collector having condensed materials will provide the mass of condensables. This mass of condensables is calculated as a percentage of the starting mass of the sample and is stated as CVCM.

DATA PRESENTATION

The data presented in the various sections contains GSFC data generated through 1983. Some of the materials included in the previous reports have been deleted to reduce duplication and to remove materials that are unavailable or could not be duplicated. The various heat treatments or postcure bakings intended to reduce TML or CVCM have been limited to those treatments that produce acceptably low outgassing or to show the extreme treatment to produce the stated result which may or may not meet the outgassing criteria.

The outgassing data have been presented in three different ways in order to be more usable in selecting a material. In Section A, the materials are divided by category into the 18 probable uses, such as adhesives, greases, paints, potting compounds, and so forth. In Section B, all the materials contained in Section A are listed in alphabetical order by manufacturer or by the manufacturer's identification. In Section C, the only materials listed are those having TML and CVCM equal or lower than a maximum 1.0 percent TML and a maximum 0.10 percent CVCM, grouped by use, as in Section A.

These data are stored on computer tape for filing and reading, utilizing the Mark IV File Management System. The Mark IV system is very convenient for such data compilations and for generating current output reports. In this system, the computer has been instructed to follow a strict alphabetic and numerical order. This may at first seem confusing, particularly since the numbers are read from left to right, irrespective of the number of digits. For example, the order appears as DC 11, 1107, 142, 20-057, 2107, and 271. Similarly Scotchcast 282 is followed by Scotchcast 3, 8, and 9. Also, letters have precedence over numbers; for example, MMM Tape Y-966 appears before MMM Tape 136. It may be necessary to look for all known identifiers of a material to find it.

Section A

This section contains outgassing materials grouped in 18 categories according to their primary use, such as adhesives, conformal coatings, and marking materials. There are various types within the adhesive group, including film, conductive adhesives, and foam; the types are indicated wherever
possible. Similarly, tapes include those which are mylar, vapor depositions on mylar, and aluminum sheet plus adhesive. This information is often stated in the description. However, certain materials can be used as adhesives and as potting compounds. In these instances, the material is listed in one category only, reflecting its most prevalent use.

In the printed data, the first column contains each material, listed by its manufacturer's identification followed by the mixture of components, if more than one component. The second column, "Code," contains a three-letter code for the manufacturers. (The Appendix contains the manufacturers code list.) The outgassing data of TML and CVCM are in the next two columns, followed by three columns giving the particular curing time, temperature, and atmosphere for that particular sample. If the cure conditions are unknown, the columns are left blank. Some materials are cured or post-cured in two or more steps, which are carried out in the order listed. Some materials have been tested more than once and usually with different cures. The last column gives the application, as known.

Section B

In this section all the materials are listed in alphabetical order in the first column. The second column, "Data Reference," contains a reference number that indicates the GSFC test number. The GSFC numbers are the sequentially designated test numbers, the higher numbers being more recent tests. The following columns contain the outgassing data in the identical manner of Section A.

Section C

The computer was programmed to list only those materials having a TML of 1.0 percent or less and having a CVCM of 0.10 percent or less. The materials are categorized as in Section A, thus providing low outgassing materials for a specific use. The particular category was selected for the materials' most likely use, though some silicons may appear as adhesives, conformal coatings, or potting compounds.

USING THE DATA

Two component materials, often as A and B, are listed as A / B, and their relative amounts are also listed as a ratio, for example, $1 / 1,100 / 73$, and $50 / 50$. These are mixed as parts by weight (BW) and sometimes by volume (BV). These may be cured at a specific temperature for a specific time, the temperatures are in degrees Celsius and the times can be minutes (M), hours (H), or days (D). If no cure is listed, the cure data are not known, and one may presume that the manufacturer's directions for curing were followed. Also, the cures performed in vacuum are indicated by $\mathrm{E}-3$ or $\mathrm{E}-6$, referring to $0.13 \mathrm{~N} / \mathrm{m}^{2}$ or $0.00013 \mathrm{~N} / \mathrm{m}^{2}$ (10^{-3} or 10^{-6} torr), respectively.

Certain samples, particularly tapes and film adhesives, require specific treatment in testing. Some of the early tape samples were applied to a tubular screen (S), permitting the adhesive to be exposed to the vacuum or were adhered to an aluminum ring (R), with the adhesive lying against the aluminum to permit outgassing at the edges, techniques no longer being used. The preferred technique is to
apply the tape to preweighed aluminum foil (F). Similarly, double-sided tapes and transfer film adhesives are applied to preweighed aluminum foil (F) and covered with another piece of foil; this composite must be folded or cut into smaller pieces for loading into the boat, a procedure that permits outgassing at the edges.

Caution: The materials in this listing have been tested over a period of 10 years and more. There can be no assurance that variations in component materials have not occurred, with a resultant change in outgassing properties. The data should be used as a guide in selecting, with a fair degree of confidence (provided one uses the correct mixture, prepares the mixture properly, and cures the mixture as required), low outgassing materials for use aboard spacecraft.

Additionally, manufacturing difficulties have been encountered in the production of DC 6-1104, listed as a sealant, and DC $93-500$, listed as a potting compound. The problem resulted in producing cured materials having a CVCM in excess of 0.10 percent, when prior batches had been well below this maximum limit. The information was reported in the Alert E9-A-79-01 of April 1979 and the Alert E9-A-79-03 of October 1979. The manufacturer was made aware of the problem and has taken steps to ensure the production of low outgassing silicones.

Additionally, a number of chemicals, often used as catalysts, have been restricted under U.S. Department of Labor standards for occupational exposure. Materials in this publication which contain or are made with the listed chemicals include Uralane 5712 B, Proseal 796, MOCA (4, 4'-methylene (bis)-2-chloroanilene) used in Adiprene L-100; PC 22, PR 1527, PR 1535, PR 1538, Eccocoat IC 2, and Catalyst 7139 used in Crest 7343. Certain precautions and cleanliness requirements specified by the Department of Labor must be followed when preparing or using the chemicals.

REFERENCES

1. Muraca, R. F., and J. S. Whittick, "Polymers for Spacecraft Applications," Final Report, NASA 7-100, 1967.
2. Fisher, Aaron, Benjamin Mermelstein, "A Compilation of Low Outgassing Polymeric Materials Normally Recommended for GSFC Cognizant Spacecraft," NASA TM X-65705, July 1971.
3. Campbell, William A., Jr., Richard S. Marriott, and John J. Park, "A Compilation of Outgassing Data for Spacecraft Materials," NASA TN D-7362, September 1973.
4. Campbell, William A. Jr., Richard S. Marriott, and John J. Park, "An Outgassing Data Compilation of Spacecraft Materials," NASA Reference Publication 1014, January 1978.
5. Campbell, William A., Jr., Richard S. Marriott, and John J. Park, "Outgassing Data for Spacecraft Materials," NASA Reference Publication 1061, August 1980.

SECTION A

MATERIALS

SECTION 1 -- ADHESIVES

material	MFi CODE	\%THL	\%CVCM	$\begin{aligned} & \text { CURE } \\ & \text { TINE } \end{aligned}$	$\begin{gathered} \text { CDRE } \\ \text { TEHP } \end{gathered}$		AEPLICATIOM
A-1177E A/B AS 1/1 BH EPOXY - BROWN	- BF'	. 45	. 02	24 B	25	1	ADHESIVE
A-1273-B A/B AS 1/1 BM GRERM EPOXY PER MAM A 132	BFG			30 M 48	82 25	${ }^{\text {A }}$ I	ADHESIVE
A-1273-B A/B AS IT BH GREEA EROXY PER EHA 132	BFG	.75 .71	. 045	1818 168	25 25	AI	$\begin{aligned} & \triangle D H E S I V E \\ & \triangle D H E S V E \end{aligned}$
A-1362-B OXE COKEGSENT EPOXY				15 H	121	AI	
	BFG	11.69	-64	18	121	AI	$\begin{aligned} & \text { ADAESIVE } \\ & \text { ADSSIVE } \end{aligned}$
	$\xrightarrow[\text { HCS }]{ }$	1.64	-65 .04	70	25	AI	$\begin{aligned} & \text { ADd SSIVE } \\ & \text { ADHSIVE } \end{aligned}$
ABLEBOND 10́-1 A/E AS 100/7 BE SITYER ETLIED				20 H	93	AI	duasiviv
ABLEBOLD 10-1 A/E AS 100/7 Bu' SILYER EILLERD EPOXY	AAC	. 71	. 15	24 H	25	1 I	Cumb ADHESIVE
		1.39		2H	77	AI	
ABLEBOND 20-1 SILVER FILLED EPOXY ONE CQAPOAENT	AAC	1.39 3.190	.08 .00 30	2 H 3 1	150	${ }^{\text {A }}$	CUAS ANAESIVE
ABLEBOXD 224-8 A/B AS 100/7.3 BH EPOXY	AAC	3.30	- 38	15H	65	4	ADUESIVE
ABLEBOND 293-1 A/B AS 25/2 Bi PILLED EPQXY	AAC	2.05	-00	${ }_{4}{ }^{\text {H }}$	32	AI	AUdiSIVE
ABLEBOND 293-1 A $/$ A AS $25 / 4$ B4 EPOXY	Aac	2. 1.32	-02	4 H	74	AI	AUHESIVE
ABLEBCND 342-13ACC/5\% BLACR EPOXY	AAC	1. 05	-07	$4{ }^{4} \mathrm{H}$	74 65	${ }_{\text {AI }}$	$A W_{\text {d }} \mathrm{SS} V E$
ABLEBOND 36-2 SILVER EILLED EPOXI	AAC	- 30	- 00	30 M	150	AI	COMO \triangle DESIVE
ABLEBOND $41-6$ EPCXY	AAC	-40	-00	308	150	AI	ADHESLYE
ABLEBOND 463-1 A/EAS 10GM/16DPS SILVER FILLED EPOXY	AAC	-62	-0 0	2 H	25	AI	CONESADEESIVE
				18	65	AI	
ABLEBUND 71-1 SILYEA FILLED POLYIMIDE	AAC	2.59 .24	-16	2H	71 150	${ }_{\text {AI }}$	ADacive CUEU ADHESIVE
ABLEBOND 71-1 SILVER RILLED POLYIMIDE	A AC	. 25	. 00	108 308	275 150	AI	COHD ADHESIVR
ABLEBOND 826-1 OEE COMPONEAT SILVER FILLED ADH				304	275	A	-
ABLEBOND 872-3 A/B AS $2 / 3$ BW FLEXIBLE PINK EPOXY	$\begin{aligned} & \triangle A C \\ & \mathbf{A C} \end{aligned}$	2.78	.03 1.19	3H	150	AI	CUND ADHESIYE
ABLEBOND 88-1 A/E AS 1/1 BH SILVER EILLED EPCXY				90M	125	4	
ABLEBUND 88-1 A/E AS $1 / 1$ B S SIL ER FILLED EPUXY	AAC	4.85	-31	90H	80	AI	COnD ajprsive
ABLESOND 88-1 A/E AS 1/1 BH SILVER FILLED EPOXY	AAC	2.02	-06	18	125	A	
ABLEBOND 88-1 A/E AS 1/1 BH SILVER FILLED EPOXY	AAC	2.04 2.76	.06 .01 -00	$1{ }^{18}$	150 150	${ }^{\text {a }}$ I	CUAD ADAESIVE
				24 H	125	${ }_{\text {A }}$	Cu®io adiesive
ABLEFILM ECF 518 CIOTH SUPPORT/EYOXYILLEL EPOXY THIN	$\triangle A$	- 81	- 01	${ }^{1} \mathrm{H}$	150	AI	CUND a ${ }^{\text {CHESIVE }}$
ABLEFILM ECF 535 CLOTH SUPPORT SILYEA FILLED EPOXY	AAC	.88	- 16	3H	7425	AI	YiLI ADHESIVE
ABLEFILM ECF 550-1 GLASS SUPPOAT SILVEM FILLED EPOXY	AAC	$\bullet 37$	-10	3H	125	${ }^{\text {A }}$ I 1	FLLG ADHESIVE
ABLEFILM SOTT GIASSASS CLOTH/EPOXY ADH	AAC	1.62	- 08	3 H	74	AI	FiLIC ADHESIVE
ABLEFLLM 504 CLCTH SUPPORT/EPUXY FILM ADH - ADHITE	AAC	- 52	- 00	45M	149	${ }_{4} 1$	FLLA ADHESIVE
ABLEFILM 506 CLCTH SUPPORT/EPOXY FILM ADH - PiNK	AAC	1.05	$\bullet 37$	$3 \mathrm{H}^{\text {h }}$	930	AI	K LM ADHESIVE
	AAC	. 90	$\bullet 32$	90 M	125	${ }^{\text {a }}$	
ABLEFILM 517 GLASS CLOTH/B-STAGED EPOXY	AAC	- 38	-02	1.5 H	163	AI	FiLa $A D$ HESIVE
	AAC	. 83	- 01	3H	74	AI	OLLG ADHESIVE
ABLEFILM 518 CLCTH SUPPORT/EPOXY FILM ADH - GRAY	AAC	-83	- 00	3H	105	AI	ELiA AUHESIVE
ABLEFILA $550-K$ CLOTA SUPQORT/EPOXY FILA ADA	AAC	- 031	-04	2 C	125	AI	FALA ADHESIVE
ABLEFILA S61K CLCTE SJPPURT/EPOXY FILETHERM COND	AAC	.42	$\bigcirc 12$	3 2 H	125	${ }^{\text {a }}$ I	PLLM ADHESIVE

SECTION 1 －－ADHESIVES

Material	$\begin{aligned} & \text { MFh } \\ & \text { CODE } \end{aligned}$	WTM	dCVCM	CULE TIME	$\begin{aligned} & \text { CURE } \\ & \text { TEMP } \end{aligned}$	ATaUS	a＊KıLCATIUN
BONDMASTEE 1773 A／E AS 1／1 BW EPOXY	NSC	2.37	． 10	$\begin{aligned} & 8 \mathrm{H} \\ & 24 \mathrm{H} \end{aligned}$	65 70	A If	avicessy
BONDMASTER M 777 A／E AS $1 / 1$ BW EKOXY	NSC	1.82	． 09	1H	25	${ }^{\text {ALK }}$	avatilve
OONDMASTER MT7	NSCC	2.41	13 -13	8 H	05	Aİ	AUHLらLVE ADル上」1VE
BONDMASTER 4500 PLUS A／B AS 1／1 EV FAST CURE EPOXY	NSC	2.72	．136	6 H	93	E－3	ADHE 1 ！ ANHESLVE
BONDMASTER 620 PLO A／B AS	NSC	． 74	.02	2H	80	AIN	hundicive
				2a	200	A1凶	
BJSTIK 7008 ELECIFCNIC ADHESIVE GNE COARONENT	FPC	1.75	.21	1 H	65	A 1	avaciave
EQ 34 EPOXY ADHESIVE	ACC	． 05	.00	SH 30 M	135 25	Ala	anambive
Ba 34 EROXY ADHESIVE				30 m	104	${ }_{\text {a }} \mathrm{I}$	
B3 34 EPOXY ADHESIVE	ACC	． 34	－00	90 M 30 M	177 25	A 18	ADULう土VE
				3 VM 90 M	104	AIA	V
				90 M	132 238	AIR	
BA 90／BR 862 aS 100／6 BH EPOAY ADHESIVE	ACC	6.80	.04	7 7	25	A La	
BR 90／bE 802 AS 100／8 BW EPOXY ADUESIVE／E	ACC	1.77	.03	7 D	25	AIK	Audididy
BE－0014 PHENOLIC HESIN／F	PLM	3.04	． 01	24 H	120	AIn	mudesive
BŻ－125 PRIMER MOD AITEILE EPOXY／E゙	ACC	1． 19	.13	30 M	25	AIE	ADAL
				$1{ }^{3} \mathrm{H}$	110	din	
	WTB	1.14 .99	． 012	30 M	OU	Ala	Ajucisive
BR－610 EPOXI／2ELRAHIDIUFUKANE／F				30.1	150	A I	
BJL 308 BLACK EPCXY UNSUPPORTED ADHESIVE YILM	CIJ	－ 70	－09	1 H	170	AIk	ADu F1LM
BSL 312 GRAY EPOXY UNSUPPORTED ADHESIVE FILY	CIB	11.82	． 07	30 N	120	A1M	AJd ELLGA
	UOH HYS	11.95 .12	－12	20.5 H	10	${ }_{\text {A }}^{\text {A }}$ IK	ULA CEMENT
CASTALL E A／B AS $10 \% 1$ BH GRAY EPUXY	CAS	.51	－00	12 d	65	d IK	ADaLilV
CASTALL OUICK CUhE EPUXY CAS＇－PAK PRE－MIX	CAS	2.65	－ 13	24 H	20	A I＊	
CASTALL $1520 / \mathrm{T}-7$ AS $100 / 7.5 \mathrm{BH}$ EPUXY	CAS	1.25	． 07	45 M	65	AIK	ANALSIVE
CASTALL $490 / \mathrm{HI} 91$ AS 1／1 B B BLUE HI－STRENGTH EPOXY	CAS	－28	－ 01	4 H	125	AIN	A ULicil
CAULK GRIP CEMENT HETHYL HETHACRYLATE FILIED	CAJ	1.00	－ 15	5D	25	Aİ	Auncid E
CD－772－5 POLYURETHANE COMFOUND HLEND $10 / 1$	HCC	1． 8.50	5．19	3 D	25	A14	AUHESIVESIVE
CESIUM IODIDE COUPIING COMEOUND BLEND $10 / 1$	HAK	9．60	5.51 6.30				cti auncisive
CHEMLOK 205 ADHESIVE ${ }^{\text {a RIMEGI GREY }}$	HCC	． 34	． 00	30 y	25	A Ik	
				24 H	10	A ${ }_{\text {A }}{ }^{\text {a }}$	motasive
CHEMLOK 220 ADHESIVE BLACK	HCC	． 39	.00	30 M	25	AIK	\triangle ASES」 $V E$
CHEMLOK 234	HCC	15.54	－ 10	30 m	25	${ }_{\text {A }}^{\text {A }}$	auitesave
				30 H	149	A IM	
CHEMLOK 2343 ELASTCMEK BONDING AGENT－BLACK	HCC	51.85	8.88	24 H	25	A Ia	ADacislve
CHEMLOK 236 B BONEING AGENT FLAT BLACK／F	HCC	30.19	－ 29	30 l	25	AIM	
CHEMLUK 2364 SOXLING AGENT FLAT BLACK／F	HCC	27.93	－ 21	30 m	95	${ }^{4} \frac{1}{1}$	AUACSAVE
	HCC CHO	1.51 .44	． 18	3 D 50	257	ALK ALK	AuacSi VE
CHO－BOND 1024 CONDUCTIVE SILICONE	CHO	． 02	－． 00	48 H	177	AIE	Cuid antiesive

SECTION 1 -- adhesives

SECTION 1 -- AuHESLVES

Matehial	$\triangle F R$ CODE	\%TiL	BCVCM	CUHE TIME	$\begin{aligned} & \text { CUEAE } \\ & \text { TE } \end{aligned}$	a 1 Hos	ARELICATICN
CEEST 391 A/E AS 100160 BW black puly uferianil	${ }_{C P} \mathrm{CPC}$	26.86	7.58	5 D	25	A İa	
	${ }_{\text {CPL }}$	26.52 1.10	7.17	50 30 30	25	${ }_{\text {AIM }}$	LOn TLAP ADi
CEEST 7344 A/B AS $100 / 14 \mathrm{BW}$ Siluma EPUXY/POLTJEETHANE	CPC	2.28	-63	72 H	25	${ }_{\text {P }} \mathrm{A}$ SI	Lua RLap ADa
CREST $7344 \mathrm{~A} / \mathrm{L}$ is $100 / 16$ Bh UhOAN EPUXY/POLYUKETHANE	CPC		. 67	$3{ }^{3} 121$	-	A In	Audusive
CREST 7344/7119 AS $50 / 7$ BH ERUXY	$\mathrm{CPC}_{\mathrm{CPC}}$	2.78	-06	${ }_{3}^{21} 1{ }^{1}$	25	AIL	ADusSIVE
	${ }^{\text {cpa }}$	2. 7.92	4.830	$3{ }_{3} 3$	25	${ }_{\text {A Lis }}$	Luy TLAP ADH
	CPC	6.76	4.01	30 34	25	${ }_{\text {A }}^{\text {A }}$ AK	d ω acsive
	$\mathrm{CPC}^{\mathrm{CPC}}$	1.45 1.85	-10	4 4	25	A An	Avacsive aunesave
CREST 742j a/a as 100/24 BW	CPC	1.12	. 11	$1{ }^{10 \mathrm{H}}$	-80	${ }_{\text {A In }}$	a u asive
CREST 7450 A/S AS $100 / 16 \mathrm{BW}$	$\mathrm{CPC}^{\text {CPC }}$	1.784	-14	${ }^{2} 4{ }^{4}{ }^{4} \mathrm{H}$	15 25 25	${ }_{\text {A }}^{\text {A }}$ AM ${ }^{\text {a }}$	Autisiyg
CREST $7450 \mathrm{a} / \mathrm{B}$ aS $100 / 16 \mathrm{Ba}$	CPC	1.12	. 19	${ }^{1004} 3$	80 25	A1M	anamsaye
Cbest 7450 a/b as 100/10 Bh bkum eruxy/roliuabthane	CPL	1.21	.30	${ }_{50}{ }^{415}$	125	${ }_{\text {A }}^{\text {A }}$ in	LU. ILMP ADH
CT 404 2-1 A/B AS 1, 1 dil Silvek yilied EPUXY	AMC	2.35	:01	90, 1304	80 120	${ }_{\text {A }}^{\text {AIM }}$	CuNi ADHESIVE
		1.55	-14	${ }^{50}$	150		
	AMC AMC	1.55 1.39	$=14$ -14 0	23 24 24	90 25	Ala	CuAD ADHESIVE
				2id	25 100	AIN	
CYBOND ${ }_{\text {CYCLEW }}$	$\underset{\mathrm{CCC}}{\mathrm{ACC}}$	1.48 3.31	-72	21 D	25 71	${ }_{\text {A A A }}^{\text {a }}$	Avicsive
Cy $209 / 1 \mathrm{~T} 972$ Cieam ambeg epoxy	cib	. 78	. 01	$4{ }^{4} \mathrm{H}$	25		anacisive
	${ }^{\mathrm{DCC}}$	1.97	-04	14 D 24 H 4	25 2 2 6	${ }_{\text {A }}^{\text {A }}$ AK	Auncsive a unicis. VE
	DCC DCC	3.69 1.35	-89 -34	4 4	60 65	${ }_{\text {A }}^{\text {A }} \mathrm{IL}$	A D acicive
DE $3116 / 5$ AS 15% CAT 5	DCC	1.43	:4i	1 H	25	A 1 m	ADHESAVE
DC: $\begin{gathered}3144 \\ \mathrm{DC} \\ 3 \\ 3\end{gathered}$	DCC DCC	1.75 $1: 74$	-90	300 30 30	25 25 25		ADUCSJVA
DE 3145	${ }_{\text {DCC }}$	1.70	-00	24H	25	AL甘	Aud S¢aiant
d= 3145 gne compcnent dhay Silicone	DCC	. 54	. 27	$7{ }^{\text {7 }}$	25		auri sealant
D= 6-1104 LOT E2 134-142	DCC	- 20	. 35	${ }_{5}^{24}$	25	${ }_{\text {AIA }}{ }^{\text {a }}$	ajuicsiyc-Coating
D* 6-1104 LOT EMC14380	${ }_{\text {DC }} \mathrm{DC}$	-16	-. 05	7 7	25 25	${ }_{\text {A }}^{\text {A }}$ IR	ADacsive
$\mathrm{DV}_{\mathrm{D}}^{0} \mathrm{O}-1104$ LUT FM 109329	${ }_{\text {DCC }}$	-21	-03	14 D	25	ALix	$4 D \sim E S T E$
	DCC DCC	1.42	0.03	7D	6	${ }_{\text {A }}^{\text {A }} \mathrm{I} \mathrm{I}_{\text {n }}$	Sthicisive gesin

SECTION 1－9 ADHESIVES

material	MFE CODE		8 SVCM	CURE	CURE	ateus	ASALCATIOH
DC 63－488 A／B AS 10／1 BW SILICONE	DCC	.99	． 43	$\begin{aligned} & 16 \mathrm{H} \\ & 4 \mathrm{H} \end{aligned}$	$\begin{aligned} & 25 \\ & 65 \end{aligned}$	$\underset{A}{\operatorname{an}}$	AuncislVe
D＝63－489 A／D A S 1C／1 BH OPTICAL SILICONE KESIN	DCC	1.42	． 57	24 H	110 60	E－3	SLhacuat kesia
D＝63－489 A／B AS 1C／1 BW SILICONE	DCC	． 89	.44	4 H	05	A Li	autusive
D二 63－489 SILICCAE	DCC	－23	－ 15	4 H	65	EIG	ADdesive
D＝63－489 SILICONE	DCC	． 36		69 H 69	130	E $\mathrm{E}-6$	
D＝93－500 A／B AS $10 / 1$ BH SILICONE LOT E2467－133 0／76	DCC	－09	－ 03	7 D	25	AIE	Avadijive
	$\triangle \mathrm{DCC}$	－10	． 022	7 7	25 25	AIM	AUHCSIVE
	${ }_{\text {DCC }}$	． 19	． 04	7 7	25	AI年	Audesi Ve
DC 93－500 A／B AS 10／9 bH SILICONE LOT FH129358	DCC	$\because 10$.02	7 D	25	AIB	a 0 HuSive
$\mathrm{D}_{\mathrm{D}}^{2} 93-500 \mathrm{~A}$ B A AS $11 / 1 \mathrm{BH}$ SILICONE	DCC	.09	－ 01	7 D	25	Aİ	AvHeStye
D二 93－500 A／B AS 20／1 BH SILICONE	DCC	.04	． 00	48 H	25	AIt	ADricisye
$D=93-500 \mathrm{FM} 059240$	DCC	． 38	． 21	5 D	74		くuT＋i心
D＝ $93076-1 / 2$ GEAY SILICONE	DCC	3.15	－88	16 H 4 H	25 00	AIn	auamsive
DE 93076－1／2 GEAY SILICONE	DCC	3.30	． 96	${ }_{10 \mathrm{H}}^{4}$	93 25	AIn	Auncily
				4H	00	AIK	
D＝96－080	DCC			4H	149 25	AIM	
DELTA BOND 152－K－A EPOXI KIT 152／RTA2 AS 20／1．5 BH	HAK	1.73	.01	78 8	25	AIn A	AUH－SCALANT cutu auHESIVE
DELTA BOND 152－n－b4 i／b aS 100／3．5 Bí 3LUE EROXY	WAK	． 49	． 00	40 10	25	${ }_{\text {A }} \mathrm{I}$ IR	a Dhecive
DELTA BOND 152－1－A EEOXY KIT PRE－MIX BLJE	\＃А	1.14	． 02	$2{ }^{26 \mathrm{H}}$	60 25	AIK	Auncivive
DELTA BOND 152－1－B EPOXY KIT PkE－KIX BLU E	WAK	1.14	． 01	${ }_{16 \mathrm{H}}^{2 \mathrm{H}}$	60	A IK	Avacisive
DELTA BOND 152／ETA AS 100／7．5 B	WAK	1.39	． 05	2 C	60	AIE	
				4H	93	AIk	ADilisuly
DEN 438／MDA AS 100／27 BH EPOXY－AABEK	UOH	． 60	． 01	2 H	40 15	A In	4uaçive
DENNIS 1169 À／B AS $1 / 1$ BW EPOLY	DNS			7 D	25	${ }_{\text {A A }}^{\text {A }}$ a	auncis VE
DENNIS 1169 EPOXY DEK S	DNS	8.00	－ 01	3 H	93	AIn	Auncisive
DEK 324／DE世－20／DER－732 AS 100／12／12 bK	DOW	2.30	－ 10	24H	25	A1品	A UnES」VE
DEE 324／DEH－20／VERSAKID 150 as 100／12／50 BW	DOS	3.02	． 41	$4{ }^{4}$	25	AIa	\triangle Usisive
	DUin	． 24	－00	24H	66 120	AIK	AḊasive
DER 332／TETA／LITHAFRAX AS 100／14／170 BH LPUXY－5inite	DOH			${ }_{1}^{4} \mathrm{H}$	150 105	${ }_{\text {A }}^{\text {A }}$ In	audusive
	DOH	－ 29	－01	1H	105	A 1 h	Ava
	DOW	.58 1.78	－01	${ }_{\text {2．}}^{2} \mathrm{OH}$	105	A ${ }_{\text {A }}$	ADUCSIVE
				24 H	60	A1H	Avinesita
	DEV	． 54	．01	12 H	40	${ }_{\text {A I }}^{\text {I }}$	AUHESLVE
DEYCCN MIX TUBE EFCXY Bh ALUnINUA FLLIED EPOXX	DEV	1.57	．09	24H	25	AIR	AUnESLVE
devCci 5 Minute fecxy equal pakts frcu tubes	DEV	1.53	－ 08	24H	25	AIK	MURESAVE

SECTION 1 －－ADIESIVES

MATEGIAL	$\begin{aligned} & \mathrm{MFix} \\ & \text { CODE } \end{aligned}$	夺TML	ACVCM	$\begin{gathered} \text { CUne } \\ \text { TIME } \end{gathered}$	$\begin{aligned} & \text { CURE } \\ & \text { TEMY } \end{aligned}$	ATAUJ	ALPHLCATICN
DOLPHCN CE－1078 W／E31J7／D8585 AS 20／1 OW BLACK	JCD	1.34	－ 01	7 D	25	Ain	A Ducsiye
DJUSLE AUEGLEE EPCAK YATCH KIT PKEMLAJUKED GRAY	HUP	1.27 3.29	－01	24 H	25	A ${ }_{\text {a }}^{\text {A }}$	AUALSV
				15 d	135	A14	ADCL゙らもE
DJPONZ 5504A SILVEF FILLED EPOAY	due	． 05	－00	1H	100	ilis	butu andissive
E－SOLDER 3021 A／E AS 1／1 BW SILVEK FILLED EROAY	EPO	9.50	－ 18	2 H	65	Ain	とUdu adhesivis
E－SOLDER 3022／16 AS 10U／8 ow SILVEa rllied ErQxy	EPO	1.27	－$\sqrt{ } 2$	34 1.54	50	A Lis ina	Cund anidesive
	STV	2.55	－ 32	$2{ }^{\text {104 }}$	82	Åı	CDMASLVES
E－2794－13 A／B AS 10／才 Bial SiLICUNE－SPECIAL	DCC	． 85	－29	100	25	A Ia	ADabjave
EA 8 A／B AS 100／6 EW BKOn EEPOXY	HYS	． 98	－ 02	90 M	93	A14	Aud
EA 901／B1 AS 100／11 EW EPOXY MAROON	AYS	－83	－04	$5{ }^{5}$	116	Ala	A Jamsivi＇
EA 907 a／B AS 10／8 BW LIGHI BLUE EROAY	HYS	3.60	1.03	3 D 2	23	A1a	duat cid t
EA 921 A／E AS 4／1 Eid Gray EPUXY	HYS	2.42	． 02	2 H	71	Aln	a Ditçive
EA $9307 \mathrm{~A} / \mathrm{B}$ AS $100 / 14$ dal BEOMN EFOXY	UYS	． 48	－00	30.1	121	A ik	avacsivis
EA $9309 \mathrm{~A} / 3$ AS $100 / 23 \mathrm{BW}$ EPOXY	HY	2.18	． 00	7 7	－ 25	A．${ }_{\text {A }}$	ADabilve
EA 9309 A／B AS 100\％23 BN EPOAY	HYS	1.25	－ 00	7 J	23	aIn	Audeiilve
EA $9309 \mathrm{~A} / \mathrm{B}$ AS $100 / 23 \mathrm{Bm}$ LPOXY LOT 29195	HYS	1.20	． 02	${ }_{1}^{512 D}$	74 25	AIn	auacmive
EA 9313 CRAMGE EFOXY	HYS	2.08	－ 15	16 H	25	d In	ADucistué
EA 9320 A／D AS 100／19 BW BLUE LPOXY	HYS	1． 12	． 04	158 158	80 121	${ }_{\text {A }}^{\text {A }}$ IK	
EA 9321 GEAY EPOXY	HYS	． 94	.04	90.1	66	a 1	avacilve
E＇A 934 A／EAS 100／33 ib GRAY EPOAY（EPON 934）	HYS	－49	－01	7 D	25	aIa	A Latisave
EA 934 NA a／B as $100 / 33 \mathrm{BW}$ GRAX EPUXY	HYS	． 54	－ 01	7 D	25	A I．	ADucsave
EA 9414－1 ONE COEECNENT EPCXY WHLTE GRA	$\xrightarrow{4 Y} \mathrm{~S}$	－78	－ 14	50．1	121	¢S	$\triangle \cup L A L D V E$
EA 951 SUPPJhted efory ad iesive rlail gkay	HYS	2.15	－19	1 H	177	A In	
EA 950 EPOXY	${ }_{\text {HYS }}$	2.28 .69	．06				Auncitye
EA 9601 SUPPOATED EPCXY ADHESIVE FILM YELLOW	HYS	1.54	－44	1 H	121	a In	
EA 9653 EPOXY FIIM ADHESIVE	HYS	1． 34	－ 0.	1H	177	E－1	GiLa adhesive
EASTHAN FA FILIA CUCIO	EAS	6． 27	－ 05				FLLa 4 LHESIVE
	EAC	6.15 .65	－00	${ }^{51}$	23	A In	AURESIVE
	CON	． 60	－0 01	24 H	25	Ala	Auncsive
	CON	1.11	.05	2 H	66	AIt	A vacsure
EASYPOXY K－40 A／E AS EQUAL LENGTHS FLOM TOBES GRAY	CON	19.60	－02	24 H	25	AIA	A Lh LSi VE
	CON	19.87 1.90	．08	24i	25	${ }_{\text {A }}^{\text {A }}$ IK	
				724	60	d In	
E＝ 2126 EUNA N ALHFSIVE	MMM	9.48	1.32	720	25	AIt	4 Watisade
	MMCN	1.00 .20	． 00	240	175	AIA	
				30 M	177	A If	
E： 2290 EFUXY ADh	MME．	． 01	． 01	301	82	¢－4	Avacisits
E二 2290 EPOAX A LeESIVE	MAI	1.60	． 00	2 H	177	A I ${ }_{\text {－}}$	anaidive
EV 3500 ÉA AS 2，3 BM EPOXY ADHESIVE	M4M	－ 19	.06	1H	121	A Ik	AJaçave
	EMC	． 52	－08	GOM OH	170	ASt	AUnLSi V
ECCOBOAD 24 A／E AS 100／28 BH CLEAR EFGXY	EHC	1.69	.04	24 d	25	A IK	AuHcisave

haterial	MFs CODE	\％TML	SCVCH	$\begin{aligned} & \text { CURE } \\ & \text { TLAE } \end{aligned}$	$\begin{aligned} & \text { CUEE } \\ & \text { TEHP } \end{aligned}$	ATAUS	APRLICATION
ECCOBOND 276／LAT 17 AS $10 / 1$ E EPOXY	EMC	． 49	． 00	$\begin{aligned} & 2 H \\ & 1 \mathrm{H} \end{aligned}$	$\begin{aligned} & 80 \\ & 150 \end{aligned}$	$\begin{aligned} & \text { A } \frac{1}{a} \\ & \text { A } \\ & \hline \end{aligned}$	A〕HESLVE
ECCOBOND 281 OAE EART EPOXY－BLACK				2H	200	${ }_{\text {A }}$ In ${ }^{\text {a }}$	
ECCOEOND $285 / 11$ AS $20 / 1$ EW ELOXY	EHC	． 35	． 061	${ }^{5} \mathrm{H}$	88	AIB	Tagal lond adm
ECCOBUND 285／24LV AS 25／2 BW EPOXY	EGC	1.00	－00	24 H	25	ara	Avaçive
ECCOBUND 28＇5／9 AS 25／1 BW EPGXY	EAC	． 48	． 01	24H	25	AIR	Avacsive
ECCOBOND 286 A／B AS $1 / 1$ BWEEPOXY	EAC	1.58	－ 71	24 H	25	AIM	a u dusiy
ELCOBOND 4 SLV／15IV AS 2／1 EWSEMI－EIGID EPOKY BLACK	EMC	7.98	． 02	30 m	104	AIH	\triangle DEESIVE
ECCOBOND $51 / 9$ AS $100 / 7$ BH	EAC	． 44	－02	244	$2{ }^{4}$	AIn	ADHESLVE
ECCUBCND $55 / 9$ AS 5C／6 BW EPOXY	EMC	． 46	.01	24H	25	AIM	ADHESLVE
E゙ごこOBOND 55／9 AS 50／6 BW EPOXY	EMC	.45	.02	30 H	60	${ }_{\text {A }} \mathrm{IH}$	ADacsive
ECCOBUND 56C／7 as $40 / 1 \mathrm{BW}$ SOLDER	EMC	． 23	.01	301	25	din	ADRESLVE
ECCOBUND 57C A／D AS 1／1 BW COND EPUXY SILVEK	EMC	． 52	． 04	1H	60 25	AIn	
EニCOBOND 57 C A／B AS $1 / 1 \mathrm{BW}$ COND EPUXY SILVER	EMC	－36	.03	30 m	150	AIa	cuad adamsive
EECOBOND 532 SOLIEF SILVER FILLED EPUXY	EMC	.36	：17	2 H	149	4 In	Cund adHESIVE
	EMC	1.54	.07	24 H	25	A In	COAD ADHESIVE
ESCOBOND 83C A／B AS 100／3．5 BW DI－PAK SILVER EILLED	EMC	1.29 .64	－03	1244	65	AIn	Cudin Ve
ECCOBUND B3C－1 ONE COHPONENT SILVEL FILLED	EMC	－ 34	－0 0	1 H	149 149	Aİ	Cund aldesive
EこCCMOLD L23／24LV PS 100／26．4 BW	EMC	． 73	． 05	4 D	25	AIR	ADEBSLVE
EこCOSEAL W－19／CAT 24 LV AS 100／26．4 BW EROXY AMBER	EMC	4． 17	． 08	24 H 40	66 25	AIn	Auriesave
EZEOSEAL H－19／CAT G AS 100／12 BH EPOAY	EMC	2.68	． 03	24 H 4 D	66 25	A A If	adabsive
ESCOSHIELD IVS ALHESIVE／ECCOSHIELD SV－H／FOLL				$7{ }^{2} \mathrm{DH}$	66 25	AIL	
	EMC	－18	$\bigcirc 04$	30 M	100	A İ	Cudua Adecisive
ELECTAGBOND $1700 \mathrm{~A} / \mathrm{B}$ a ${ }^{\text {S }} 100 / 5.3 \mathrm{BW}$	EFI	3.19	1．31	24 H	25	AIa	ajubSive
ELECThOBONU $2 J 15$ a／B AS 10／1 Bh SLlVER FILLED EPOXY	EFL	－44	－ 02	2 H	65	A İ	GUSD \triangle D HESIVE
	LOS	1.37	－ 14	48 H	25	AIa	ADU \rightarrow SL E
EPIBOND $1210 / 9861$ AS $5 / 1$ BW EPOXY	FPI	.77	－00	7 D	25	AIK	ADicsive
EPIBCND 122／CAT 931	FPI	3.17	－01	164	60	A ${ }^{\text {A }}$	ADubsi ${ }^{\text {a }}$
EPIBCND 122／CAT C52	FPi	4.37	－ 00		25	AIs	ADHCSIVE
EPIBOND 123／CAT S615－10	FPD	． 8.85	－03	7 D	25	A1d	ADrESAVE
EPIBCND 8bio A／b as 10／3 B ${ }^{\text {P }}$	FP_{1}	． 05	－00	5 D	25	Aİ	ADHESSIYE
ERIPGEA 825A／MOD T／FILLER／CONVERTEA－EPOXX	BCi	.83	－01	16 H	25	A1a	ADdtSIVE
EPO－TEK H11 A／B AS 15／2．0 BW SILVER jILLED ErQXY				$8{ }^{80}$	88	A Ia	
EPU－TEK H20EA／EAS $1 / 1$ DW SILVEKFILLED EPOKY	EPK	1.18	－01	2 H	100	Ala	CuNJ ADHESIVE
EPJ－TER H2OE A／E AS 2\％1 B M／O METAL FILLEK	EPK	8.10	－02	15 M	150	aIa	Audcisly
	EPK	1.54 .19	－01	2 H 30 H	100 100	${ }^{\text {A In }}$	CUMD ADGESIVE
EPJ－TEK H22 A／B AS 20／0．9 BW SIL YER YILLED EPUXY	EPK	1.00	． 01	3.5 H	50	AIf	Cunde adigesive
EPJ－TEK H22 A／B AS 20\％0．9 BW SLLVEE FILLED EPPOYY	EPK	． 99	－01	204	100	AIn	Audesiy
EPO－TEK H27D A／D AS $10 / 1$ BW SILVER FILLED EPOXY	EPK	－52	． 09	1 H	150	4 In	Cuil 4 LHESIVE
EPJ－TEK［31DLV SILVEK FILLED EPGXY SiNGLE COAPONENT	EPK	.47	． 02	1 H	125	AIn	Cuau adHESIVE
EPO－TEK H40 GOLD FILLED EPUXY SINGLE COMPONENT	EPK	$\bullet 19$	－00	1H	120	${ }_{\text {ain }}$	CUND ADHESIVE
EPJ－TEK H41 GOLD FILIED EPOXY	EPK	－14	－ 00	${ }_{1}{ }^{\text {H }}$	150	AIR	Cudu av Hesive

SECTION 1 －ADHESIVNS

MATEEIAL	MEK COUS	\％T M	\％cvem	CJRa TIME	$\begin{aligned} & \text { CUEE } \\ & \text { TEME } \end{aligned}$	ATnOS	AEHLICATICN
EPO－TEK H 44 UULD FILIED EPOXY	EPK	－ 27	． 00	1 H	150	A In	نuad audESIVE
	EPK	1.51	－03	1211	50	A1k	Mant CUND ADH
EPO－TĖA H7OE A／E AS 1／1 BW THERM CONU EPUXX	EPK	－ 99	． 03	12 B	60	AIa	வDAESLVE
EQU－TEK H72 A／B AS 10／．4 Ba DIELECTRLC EPOAY PASTE	EPK	－ 31	－ 00	30 m	100	AIA	
	ERK	． 56	－00	30 m	150	$A^{\text {a }}$	AU山上SLVE
	EPK	． 22	－00	1 l	125	AIK	ADIESIVE
EPO－TEK HOU SLIVEA FILLED EPOXY		． 16	－0j	24 H	50	AIE	CuNy audesive
EPO－TEK H81 A／L AS $1 / 1$ BW PLATINUM FLbLED EPUXY	EPK	． 62	－	10 l	60 95	年－0	Cund adacsive
EPC－IEX HZ1 A／b AS 10／1 SW GOLD EILLED EPOXY	EPK	． 06	.01	12 H	50	AIn	CUND ADHESIVE
EPO－TEK H31E A／BAS $1 / 1$ By GULU HILLED EPOXY	EPK	． 20	－01	$2{ }^{24}$	10^{0}	A In	CUOD ADHESIVE UR？Codent
	EPK	1.28	－0，	24 H	25	AIM	OLI Cident
		$1.0 y$	． 01	18 H 24	65	Aİ	UKS CEMENT
CPO－TEK 301 a／B aS $20 / J$ EN OKTICAL EKGAY LOT 375049	二рa	1.09	－ 01	O4	65	AIH	Uet coment
EPO－TEK 301 a／B AS $20 / 5 \mathrm{BN}$ OPIICAL EPQXY LOT 375051	EPK	1.17	．$\checkmark 2$	24 H	25	AILi	US＇LenENT
EPO－TEK 3U1－2 A／E AS 2 U／ל BW UPTLCAL CEMENT LPOXY	¿¢＇	2.62	1.03	24 H	25	AIL	UEA CEAENT
	EPK	3． 58	－15	24 d	25	A LK	USI CEMENT
EPO－TEK $305 \mathrm{~A} / \mathrm{S}$ aS $14 / 2.8$ Bu OPTICAL CEMENT EPOXY	EPK	1． 54	． 04	24 H	25	A In	ULS CLEAENT
	EPḰ	3.28	． 15	24 H	25	A IA	OLS Coment
EPO－TEA 320 A／BAS $5 / 1$ BW BLACK EPOXY	EPK	1.49	－02	74	25 25	AIE	A Labsive
	EPK	2.03	－02	24 H	25 60	A ${ }_{\text {AK }}$	Autcibive
EPJ－TEK 3bJad aigh teap efuxy yamenin Pack 1J／1 BH	EPK	1.83	． 01	2.4 H	25	AIa	AUnLStVE
ERO－TEK 353 ND UIGH TEMP EPOXY PKEGIA PACK 10／1 BW	EPi	1.88	． 04	24 H	25	AIn	AUHESivE
LPO－LEK 390 POLYIMIDE／F	EPK	－43	． 01	30 M	25	AIK	AUHESiVE
EPJ－TEK 415 S （ B AS 1／1 BW SILVEA FILLED EROXY				1 A 24	200	${ }_{\text {A }}^{\text {A }}$ Id ${ }_{\text {a }}$	
	EPK	1.83 2.19	． 02	3 D	25	A $\mathrm{A}^{\text {a }}$	Cunu ad HESIVE
	EPK	3.13	－ 01	$1{ }^{1}$	100	AIn	çud aditesive
EPO－TEX 92U EPOLY ADHESIVE	\vec{E}	－ 0	． 11	45%	80	AIn	A UHESLVE
EPO－TEK 930 A／L AS $10 \cup / 3: 3$ B FILLED EPOXY	EPK	5．49		45%	80	AIn	Iucue Cund adh
EPOCAST EPOCAST \＆ $508 / 9313$ EPCXY AUSHESIVE	FPI	5.83 4.10	． 01	$3 \mathrm{3H}$	25	AIK	
				2．54	85	A Ik	
EPON X－24 EPOX 1	3 $\mathrm{dL}^{\text {L }}$.42	． 05	15 M 45 M	60 25	AIn	dЈLiçıV
				4H	25	AIf	
				10 n	100	A IA	
EPON 10U1－BT－7U／VEKSAMID 115／4LK／TOLUENE	SHL	9.00	． 00	150 M	25	AIK	A Didesive
	SHL	12.02	． 02	18	9	AIk	ADasSAVE
EPON O／CAT A／CrCLCEEXANOL AS 100／12．5／25 Bw	SHL	6.46	－0	$3 \mathrm{3H}$	93	${ }_{\text {A La }}$	A ${ }_{\text {a }}{ }_{\text {a }}$
EPON 3／CAT A／CYCLCEEXANOL AS 10J／12．5／25 Bd	SHL	4.74	． 00	3 H 24	121	AIE	ADa－guiting
EPON 315／DEil－20／VEFSALID 150 AS 100／12／12 ibl EPOXX	SHL	.81	＝ 03	40	25	AIM	ADSEご」VE
	SHL	.56 2.96	． 077	7 y	74	A1K	ADatisf E ADuEiSLYE

SECTION 1 －－ADHESIVES

	matehial	$\begin{aligned} & \text { MFG } \\ & \text { CODE } \end{aligned}$	WTAL	\％CVCM	$\begin{aligned} & \text { CUBE } \\ & \text { TIAE } \end{aligned}$	$\begin{aligned} & \text { CURE } \\ & \text { TEME } \end{aligned}$	ATISOS	AどくんLCALION
EPON	815／T AS 10，1－8 8w EPOXY	SHL	2.41					
EPON	815 TETA AS $10 / 1$ BH CURE 2	SHL	1.83	.03	6 O	25	AI	ADUESAVE
EPON	8 815／TETA AS 10／1 BW CURE 4	${ }_{-}^{\text {SHiL }}$	． 76	0.01	16 H	03	AIK	Aukcsiye
EPON		GSC	－ 51	－02	7 D	25	AIE	ADUCSIVE
EPUN	$815 / \mathrm{V} 140 / \mathrm{DTA}$ AS $100 / 15 / 6 \mathrm{BW}$ EPUXY	SHi	2． 42	－08	7	25	AIK	CUNJ ADHESIVE
EPON	$815 / \mathrm{V}$ 140／DTA AS 100／6／6 BW EPOXY	SHL	4.68	.41	7 D	25	Ala	auncive
EPOiN	820／TETA AS $1 C / 1$ BH CUEE 1	SHL	.43	． 05	3 D	25	A $1 \times$	adncis
EPON	820／TETA AS 10／1 BW CURE 8	SHL	． 36	.04	16 H	63		ADHESAVE
EPON	826／NMA／BDMA AS 100／88．5／1．j BH EPOXY				48 H	25	AIx	
de	（1）Na／bdia as 100／88．J／1． 2 bh EpOXX	SHL	－4J	． 00	2 8	937		
	827／VERSAMID 140 AS $1 / 1$ BW EPOXX	SHL	． 90	.01	3.5 H	60	AIK	a Ducisive
$\begin{aligned} & \text { EPON } \\ & \text { EPON } \end{aligned}$	828－ALUMIUA／V－125／METHANEDI AMINE／ALUAINA 828／DER $732 / A E P / C A R B O N$ BLACK EPUXY ADHESIVE	${ }_{\text {StiL }}$.21 1.26	－01	3 H 3 3 H	71	AIA	
			1.36	． 06	$2{ }_{2}{ }^{2} \mathrm{H}$	65	AIA	ADasilve
EPON		SHL	． 75	． 04	$3{ }^{3}$	25	A ${ }_{\text {A }}$	AUHESAYE
EPON	$828 /$ TETA AS $10 / 1$ bH CURE 1 10／S／3H EFOLY	HAC SHL	． 29	． 00	$3{ }^{10} 5$	65 25	AIM	ADhLSi VE
EPON	828／TETA AS 10／1 bíl CuRE 8	SHi	－38	．00	16 H	$\bigcirc 3$	AIk	avabisave
					2D	25	AI＊	
EPON	828／VERSAMIL 125 AS 1／7 Bn w／3 S SLACK EPOXX	GSC	.46 1.06	． 02	7 D 3 H	25	${ }_{\text {A A A }}$	CUIND ADMESIVE
					16 H	82	E－6	
EPON		SHL	.09 4.68	－ 43	7 D	25	A Lis	A UHLSIVE
EPON	828／JERSAMIE 140 AS $40 \% 00$ BW EPOXY	SHL	4.68 1.63	－45	$7 \mathrm{7D}$	25	AIa	AvaESAVE
EPON		SHL	1.10	$\bigcirc 04$	75	25	AIA	AnSisisive
EPON	$828 / \mathrm{VCRSAMIL} 140$ AS 50／50 B EPOXY	SHi	－58	－04	7 D	25	A Im	
EPON EPON		GSC	－1d	－． 00	$7{ }^{7}$	25	AIE	AUdCSA 时
			－ 81	－03	12 H	125	${ }_{\text {A IR }}$	CuND GUHESIVE
EPON	828 VEGSAMIL 140／SILFLAKE 135 AS 5／J／40 BW	SHL	－ 30	． 04	$7{ }^{7}$		AIn	cunu autesivei
EPON	828／VERSAMID $140 /$ SR 82 AS $70 / 30 / 1$ BW EPOXY	GSC	－ 35	－ 01	7 D	25	AIK	A UuLSLVE
EPON	828／VERSAMID 15／DTA／TID2 $2 / 3 / 166$ B4 MQD EPOXY	GSC	1．12	－05	70	25	A Ik	a datisive
ERON	828／VERSASID 15／T－61／CAS－O－SIT／KED DISPERSION	GSC	． 93	－05	7 D	25	AIK	ADHESIVE
EPON	828／2ZL－0803 AS 100／35－5 BH EPOXY CUATIAG	SHL	1.49	－04	1 H	121	Ald	H0，
EPON		SHL	1.71	－ 16	70	25	AIa	ADdcsive
EPON		SHL	1．35	－03	4H	64	A Ik	a Dacisa $V E$
EPON	934 A／B AS 100／33 BW EPOXY BM EPQXY	SHL	－92	－02	7 7	25	${ }_{\text {AIM }}$	ADHESVE
EPO	934 A／B AS $100 / 33 \mathrm{BW}$ EPOXX	SHL	－28	－ 01	7 D	25	AIA	auacsive
ERON	934 A／b AS 100／33 BW EROXY W／KEK	SH2	2.87	－02	$2 \mathrm{2H}$	25	AIa	A Uidejave
EPON	$934 \mathrm{~A} / \mathrm{B}$ AS $100 / 33 \mathrm{BW} \mathrm{H} / \mathrm{AEK} / \mathrm{MOS} 2$	SHL	2.93	． 03	2 H	25	${ }_{\text {A }}^{\text {A }}$ I ${ }_{\text {d }}$	ADacsave
EPON	934 A／B AS 10C／33 BH W／MEK／MOS 2				${ }_{16 \mathrm{H}}^{14}$	${ }^{82} 10$	${ }_{\text {A A A }}$	
ERON	956 A／B AS 100／58 B4 EPUXY	SHL	2．19	.01	7 D	25	${ }_{\text {A }}^{\text {A }}$	ADALSIVE
EPON	956 A／B AS 100／58 B／／CAHBOLAC／CABOSIL	SHL	－81	－00	7 D	25	A 1 ¢	A Jacsive
EP ${ }_{\text {EP }}$	T－PATCHKAS U1E1 CLEAK ESUAL LENGACS CABOSIL	SHY	1． 81	.11	7 l	25	AIK	ADhESLUE
EPOXI	Y－PATCH KIT OiS ${ }^{\text {EOUAL }}$ L ENGTHS FK TUBES	HYS	1.818	－02	$2{ }^{2} \mathrm{H}$	63	${ }_{\text {AI }}^{\text {A }}$	A Didesive
EPOXI	I－patch kit ic white equal lengtis fir tubes	HYS	.81	.02	24 H	25	AIK	ANA－SCALANT

SECTIUN $1--$ AUHESIVES

Hatekial．	MFH CODE	碞 $\mathrm{H}_{\text {L }}$	XCVCM	CUKE $1 I M E$	$\begin{aligned} & \text { CURE } \\ & \text { TEMP } \end{aligned}$	ATMOS	AとよLICAIICN
EPOXI－PATCH KIT 1073 EQUAL LENGTHS FK TUBES	HYS	4.77	26	2 i	OU	A In	Auabsave
EPOXI－PATCH KIT 608 CLEAR E\JAL LENGIHS FE TUBES	HYS	3.07	－ 15	24 H	25	A Ia	A DK－Stalant
EPOXY ADHESIVEFCR EEPLICA GEATINGS－PGUPGIETARY	BNL	3．99	－ 12				ALuESIVE
EPJXY ADBESIVE ECK REPLICA GRATINGS－PRCPGIETARY	OH_{2}	5.53	－ 12	24H	80	A Iis	A Lacis VE
EPOXY 14 －	INC	1.60	－ 31	30 N	115	a In	A \triangle Hesiove
EPOXY 220 A／B AS ECUAL PAETS FROY TUUES	HUE	10.89	－07	248	25	${ }^{\text {Ain }}$	A
EPOXY 330 A／B AS ESUAL RARTS HKOM IUUES	MS E	10.42 2.25	． .06	71 ${ }^{\text {D }}$	25	AIX	Auntiolve
EPOXY 907 A／b AS EqUAL LENGTHS FFOM LUBES	MSI	2.25	． 06	24 H	45	AIt	Avamsay
				8 H	60	নIk	
EPOXYLITE P EPOXY	EPC	3． 57	0.03	24 H	23	d 1 n	Avdbuive
EPOXYLITE 9653 TYPE 3	EPC	15.48	－01	2 H	70	A Ik	ADacisive
EPY 150 PRE PACK EFOXY ADH LOT L 101	$\mathrm{P}_{\mathrm{P}}^{\mathrm{L}} \mathrm{L}$	． 94	－13	16H	250		avicsive
ESP 108 GRAY ONE PART EPUXY	PIC	． 50	－10	4510	150	AIn	
ESP 109 GHAY ONE PART EPUXY	－IC	－ 00	－13	4511	150	AIa	ajdciave
EUREPOX 710／VEESAMID 140 AS $2 / 1$ BW EPOXY	SAG	－ 33	． 88				ADAESIVE
EX 0762 EPUZY DIEIECTAIC ADHESIVE	DUE	． 08	． 00	1H	160	A Ia	AUdES\＆
FA－8／DA－5 AS 100／13．5 BW EROXY	BAC	． 74	． 25	28	66	AIE	mua 5uTTING
FA－8／0A－5 AS 100／13．5 bN EROXY				24H	71	AIn	
FASSCNTTAPE 333 bibite roly	$\underset{\text { APF }}{\text { FIB }}$	2.64 .44	.34 .01	100	149	AIn	ADALSLVEAFE
				2 H	160	AIL	
FM 123－2 EPOXY ALE FILM	ACC	1.30	． 16	${ }_{1}{ }^{\text {H }}$	107	A I 4	Aun chaty
EM 123－2 EPUXY ALH ELLM－ORANGE	ACC	1.43	． 27	1 H	121	AIs	A Ua cisai
FY 123－2LYC EPOXY ADH FILH PUKPLE	ACC	－68	－01	1H0	124	${ }_{\text {A }}^{\text {A }}$ IK	ADat riLM
FG 123－2LVC EROXI ADH PILA PUBPLE／F EPOXY PURPLE	ACC	－94	－00	9 H	121	9 ${ }^{\text {da }}$	Avh rilcm
	ACC ACC	．81	－00	1 in	121		ADA ELLG
FM 123－5 EPOXX ALH FILM GREEN	ACC	1.17	.01	3011	125	PSt	ava r1LM
				14H	150	PSI	
FM 150－1 SUPPOKTED EPOXY ALUM FILi HONEXCOMB ADH	ACC	－49	． 04	1 H	177	AIk	ADit rlig
FM 150－2 SUPPJGTED EPOXY FILM EP 15 HONEYCOMS ADH	${ }^{\text {ACC }}$	－87	． 06	1 H	177	A Ia	A wa
YY 150－2U UNSUPPCETED EPOXY FILA ADH	\triangle ACC	－89	－ 02	$1{ }^{1}$	177	${ }_{\text {A }}^{\text {A }}$ S ${ }^{\text {d }}$	A wit rchin
PM 24 EPOXY ADH EIIA URANGE	ACC ACC	.88 1.38	－2 0	10 H 90 M	121		
	ACC	1.48	.34	1 H	121	dik	A ar $^{\text {cham }}$
FY 36 FILM ADHESIVE POLYIMIDE／GLASS	ACC	． 82	． 02	2 H	177	AIa	AUH FLLM
				2 H	288	${ }_{\text {A }}^{\text {A }}$ ¢ IH	awh fuan
	ACC	1.05	－05	1 H	121	A In	AUH ruam
GY 37 EPOXY FOAM ALH PER HMS 20－1591－CL2	${ }^{\text {ACC }}$	1.11	． 05	3 H	121	${ }_{\text {A }} \mathrm{I}_{\text {a }}$	iUni ruak
PH 40 EPOXX FUAM	$\triangle C C$	1.00	.05	1 H	170	PSL	Aud cuam
PM 400 SUPPOETED EFUXY FILM ADH GKAY	$\underset{\text { ACC }}{ }$	1．13	－0V	6H	177	AIU	ADG PLLE
	FLC	4． 4.37	2.59	140	25	AIK	ELHM ADAESIVE
$\begin{array}{llllll}\text { FR } & 127 & \text { A／E AS } \\ \text { FR } & 127 & \text { A／b AS } & 16 / 1 & \text { BW }\end{array}$	\checkmark VEL	4.37 4.48	1.60 1.98	14 D	25	AIM	Avacisy E
				40 H	25	く－5	
FE 7035 UNSUPPOETEL ADH FILM	FBC	2.31	－ 94	$1{ }^{1}$	121	AIk	Aud K1～M
PRALOCK T－912 FILM ADH SYSTEH－THERMGSETTING	FRA	2.69	－ 51	454	170	A 1 K	CLLI ADHESIYE
FSP49 A／BAS 1／1 Eh SILYEG PILLED EPOXY	JMM	3．30	． 012	24 H	25	A14	Cunciantesive
	AUI	3.48 2.48	－18	48 H	25	Aİ	AvacSive

SECTION 1 - ADHESIVES

SECTIUN $1 \rightarrow$ ADHESLVES

matehiam	ぶド CODE	\＃TML	\％CVCH	CUKE TI西E	CJBE TEMP	ataus	AKLLICATICN
LEFKOMED $46 / \mathrm{L}-52 \mathrm{AS} 100 / 74$ D⿴ YELLOW／GAEEN EPOXY	LCC	1.04	． 08	3 H	66	414	
LEFKOW	LCC	2.30	－ 03	7 D	25	AIn	
LENS BCND L－59 4／E AS 50／1 BV	SUi	2.94	－ 10	8 D	25	AIK	ver codent
LEMS $\triangle C N D E-65$ A／L AS 20／1 Bim	SUH	4.83	－16	24 H	25	A It	UET CLAENT
LENS BCND M－62 A／E AS 30／1 B W	SUM	5.77	－ 02	90M	70	AIK	UTI C゙GENT
LENS BCND UV－G9 EOIYESTER SUN LAMP CUEE	SUM	3． 05	－26				OLS CLAENT
LENS BUND UV－71 FCIYESTEK UV LAME CUGE	SUM	4.21 3.68	－62				OLT CEGENT
LENSTBOND UV－74 ECEIYESTEX UY LAME CUKE	SHM	3.68 6.34	－4 03	24H	25	PS	Cubiau SEAL
LUCTITE A AED ADEESIVE FROM BOLTS	LTC	3.47	－ 11	72H	25	${ }^{2} \mathrm{SI}$	Catcau Seal
LOCTITE A KED ADGESIVE FROM UOLCS	LTC	5.86	． 01	7 D	25	PSI	CHECAU SEAL
LOCTITE A KED ADHESIVE FHCM SHEMS	LTC	5.64	． 07	168	50	${ }_{\mathrm{P}} \mathrm{S}_{1} \frac{1}{3}$	Ra＠AAL SEAL
LJCIITE Aa OVER EGIBER N	LTC	1．04	－0	10 C	50	$\stackrel{\text { PSi }}{ }$	GGEEAD SEAL
LOCTLTE AA MELD SEALANT GKEEN KRUM SGIAS	LTC	3.19 14.30	7.042	10 H 48 H	50 25	¢Si	ADLD－Scaida
IJCTITE B BLAEING ECUNT YELLOM F HOM LQLTS	LTC	12.03	7.00	7 D	25	$\underline{p} \mathbf{S}$	a لu－Sca hant
LOCTITE C ELUE ALEESIVE	LTC	13.45	7.68	24 H	25	PSI	Inkbail SEAL
	LTC	24.86	12.53	12H	77 25	E－2	and－Sualant
LOCTITE DEPEND ALEFSIVEJACTIVATOE／F	LTC	24.33	12.29	$24 i$	25	AIn	avacsive
LOCTI晨 TI－277	LTC	3.79	－22	72 H	25	E－3	Tumciau SEAL
LOCTITE 222 MILD STRENGTE ADH PURPLE	L＇C	17.71	7.65	24H	25	${ }_{0} \mathrm{~S}$ S	Tuktial SEAL
LOCTITE 222 MILD STEENGTH ADH PURPLE FKQM BOLTS	LTC	20.84	13.78 5.49	48 H 24	25	PSL	ADdesive
LOCTITE 242 HEDIUM STAENGTH ADH BLUE FUCA BULTS	LTC	10.43	7．45	22H	25	${ }_{\text {P SI }}$	$\triangle \cup H \rightarrow S A L A N T$
L．JCTITE 262 HIGH STEENGTH ADH EED FROM BCLTS	LTC	4.43	． 18	72 H	25	PSi	ADu－SEALANT
LJCTITE 262 HIGH SIRENGTH ADH RED FRUM SHIMS	LTC	4.12	－18	16 H	50	PSI	A UH－SLALANT
LJこTITE 271 HIGH SI\＆ESGTH ADH GED	LTC	\％． 10	1.23	24 H	25	$\bigcirc{ }_{\sim} \mathrm{S} \mathrm{S}_{1}$	Taxcad SEAL
LOCTINE 271 HIGH STRENGTH ADH UED FRUA BULTS	LTC	9． 24	－47	48H	25	${ }_{\square}^{\text {P S }}$	ADH－SEALANT
LJこTITE 290 MEDIOM STRENGTH AUH GXEEN FRGM BULTS	LTC	S． 19	－13	248	25	PSI	Aunios incant
LOCTITE 290 GEDIDE STKENGTH ADH GREEN FGCH SHIMS	LTC	2．43	－ 01	16 id	50	PSt	ADH－SEALANT
LOCIITE 317 SiALCTURAL ADHESIVE	ITC	10.02	－ 51	70	32	ESI	AUdicilve
LOCTITE 324	LTC	2.46	－ 13	15 M	121	Aİ	ADHESYE
LOCTITE 324／aCT 707	LTC	5.00	－ 28				$A D H E S \angle V E$
LOCTITE 325	LTC	2.45	－11	15M	121	AIK	A Vacsive
	LTC	3． 35	． 08				Avadisive
LJCTITE 35\％OCuUIC PRIMEa N	LTC	1.21	－14	6H	60	E－2	Avaicsive
LOCTITE 354 HOD ACEYLIC UV CUNVERTIBLE	LTC	9． 61	－ 3				OLTHCAL CEMENT
LUCTITE 354 MOD ACEYLIC UY CONVEETIBLE	LTC	8.94	－22				URCLCALCEMENT
LOCTITE 361 （	L＇rc	3.80	－ 0				Avacsive
LJこTITE GO1 ALGH STE ENGTH ADH GREEN	LTC	5．21	.	24 H	25	PSI	Tracal Seal
M－5 ADHESIVEA／EAS 1／1 BW YELLOH	OXI	10.20	－17	72 H	25	AIt	URAACAL CEMENT
MA 509 CONDUCTIVE SILICGNE	Che	－ 28	． 09	250	25	412	ADaESiVE
GACBOND 1 B 1200 TWC SIDED TAPE／E	MOK	1.56	－0 5				Fía a diesive
MACBCND 9620 POL YESTEK FILM／2 SIDE ACE ADH MI418／E	MOK	1.25	－00				tLiG ALHESIVE
MABPOXY 95－163 SINGLE COMPONENT CU FiLLED EPOXY	KEY	28	01	2 H	$\begin{aligned} & 149 \\ & 204 \end{aligned}$	AIK	ADacSa Ve
MARFOXY 95－108 A／E AS 19／1 Bin Cu PILLED EPOXY	KEY	． 45	． 04	16 H	25	AIn	Cuma an Hesive
MakPOay 95－202 SINGLE COMPONENT CU FILLED EPUXY	KEy	． 27	． 00	$2{ }_{2}^{2 H}$	149	${ }^{\text {A }}$ In	ADHESive

HATEELAL	$\begin{aligned} & \text { MPR } \\ & \text { CODE } \end{aligned}$	\%TML	SCVCM	cure TIME	$\begin{aligned} & \text { CUEE } \\ & \text { TE } \end{aligned}$	a Tau	AERLICATION
HaRPOXY 95-4 A/B aS 19/1 Bit Cu PLLLEL EPOXY	KEY	1.45	. 10	24 H	25 66	$\begin{aligned} & A I K \\ & A I M \end{aligned}$	Cuad adhesive
Marpoxy 95-7 a/b as 19/1 Bu Cu Filled eroxy	KEY	1.18	. 08	24 H	25 66	${ }_{\text {AIE }}^{\text {A }}$	COND AUEESIVE
Marpoxy 95-9 One CCMPONENT CU PILLED EPQXY	KEY	. 03	.06	148	160 204	${ }_{\text {A }}{ }_{\text {ALK }}$	しUNJ ADLESIVE
MASTER BOND GPG EOIYESTER COPOLYMER	MBI	14.73	. 01	241	25	PSI	THAEAL SEAL
U- 30 A/B AS $95 / 5$ EH ACBYLIC AOH/BENZQYL PEKOXIDE	$A C P$	4.72	.03	7 D	25	${ }_{\text {i }} \mathrm{IH}$	adhesiye
	$\mathrm{ACP}^{\mathrm{HCN}}$	14.01 1.03	-04	7 D 25	259	A ${ }_{\text {a }}$	Avacisive
HETLBOND $227^{\circ} \mathrm{EPOXY}$ FILM ADHESIVEA	WCN	- 48	-08	1H	127	AIM	Aun cila
EETLBOND 329 CLOTH SUPPORTED EPOXY FILM	\checkmark	1.27	.01	1H	177	$2-1$	ADa Plia
HETRE-GRIP 3446/T9 AS 1\% CAT BH	MEP	. 49	. 00	2H	93 204	${ }_{\text {A }}^{\text {A }} \mathrm{ik}$	ADHESIVE
KIC EOCIRCUIT TYPE SILVER FILLEU EPOXY	TNC	- 24	-00	16 H	150	ALK	CONL \triangle UHESIVE
HEM TAPE X 1140 TEFRAOSET RUBBEF ADE FILM/R	MMM	¢. 14	2.13	3H	121	A In	2 SuLEV TAPB
MSH 2APE X-1255 KAETON/THERMOSET ACRYLIC ADH/2 SID/F	HMM	1.00	-00				2 S 1 DEU TAPE
HMM TAPE X-125S KAETCN/THERMOSET ACBYLIC ADH/2 SIDE	Mam	2.93	- 07	30M	130	Aİ	2 SLULU TAPE
MGM TAPE 4016 FOAM/2 SIDE ACKYLIC ADH/FOIL SANDAICH	MMM	2. 6.17	- 22				YUALI TAPE 2 SAPE SIDE
MYM TAPE 465 TEANSFER PIL M SYN ACETEIC/R	\%Ma	6.84	-20				Thambr
MGH TAPE 666 PVC FILE/2 SIDE ACEYLIC ADH/R	MAB	2.11	-15				2 SLDEL TAPE
HS 2704 SILICONE ALH	MUH	4.53	1.41	30 H	25	AIK	Avaicsive
NARMCO 3135/7111 AS 1/1 B ${ }^{\text {a }}$ EPOLY	\%CN	. 59	. 01	24 il	25	AIt	Avatitve
NARACO 328 SHEET ALHESIVE	$W C N$	1.00	-11	9018	165	AIn	Avi filig
NARHCO 329 SHEET ALHESIVE	NEN	10.65	-U5	70	105	${ }_{\text {A }}^{\text {A }}$ In	ADh EiLA
	NOR	2. 22	-02				OEF CEMENT
NOA 60 OPIICAL ALHESIVE/F 5 MIN UV EXP	NOR	-90	. 01	1H	125	A If	$0{ }^{\text {OT }}$ CEAENT
NJA 61 OPTICAL ALBESIVE/E 5 MIN UV EXP	NOR	2.24	-01				OLT CLAENT
MOA 61 OPTICAL ALUESIVE/P 5 MIN UV EXP	NOR	1.65	- 01	1 H	100	AIn	OLS Conent
NOA 63 OPTICAL ADEESIVE/F 5 HIN UV EXP	NOR	2.27	- 04				ORT CeaEnt
HJA 65 OPTICAL ALHESIVE/F 5 MIN UV EXP	$\stackrel{\mathrm{NOH}}{\text { ACC }}$	2.89 .61	-140	30 M	25	a In	OUT CLIVENT
NODE BOKD BAR-10176 LX-125 THEALCSEX ADA/F	Acc			1 H	177	AIE	
MODE BCND GG-288-8 EATCH 108	ACC	. 57	. 04	30 M	25	AInik	ADUESIVE
OPTICAL COUPLING CEND - SILICONE (PROPRIETARY)	AEN	2.08 .30	1.12 .01	14 D	25	A In	ADGESAVE ADUESIVE
	$A P \mathrm{P}$	3. 18	- 17	24 H		AIK	GUHCSIVE
P-61 SILICA FILIED EPOXY	TEC	. 31	.04	2H	100 135	A ${ }_{\text {a }}^{\text {a }}$	and cSive
PALMER CEHENT 0014	PLM	4.02	. 01	17H	80	AIK	ADusblve
PRRAA-LOK HH 120 FGCH SHIMS		3. 29	. 37	$4{ }^{2} \mathrm{H}$	125	${ }_{\text {A }}{ }_{\text {A }}$	aja-jcimiANT
PERMA-LOK HL 126 FECM SHITS	PIC	3.76	-02	48 H	25	PSI	Aud-stilant
PERGA-LOK HL 138 FECM SHIMS	PIC	4. 16	. 03	48 H	25	PSL	
PERMA-LOK HMOGO FECM SHIMS	PIC	4. 11	-04	48 H	25	PSI	AUH-SEALAdT
PERMA-LOR HM128 FECM SHIMS	PIC	4.57	- 10	48 H	23	PSI	Anu-SbaLaly
PERMA-LOK LHO12 FECG SHIMS	PIC	28.57	6.10	48H	25	${ }^{\text {P S }}$ S	
PERMA-LOK LM113 FECH SHIMS	${ }_{\text {PIC }} \mathrm{IC}$	14.67	8.23	488 48 H	25	${ }_{2} \mathrm{SI}$	AVH-SkA ANT
PEBGACEL TAPE 941 RYLAB/2 SIDE NATURAL RUBbEk/E	PER	10.58	- 4.5	48 n	25	251	¢ Sibed TAPE

SECTION 1 －－ADHESIVES

MATERIAL	$\begin{aligned} & \text { MFR } \\ & \text { CODE } \end{aligned}$	其T T	\％CVCM	$\begin{aligned} & \text { CURE } \\ & \text { TIAE } \end{aligned}$	CUHE TEMP	A 1 duj	Aよthl心atiun
PETEESON ChEM EPCXY A／B AS 1／1	PCE	1.06	－ 46	24H	125	A In	Auacsive
	DUP	2.58	－ 38	3 D	25	AIn	cuaj audidsive
PLASTILOCK 717 E MYION／EPOXY ADH	EFG	1．77	－ 70	$1{ }^{\text {H }}$	121	2 SL	HLLA \triangle DHESIVE
PLIOUUND 30 FLGM TUBE／FOIL SANDWICH	GAC	13.55	－ 70	4 OH	25	A Iu	A $\mathrm{D}_{\text {a }}$
PLV 2000 VIION ADHESIVE	EEL	1.77	． 63	3 l	150	${ }_{\text {A }}^{\text {A }}$ Ia	AJucilve
POLY CAST EC EROXX LCT 173－4416－4	FLA	． 83	－27	3 H	171	AIa	
PJLYGUIDE LAMIAAII\G FILM	ECC	1.48	.33	$2{ }^{5} \mathrm{H}$	103 125	${ }_{\text {A }}^{\text {A }}$ I i	
PJLYSET EPC 68 BLJL EPOXY POWDEK	MNC	． 25	.03	2 N	104 100	${ }_{\text {A A }}^{\text {A }}$	ADHLSIVE
PR 1564 A／E AS 7.7 ， 100 BW／BV POLYUAETHANE CASTING	PRC	1． 12	.01	20 M 16 H	94 85	A In	
		1.12	－	10 H	100	E－j	ADHASHE
PR 1660 A／BAS $11-5 / 100 \mathrm{BW}$ PULYURETHANE FILM	28C	－80	－01	16 ii	100	ala	$4 \omega_{\text {aciside }}$
PQ 1660 L A／B AS 1／4 EV AMBER POLYUKETHANE LOT C2 1828	PRC	1.05	－ 01	10 H	05	A	ADGLS ${ }^{\text {a }}$
PR 1660L A／B／CAB－O－SIL M－5 AS $25 / 100 / 8$ W／PGAT／DEFOAM	PRC	－ 41	． 00	140	25	A IK	adresaye
P8 1710 adiesive FCE VITUN A	EKC	． 38	． 01	16 H	121	AIK	Avinchave
PS 18 ACKYLIC CEMENT	BOH	． 73	－00	72 H	25	Aİ	a uncisare
PT 4121 A／D AS $1 / 1$ Bh EPOXY	PTI	13.27	－20	1 H	66	AIt	AuthotVE
	DUP	－ $2 v$	－ 01	1H	204	A In	F\＆Latajiesive
PYRALUX $3249-87$ CLCTH SUPEORTED FILM ADHESIVE	DUP	－ 31	－ 42	2 H	154	AIn	Clas a 4 HESIVE
	${ }_{\text {DC }} \mathrm{CC}$	2.59	.67 .78				Latha 4 DHESIVE
Q－150U ONE COMPONENT ELEC COND SILICUNE－BLACK	MCG	． 31	$\begin{array}{r}\text { ．} \\ .04 \\ \hline 08\end{array}$	711	25	A In a	UNA1－SAL CuNT
R－1500 ONE COMPONENT ELEC COND SILICONE LUT U13－U58	MCG	.45	.08				A JH－SLALENT
R－1500 ONE COMPONEAT LLEC COND SILICONE LOL U13－087	MCS	． 45	． 46				a Da－jeainnt
H－1500 ONE COMPUNENR ELEC COND S ILICUNE LOT U13－087	MCO_{0}	－ 39	－07	7D	＜	A In	
L－2500 A／B AS 10／1 BW CLEAE SILICONE LUT 014－034	MCG	－ 27	． 04				ADH－YUITING
	${ }_{M C G}^{M C G}$	－25	－ 45	7 D	25	AIt	ADH－YUT TING
R－2500 A／EAS 1011 BH CLEAE SILICONE LOT 298	MCu	－29	－07	7 D	25	A Iar	ADAR－YUSTANG
R－2510 0．5\％BH CAT WHLTE SILICONE LOT 295	MCG	－ 37		D	25	AI」	a dimbave
R－2510 0．5\％Bí CAT MHATE SLLICONE LO 295	MCG	－ 59	－03	7 7	22	A In	ADACSIVE
K－2520 0． 5% HW CAT DELD WHITESSILICONE	${ }_{4 C G}$	－ 28	－ 05	7D	2	A İ	
R－2520 0．5\％Bid CAT MHITE SILICONE LAT 297	${ }_{M C O}$	－ 42	－07				ADAESLYE
	$\mathrm{MCG}_{4 \mathrm{Cb}}$	－4 4	－07	7 7	25	A Ik	A UuESLV号
$\mathrm{R}-2566$ 0－5，BW CAT RED SILICONE LOT 281	MCG	－31	－03	7	25	A．1a	
	MCG	－ 50	.03	7D	25	A İ	AUn－ruTTing
E－ $25660-5$ E B C CAT RED SILICONE LOT 282	MCG	－ 35	－05				A UM－PUTTING
R－2560 0－5 Bio CAT KED SILICONE LOT 282	MCG	－63	－ 06	7 D	25	A．${ }^{\text {a }}$	
	$\mathrm{MCG}^{\mathrm{CO}}$	－62	－ 05	7 D	25	A In	ADuSSIVE
R－2567 0． 5% BM CAT CLEAK SILICONE LOT 300	${ }_{M C G}$	$\square .41$	－08	7 D			ADaESIVE
Q－2568 O． 5% BW CAT RED SILICONE LOT 301	MCG	－38	－07	7 D	25	A Lix	adatisa ${ }^{\text {a }}$
R－2568 0．5\％Bu CAT RED SILICONE LOT 301（EE币U	MCG	． 12	.03	7 D	25	AId	ADaESLVE
$\mathrm{B}-313 \mathrm{~A} B$ AS $100 / 8$ Bh EPOXY	16G	1.71	． 19	24 H 12 d	125	E－7	AUHとうlVE
				2 H	66	AIA	
QEIGAL PAPER MKCC 1069 POLYIMIDE FILM	RpC	3． 35	-14	30 M	174	${ }^{\text {A M }}$	ADA SiLim
EELIABCND 398 FLLM ADHESIVE GKAY	BMC	1． 17	.01	1 H	130	PSL	PıLosadtiesive

SECTION 1 -- ADHESIVES

section 1 -- adeesives

mateblal	${ }_{\text {MFOL }}^{\text {Code }}$	\% ${ }_{\text {M }}$	zacm	$\begin{aligned} & \text { CURE } \\ & \text { TIME } \end{aligned}$	CURE	athos	afrlication
RTV 5660.16 bh Cat Sillcune lot je 133	GEC	-13	. 00	$7{ }_{7}^{70}$	25	AI品	DanSL VE
KTV $56000.1 \hat{\sim}$	GEC	- 13	- Jo	7 D	25	${ }_{\text {A }}$	ADac'sive
	GEC	-12	-01	$4{ }_{4}^{4} 4$	880	${ }_{\text {A }}^{\text {A }}$ IK	ADacitue
	GEC	-134	-00	24 H	25	AIn	PuThuidadh
	GEC	- 36	-01				OTSLuG-ADH
ATV 567 0.5in Bh CAI SILICONE	GEC	- 51	. 021	5D	25	${ }_{\text {A A IK }}^{\text {a }}$	PUAESAGEADH
	GEC	2.99	. 57	48 H	25	${ }_{\text {A }}$	AUH-SEALANT
QIV 615 A/EAS 10/1 Bi devol lut Cb237 ditce 3	GSC	-13	. 04	7 D	1	AIn	Avacirle
RIV b30 5\% Ei Cat gaty silicune	GEC	. 73	-40	${ }_{24}^{14}$	121	${ }_{\text {E }}^{\text {A }}$ - ${ }^{\text {a }}$	ADHESLVE
ETV 8111/CAI 9881	GEC	1.36	-41	104	25 25	AIM	
RTV 8223/CaT 9858 as $90 / 4 \mathrm{EL}$	GEC	1.23	- 21	$1{ }^{16 \mathrm{H}}$	25	AIt	ADGOPUATING
RTV 8243/CAT 9858 AS $96 / 4 \mathrm{BH}$	GEC	1.38 .68	-15	76 7	23	${ }_{\text {a }}^{\text {a }}$ Im	
BTV 8262/CAT 9858 LS 94/6 B	GEC	. 79	. 25	172 H	51 25		ada-ENCAPS
RTV 8263/CAT 9358 AS $96 / 4 \mathrm{EM}$	GEC	. 90	- 21	164	25	AIf	ADH-Ericaps
RIV 8372/CAT 9858 AS $95 / 5 \mathrm{BH}$	GEC	1.41	-28	16 H	25	AIK	Slid Cun e
	GEC	1.310	-26	16 H	25	AIn	atio-Scaidani
ETV 8383/CAT 9858 AS 97/3 EH	GEL	$\bigcirc \cdot 73$	- 21	${ }_{1}^{10 \mathrm{H}}$	25	A $1 \times$	Statuube
	HYS	2.34 .85	-10	24 H	8		aun usive
	HYS	1:08	. 01	$7{ }^{\text {D }}$	23	Al	Avacsa
	HYS	25.98	7.02	${ }_{7}{ }^{2} \mathrm{H}$	20	${ }_{\text {P }}^{4} \mathrm{Alx}$	ADacsave
SOOTCHBOND 4171 NUT LUCKING BLUE FROM BOLTS	mam	25.60	9.76	72 B	25	${ }_{9} \mathrm{~S}_{51}$	ADd-SEALANT
SJOTCHEDND 4172 S SCRE LOCKING PUKPLE EHOM BOLTS	Mmy	37.13 25.39	17.34 8.15	72 ${ }^{2}$	$\begin{array}{r}25 \\ 25 \\ \hline\end{array}$	${ }^{\text {P S }} \mathrm{SI}$	AUd-SEALABT
SCOTCHBOND 4173 EUSHING ASSY GREEN FKCM BULTS	MMis	14.04	1.74	72 H	25	${ }_{9} \mathrm{SL}_{1}$	a ${ }_{\text {ad-Sicala }}$
S=OTCHEOND 4174 EFAKING ASSY GKEEN FHOM SHIMS	M4a	12.81	1.66	16 H	50	PSt	A LA-SiALANT
	MMM	43.02	22.69 .52	728	25	${ }_{4}{ }^{\text {a }}$ S1	Aun-sealant
			-81	24 H	25	${ }_{\text {E }}^{\text {E }}$	
S OTCGGAIP EC 1357 COITACT CEMESI RUOBER BASE	MEM	3.48	-90	24	25	Ala	AUaESIvE
SOTCHGRIP 2353 ELUE FROM EOLIS	sxy	4.19 4.88	-19	${ }_{4}^{488}$	25	${ }^{\text {P }}$ St	AvicSi
SJOTCHGRIP 2451 CRANGE FROM BOLTSHENYL GLYCLDYD ETH	MMA	4.88	-06	${ }_{24}^{48}$	25	${ }_{\text {a }}{ }_{\text {Pa }}$	Ava-kJiting
SEOTCHWELD 1838 EA AS $1 / 1$ Bu EPUXY	MM	- 05	. 03	24 H		${ }^{\text {AI }}$	$\mathrm{A}_{\text {dit }}$
SEOTCHMELD 2214 ED ALUM FILLED EPOXY	Bra	. 48	-05	${ }^{4} \mathrm{HM}$	121	${ }_{\text {A ALa }}^{\text {a }}$	CuAd AdHESIVE
S OTTCHMELD 2214 NGF UNFILLED EROAY	AnM	. 77	.02	18	121	AIS	A $\sim_{\text {a }}$
	\%ris	1.25	-08	484	4	${ }_{\text {AId }}$	ADdESiVE
	HMM	1.16	-0 01	$2{ }^{2}$	65	${ }_{\text {AIE }}$	ADdCSIVE
	NMM	.76	-03	164	25	${ }_{\text {A }}^{4}$	adiesive
	¢MM	1.60	:15	${ }^{180}$	25 68	${ }_{\text {A }}^{\text {A }}$ IR	

SECTION 1 －－adHESIVES

Mateeial	$\begin{aligned} & \mathrm{MFQ} \\ & \mathrm{CODE} \end{aligned}$	\％TML	\％cvcm	$\begin{aligned} & \text { CURE } \\ & \text { TIME } \end{aligned}$	$\begin{aligned} & \text { CURE } \\ & \text { TEEP } \end{aligned}$	ATAOS	arylcation
SOOTCH日ELD 2216 CLFAE AGBEE B／A AS 5／7 Ba EPUXY							
SOOTCHWELD 2216 CLEAR AMBER B／A AS 5／7 BH EPOXY	MMM	1.75 1.09	． 31	2D	65 25	A Ia	
S工OTCHMELD 2216 SAXDUICHED BETMEEN ALUMINUM	MMM	． 13	． 02	7 D	65	E－2	
S＝OTCEMELD 3501 E／A AS 1／1 BV MOU EPUXY	HMM	1.51	.02	24H	25		Auncsave
SOOTCHELD 5832 G／A AS 1／1 BM POLYURETHANE BHOWN	MME	1.66	.07	24 H	25	AIK	addesave
SEOTCHWELD 588	MMH	4.50	－ 41	3 H	149	P St	avacisve
SEMKIT SF653K825AS EEOXY FSA 804 U－00－916－9847	$\mathrm{PRGC}^{\text {a }}$	4.85	－ 03	1H	154	P SI	AUELSIYE
	DCC	1.38	－ 22	24 H	25	A Lic	ADucial ${ }^{\text {a }}$－
SILCOSET 152 aite SIIICONE	ICA	2.08	－ 5	7 D	25	Aİ	ana－sealant
SHOOTH ON INSTANT EPOXY				3 l	60	${ }_{\text {A }}$ Ia	
SSP 62／63 AS 1／1 BV EPOXY	WSL	7.69 16.25	4.27	$1{ }^{1}$	25 25		avacilve ADrichive
SNP $62 / 63$ AS $1 / 1$ BV EPOXY	－SL	1.40	． 14	2H	60	A IK_{1}	
			． 14	8 H	65	AIM	ELLM DIELECTRIC
SJLITHANE 113／300／TIPA AS 100／51／4．5 BM FORMULA 10				8H	121	AIn	
SQ 529 SILGEIP SILICONE PSA	GEC	2．48	－02	70 30 K	25	${ }_{\text {A }}^{\text {AK }}$	A DacSa VE
SA 585 SILVER FILLED SILICONE	GEC	2.09	1．00	30 K	25	AIt	AuneSiVE
SA 585 SILVER FILLED SILICONE ON SILVERED TEFLON	GEC	－60	－ 27	1．5H	38	A IN	ADUESIVE
SR $585 /$ TOLUENE ${ }^{\text {S }}$（LLID SILICONE ON SILVEKED TELLON	GEC	10．28	5．14	12 H	66	A1\％	AU口二Siy
SS 4155 STIICONE PEIMER	GEC	10.37	5.09 .00	${ }_{1}^{24} \mathrm{H}$	25	A 1 a	
SFAKING CPND BLOE SOLITHANE 113／300 bASE	LDE	0.43	． 06	$7{ }^{7}$	25	AIB	AJI HK1 MEB
STYCAST CPC 18，A／B AS 100／12．5 B POLYURETHAEE	EBC	－96	－15	${ }^{76}$	65	AIK	SIAALAG CEND
	EMC	.33 1.06	． 04	16H	107	AIK	Auncsive
	EMC	1.06	－07	4 D	25	AIa	auaculve
	EMC	－63	－01	3 H	10	AIM	andisive
	EHC	－ 84	.03	18 D	25	AIk	ADHESIVE
	EMC	＋ +38 +38	－ 01	7 D	25	AIK	Auacisive
STYCAST $2850 \mathrm{FT} / 24 \mathrm{LY}$ AS $100 / 7 \mathrm{BW}$ EPOXX	EMC	－39	． 00	24H	25	${ }_{\text {AIK }}{ }^{\text {a }}$	Avacisive
STYCAST 2850GT／9 AS 10／0．3 By EPOXY				72 H	60	AIt	
	EMC	． 53	－00	70	25	${ }^{\text {AIG }}$	a ¢ ¢ ¢iva
	ERC	－52	－02	24 H	25	A If	Adacisave
STYCAST $3050 / 9$ AS 100／6 BU DAEK RED EPPOXY	EMC	2.09	－01	$7{ }^{7}$	25	${ }_{\text {AIA }}$	A UHESLVE
SYLGARD 170 A／B AS $1 / 1$ B B DAEK GEAY SILICONE	$\underset{\mathrm{DCS}}{ }$	1．19	$\bullet 27$	7 D	25	${ }_{\text {A }}{ }^{\text {IS }}$	ADnesi Ve
	GSC	.19 2.19	－ 01	70	25	AIA	a HESLV $^{\text {a }}$
T－661 A / B AS 100／7．5 BW BLUE EPOXY THEEM COND	AMC	1．24	－94	24if	25	AIn	ALICLSVE
TAME 200 A／B AS 1／25 BH ACBYLIC BASE ADH				2 E	65	AIa	Awhesive
TECKNIT 72－00002 SILVEK EILLED SILICOHE	TEC	2.28	－03	24 H	25	A Ia	AUntisi VE
TECKNIT 72－00002 SILVEE FILLED SILICOUE	TEC	． 02	.00	48 H	121	${ }_{E}^{\text {A }}$ In	CUND ADHESIVE
TEGP－R TAPE K－100 KAPTON／2 SIDE AS 1／1 B	${ }^{\text {T }}$ CC	． 0.61	－02	30 H	99	AIn	CuAd A CuESIVE
TAEEMABOND K－100 KAPION／2 Side Sililcone abh	CHE	1.44	． 41				2 Sibsu Tape
THREE TON ADHESIVE A／B AS 1／1 BV	DIV	1．80	.06	7 D	25	${ }_{\text {A }} \mathrm{Ik}$	AvocSive
TILE COTE 1202 A／B AS 1／1 BY BLACK EPOXY	STA	5.78	－ 08	1 H	25	AIM	$\begin{aligned} & \text { ADLESAYE CEND } \\ & \text { SLAKING } \end{aligned}$
				2 i	60	A Ik	

SELTION 1 －－adHESiVES

Material	$\begin{aligned} & \mathrm{MFZ} \\ & \text { CODE } \end{aligned}$	\％＇ML	\＄cvCa	CUKE TIHE	$\begin{aligned} & \text { CUKH } \\ & \text { TEMP } \end{aligned}$	A 1 H0S	Aくtんi儿AIICN
TRA－BCND 2131 EPOXY BIPAX KIL	TaA	1．71	． 01	2H	60	AIK	Adacisive
TRA－BOND $21 J 6 \mathrm{E}$ EFOXY SIPAX KIT THIXOTHUPIC	TRA	$1: 35$	－ 08	75	25	ALa	A U \＆Si
TRA－BOND 2111 STAKING CPND EPOXY HiPAX KIT	TkA	2.95	－08	72 l	23	AIK	\rightarrow ¢ahinc Cen
TRA－BCND 2112 STAKING CPND EPOXX BIPAX KIT	Tha	1.45	． 01	7 D	25	A If	Sxakinc Cend
TRA－BOND 2113 CYOAY EIPAX KIT	TRA	3.40	－ 15	24id	25	AIn	ADutStVZ
TQA－BUND 2114 CLEAR EPGXY BIPAX KIT／FUIL SANDHICH	TRA	3.16	.62	72 H 24	25	${ }_{\text {A Lix }}$	ADUEMVECND
TRA－BUND 2122 ALUM FILLED EEOXY BIPAA KIT	rina	1.15	－ 45	72 i	25	A14	AUHESiYE
TRA－BUND 2126 BLACK EPOXY BIPAX KIT	TRA	2.27	－ 31	7 D	25	ALE	4DSLSUVE
TRA－BUND 2135 D EECXY BIPAXKIT	Tra	2.06	－ 10	3 D	25	A In	ADacSive
TEA－BUND $2143 D$ PCIYAMID－EPOXY BIPAK KIT	THA	1.45	． 06	72 H	20	AIn	Ausesiy ${ }^{\text {a }}$
TRA－BOND 2151 THEA COES EPOXY BIPAX KIT	TRA	． 65	－u 2	72 H	23	A I k	ADIESAYE
TRA－BOND 2248 THIXCTROPIC HI－TEHP EPUXY BLPAX KIT	THA	.72	． 01	${ }_{2}^{10 \mathrm{H}}$	25	A 2 K	ADuESay
				2 ti	40	A In	
	TRA	1.43 10.04	1．0．13	164	25 25	AIM	Audicsive Auaciay
				2 H	00	AIn	
TRA－DUCT BA 2902 EFOXY KIT－SILVEA FILLED	LHA	1.06	－03	2 H	60	AIn	CUNU \triangle UHESIVE
UNISET C－11J ONE CCUPUNENT SLLVEA FILLED EPOXY	AMC	1.81	－95	1 l	150	A1吕	Cuan audesive
OXISET C－110 ONE CCAPUNENT SILVER PILLED EPOXX	AMC	－ 44	－ 15	14	180	A1\％	Cual addesive
UNISET C－429－2 SILVER FILLED THIXOTRUPIC EPOXX	AMC AMC	19 .32	． 01	9018 3015	125 1120	A ${ }_{\text {A }} \mathrm{IK}$	Cund aviesive
USISER C－845 SLLYEK FALLED EPUXY ONE COMPQNENL	AMC	－ 01	－00	1 H	125	AIn	Cudu ad HESIVE
UWISET C－850 SILYEK FLLLED EtOXY	ABC	－ 14	． 00	30 m	150	AIs	Cuau adaESIVE
UNISET C－850－4 SILVEA PILLED EPOXY ONE PAKT	ABC	.43	.01	1 H	125	AIE	Cud mbliesive
UNTSET C－8JJ－6 ONE COMPUNENT SILYEK FLLLED EYOXY	AMC	． 60	.01	1H	$1<5$	AIn	CuNU ADHESIVE
UXISET C－929－49 SIIVER FILLED EPOXY	AMC	－ 31	－00	30 M	150	4 Ik	Cumu adiesive
UAISET C－940－1 SILYEK FILLED PULYIMILE	AHC	． 06	－ 00	10 M	170	AIr	CUAD ADIESIVE
UNISET C－940－1 SILVER PILLED POLYIGIDE	AMC	． 02	． 00	1 H	170	A 1 K	Cu凶d autiesive
UNISET C－940－4 OAE COMPONENT SLLVEE FLLLED PULYIMIDE				30 M	270	AIK	
WHISET C－940－4 OAE COMPONENT SILVEE FLLLED PULYIMIDE	AMC	． 08	.00	10 M	1780	Aİ	UU\｜」 \dagger DiESIVE
UNISET ME－845 THERMAL COND ADHESIVE OLIVE－GLEEN	AMC	． 30	.01	1 id	125	AIn	Tacam boxd adh
U®ISET ME－945 ONE COBPONENT PULYIMIDE／F	AHC	． 20	． 32	$1{ }^{1}$	170	A 14	CACHMCOND ADB
UNISET 906－25 SEMI－RIGID EPOXY	AMC	1． 31	． 31	3 HM	${ }^{2} 90$	AIK	Ava－puTTIng
UNISET 909－60 ONE COMPONENT FILLED EPOXY	Anc	1． 46	.04	2 H	125	AIE	Tacam
URALANE $5753 \mathrm{~A} / \mathrm{B}$ AS $1 / 55 \mathrm{BH}$	FPI	1.01	.02	14 H	38	Aİ	Avacsa Ve
URALANE 5753 A／B／AIUMINA AS 1／5／3 E\％	EPI	． 73	．U3	24 H	55 3	A In	AUKLSLYE
				24H	55	AIN	
URALANE 8260 S	FPI	1．74	.03				Tacan a DHESIVE
UV 66 SUMAERS LAES－DATA INCLUDES GLASS SUETHATE	SUM	， 3.03	． 04				UPT CCHENT
	SUA	11.09	－ 1.54				UCT CLAENT
UVE 1003 EPOXX OFTICAL ADHESIVE／F S 5 MIN UV EXY	GEC	4.18 1.91	1.10	1H	150	A If	OPS CEMENT
$\forall=-3$ YLOCK SEALING CPND	NYL	3．01	.62	1	150	AIn	Tuktud Sealami
Yニ－3 NYIOCR SEALING CPND	NYi．	3.99	－68	1H	74	AIR	ciaman Sealant
				${ }_{24}^{14}$	1＜1	A1a	
VIBRA－TITE FASTEEEE／F	UAK	2：37	$\bigcirc 14$	24 H	25	AIL	$\begin{aligned} & \text { AUaçSIVE } \\ & \text { CDEAD SEAL } \end{aligned}$
UILCO FAST SET UECAY 2 PART KIT	HAI	1.80	． 02	24 H	25	A1a	ADacisa ${ }^{\text {a }}$

SECTION 1 -- adiesives

SELTION $2-\mathrm{C}$ CABLE INSULATION SURINK TUBING
 VABDASH VAAMISLI GLGELUATING鿊 KJUL CADLE INSULa0

路寽

20

式
 $\stackrel{H}{4}$ Ax a 8 B嵒 ～ ๙్ఞ $\stackrel{\rightharpoonup}{\sim}$ $\stackrel{n}{2}$ $\stackrel{\circ}{i}$急寻㻖灵 n

!

rH.

$\stackrel{M F H}{\mathrm{MFH}}$

SECTION 2 －－CABLe insulation Sngink tubing

matebial	$\begin{aligned} & \mathrm{AFK} \\ & \mathrm{CODE} \end{aligned}$	\％Mid	\％CVCH	CURE TI AE	$\begin{aligned} & \text { CURE } \\ & \text { TEAK } \end{aligned}$	AT	42PLACATIOd
FIBERMAT 1 V	BMa						
FIT 221 IGRADIATED POLYOLEFIN SHEINK TUBING－hEAT GUN	AĖ	1.42	.68				SUSURATICN
FLT 350 KYNAR SHEIAR TUBING NEUTKAL－HEAT GUN	AEH	－ 30	－ 07				SaEIMK TUAING
FLEXITE PO 135 ELACK POLYOLEFIN SHKINK TUBING	MAU	1.50	－09	54	121	A 14	Sudiuk TUuING
	May	.73 .96	－ 25	5 M	121	A In	SAEAMETSEING
FLEXIITE TGL SILICCNE RUBBER TAPENO ADH	Mar	－95	$\bigcirc 34$	20 H	150	－3－3	TAPS
FLEXTITE TGL SILICCNE TAPENO ADHESIVE	Mas	－ 31	－12	20 H	149	E－4	Tats
FLUOGOCAREON IEE INSULATION BLACK	HAV	－09	－100			－	W边 4 NSUL
FR GORETEX MEINK TUBING NEUTEAL	ECC WLG	． 58	－15	2H	125	A10	SuaLek TUBING
GORE－TEX MICROHAVE CABLE UUTER INSULATION HUEPLE	WLG	.04	－00				Casum hasul
GJRE－TEX PTFE TEELCN CABLE INSULATION 3 PLY	HLG	． 03	． 00				Cadar INSUL
HAVEG FR－1 STYLE 3239 WHITE SILICONB HIRE INSUL	HAV	1.36	－ 38				W1GE ANSUL
HELI－TOBE HT $1 / 8-\mathrm{N}$	HAV	－．86	． 43	22id	100	AIn	HAGO $\angle \mathrm{ASOL}$
HIGH TEMP 221 MAGNET HIRE COATING	HTK	－． 53	－15				casceichate
HOSE SAE 100RS BLACK RUBBER	POT	3． 13	.41				duse
HS 101 BLACK POLYCIEFIN SHRINK TUELNG HEATGUN SHRINK	IST	2． 50	． 84				SHLida tualng
HISHRINK ST 9100 PCLYULEFIN PEESHRUNK	SEC	． 61	－ 16				
ISONEL 200 MASNET KIEE COATING BEOWN 180C USE 12 MLL	KEA	－ 35	． 00				HAEE LUATING
KAPTON T400－1／20 BEAND－REX	Rea	－18	－ 00				－LaL coating
KA PTON－TEPLON FEF CUATED T473－1／24 BRAND－REX	Bux	－52	－ 00				H1RE 1 ASUL
KYNAR SHRINK TUEINC MIL I $23053 / 8$ HEAT GUN SHEINK	ECC	－ 39	.07				SHKLNATSUOING
KINAR SHRINKABLE SEAIING SLEEVE bLUE M／idite inserts	RCC	． 66	.04	．254	260	A In	Suain Slekva
KYNAR SOLDER SLEEVE WITH POLYETHYLENE RINGS	RCC	－ 37	－07				Suムtan TUDING
KYNAR SOLDER SLEEVE HITR POLYETHYLENE SLEEVES SHKUNK	ECC	－5b	-14				SabIan TUBING
KYNAR GIRE INSULETIONTHOUED PULYETHYLENE RINGS		． 44	－07				Sdkimin TuBing
MAGNET WIRE COATING TFE TEPLON／DURAD	Hay	－29	.01				whke cuating
MAGNET WIRE HEAYY AEMMOK POLYTHEXMALBAE（CUATING ONLY）	PDC	－ 5	－ 08				Whke cuating
HAGNET WIRE HEAYIL H－583C MIDE	PDC	.89 1.78	－ 11				WんKC UUATING
HICRODOT CONNECTOR RUEBEK BOOT 7502 BLACK	MIf	1.62	.51				ALGE COATING
MICROTHIN TEPLON SLEEVING 20 GAJGE	SHA	． 02	． 00				SLecivamg
MIL－ENE C WIEE INSULATION－YELLOH（CGATING ONLY）	WL	． 78					ALAE LISSUL
MIL－ENE C WIEE INStLATION－Y LLLOW［COATING UNLY）	WLG	－ 52	－13	4 H	150	A In	H上aE amSut
MULTIFILAB MAGNET KIEE PYBE ML B－4－30－28－0－5 CALC \％	MuS	－98	－ 03				dasime WIFE
NY LAFLOA 413 HOSE ELACK OUTEK SHEATH ONL	$\mathrm{KPC}^{\text {R }}$	－ 78	－ 11				Sailiak tubing
NYLEZE MAGNET WIRE COATING GED 130 C USE	${ }_{P D C}$	1.43	－10				HUSE
NYLEZE MAGNET UIEE INSULATLQN－KED（COATING QNLY）	PDC	1.34	－23				WLaE CUATING
NYLEZE MAGNET EIEE INSULATION－GREEN（COATING ONLY）	PDC	1.17	－13				Maxe cuating
PENNFUBE II SO 3－7164AX／C TEFLON TUBING	PFC	.01	－ 00				TULCug
PENNTUEE Y POLYOLEFIN SHEINK TUBE CLEAR	${ }_{\text {PFF }}$ PF	8.45	$4: 13$	5 SM	${ }_{80} 50$	A In	Suk NG TUBING
PDLY－FLO TUBING OOF－POLYETHYLENE	IM	8.42	4.75	M		AIn	Saktik TUELIGG
LOLYURETHANE TUBING AP 1485 PLASIICILED	STE	.77	$\bigcirc 22$				TUB＋NG
PJIYURETHANE TUBING 8030－0060	NAL	． 87	－ 26				TUDL ${ }^{\text {cos }}$
KAYCHEK COAX SU26A－1211－9 ORANGE INNLE INSUL	KCC	． 72	－16				$B K E+\Delta S U L$
RAYCHEM COAX SO26A－1211－9 WhITE OUTEK INSUL	RCC	－12	－04				Wan indju
ȧYCGEM KYNAR PEE－SHKUNK	RCC	－2 24	－． 13				Siactin Th TUBING

section 2 -- cable insuladion Sabink tubing

matenlal	$\begin{gathered} \text { GFB } \\ \text { CODE } \end{gathered}$	iT THi	icver	CURE TIME	CUAR	a 71	aspaciation
	\cdots	1.73 .75	- 01				
RAYCBEM PJLY ALKEAE WIAE INSULALICN YCLLO	RCC RCC	. 75	-03				WIAL 1 ASSUL
	RCC	-15	-01				-hau tusul
RAYYCBEA POLY	$\mathrm{RCC}^{\text {RCC }}$	-14	-20	10 m	71	isa	Sriki mai TUEING
RAYCEEE SPEC 44 HIEE INSUL LOT JU2U197902	NCC	-45	- 03		7	A14	
	$\underset{\mathrm{RCC}}{\mathrm{RCS}}$	-71	-U5				Hine insul
RAYCHEM SPEC 44 WIEE INSUL LUT JC604077905 INAER	$\mathrm{HCC}^{\text {Hect }}$	-64	-04				Wiat insul
	${ }_{\text {RCC }}$	- 17	-02				- 4 C INSUL
RAYCHEM SPEC 44 WIEE INSUL LUT J $11 \mathrm{~S}^{\text {ROG }}$ G7911 OUTER	RCC	-15	-02				MaE \times NSUL
RAYCBEM SPEC ${ }^{\text {S }} 4$.	${ }_{\text {ECCL }}$	-. 08	-03				Hat 1 NSUL
RAYCBEM SEEC 44 HIEE INSUL LOT PJO401127801	${ }_{\text {RCC }}$. 62	-04				Wase 4 asdi
RAYCAEM SPEC 44 WIEE INSUL LOT PJU511107日14	RCC	-05	-05				-1atinsul
	$\underset{\mathrm{RCC}}{ }$	-29	-0 05				W1ELCLISSUL
RAYCHEM SPEE 44 WIEE IUSULATION WAITE	RCC	- 32	-4 7				WIGL ASUL
	${ }_{\text {RCC }}$	$\begin{array}{r}1.89 \\ \hline 19\end{array}$	-08				HLBE ANSUL
RAYCEEM SPEC $44 / 0411-20$ SPACE GH UUTER INS WHITE	HCC	-77	-0 0				-1kL a MSj
	${ }_{\text {RCC }}^{\text {RCC }}$	-26	- 0^{2}				
RAYCHEM SPEC $44 / 1441-24$ SPACE GK OUTEESNS WHITE	RCC	- 13	-03				- Hatictingud
AAYCHEM SPEC $44 / 2431-22-0 / 1 / 9-9$ CLEAK	RCC	-70	-05				WIni insul
UAYCBEM SPEC $44 / 2431-22-0 / 1 / 9-9$ WHITE OUTEA SHEATH	RCC	- 15	-04				WIME HESGUL
	RCC	-22	-00				Hane insili
RAYCHE日 SPEC STA	$\underset{\mathrm{RCC}}{\text { RCC }}$	-08	-00				Mras + WSUL
RAYCHEA 102 PEx S	RCC	-98	-17				SAKLNA TUEING
RAYCLIN F CAL	$\xrightarrow{\mathrm{RCC}}$	-70	- 17		135		
	TI	- 01	-00	0.54	135	A In	Stadan TVBiNu
	$\stackrel{\mathrm{RCC}}{\text { TBT }}$	$\begin{array}{r}3.37 \\ \hline\end{array}$	-07				Susumk ideing
SE 9025 SILICONE MIEE INSUL ULACK	GEC	${ }^{1.38} 38$	-61	3H	204	a $\mathrm{ma}_{\text {a }}$	H $\mathrm{nL}+\triangle \mathrm{SUL}$
SE 9025 SILICONE WIRE INSULATHON EERUN GSFC3744	GEC	3. 12	-58	24.1	125	E-7	W2ME ASSUL
SE 9090 STLICONE MRE INSULATION - OUTEIA	GEC	4.31	1.01				-1atrasjul
SHEINK TUBING DiACk FEOM CABLE BFAND REX	BEX	2.62	1:22				SGKLAN TOBING
SHEINK TORIMG GREEN MAX S HBINK- HEAT GUN		1:70	-29				Sidican evaing
STLASTIC 1410 ShEIAKABLE TUBING - treshrunk	DCC	-56	-15				Suka NK TUBING
SJ Licone mire insulatiod	ITE	$\begin{array}{r}1.25 \\ \hline 79\end{array}$	-28				mlat 1 NSUL
SPACE YOLYOLEPIN TYPE 702 ELACK	${ }^{\mathrm{RCC}}$	- 53	-02				Sumima tueing
	${ }_{\text {A }} \mathrm{AHP}$?	3.03 6.00	.05 2.00	4B	65	A14	${ }_{\text {CuALEAS }}$
STy 0474 White Silicone mire insul	STC	4.16	. 76	2 D	25	AIS	1

Section 2 －－cable insulation sheink tueing

mateidal	${ }_{\text {MF }}^{\text {CODE }}$	\％TML	mCvCM	$\begin{aligned} & \text { CURE } \\ & \text { TIME } \end{aligned}$	CURE	ATM	appuicaticn
STU 0474 MHITE SIEICUNE IKE INSUL	${ }_{\text {STC }}$	－108	． 00	96H	204	A If	IUSULATION
SUELYN A HIEE INSULATION IN SHEET FOMM	DUP	－ 55	－06				Hidi 4 SSOL
SYNTHITE BC 307 VAENISH	JCD	3.70	－69	16H	110 149	${ }_{\text {AId }}$	Madidas coat
TEFLCN FEP SHEINK TUDING FIT	${ }_{\text {Aic }}$	－00	．08				Sant in TUEING
TEFLON PFA MIEE SLEEVING TE－9704 SODIUM ETCAED	DUP	－00	． 00				－LAE EASUL
	${ }_{\text {DUTC }}$	－00	． 00				SHEL
TERFIT GPR 135 BLACR POLYOLEFIN SHEINK TUBING	RTC	1.13	－28	5㽞	121	AI晨	SuEx A TUBING
	CTD	－ 01	－00				
	THI	． 01	－00				
	THI	－04	－01				Wamb lasul
	${ }_{\text {THI }}$	1．00	－00				－IRE ALSSUL
	T THC	$\because .27$	－09				
	TMC	－． 87	．01	1H	149		Cult inc indita
thermufit conhectce bgot 214a332－3 heat gun shrink				1H	204	AId	
THEEMOFIT CRN CLEAE	RCC	：00	－18	54			Sdaink TUBING
THEEMUFIT CEN WHITE	KCC	1.66	－88	5	225	${ }_{\text {A }}^{1 \times}$	SaEA MK TUBIEG
	$\underset{\mathrm{RCC}}{\mathrm{RCC}}$	－14	．05	54		AIf	SuRiAK TUBING
THERMOFIT EAP－100 CLEAK	RCC	1.02	－27	5	250	A If	Sika ${ }^{\text {Sk }}$ TUBING
	KAY	1.50	－30	5M	237	${ }_{\text {AIK }}^{\text {A }}$	Samink tubing
THEAMOFIT KT 102 GLACA POLYOLEFIN	RAY	1． 24	－ 21				SHRAMK TUBI日G
THEEMOFIT RT 218 HEITE KYNAE／VITON HEAT GUU SHEINK	EAY	－24	－ 01				Sdaidh Tubing
THERMOFIT RT 850 KYAAE SHEINK TUBLIM MATUHAL	Rec	－． 15	－05	2 14	300	AIM	SHELAK TUBIBG
	EAY	1．16	－19	30 C	104 104	AILim	SHEA MX TUBIMG
THERMOFIT KP 876 PCLYCLEFIN WHITE HEAT GUb SnEINK	BCC	－67	-10			AIa	SHEIMK TOBIBG
THEEMOFIT ET 876 EEESHRUNK	RAY	． 43	－10	15M	125	AIn	SHEA M TUBIHG
THERMOFIT SCL－MCI SHRUNK	Ray	． 61	－19				SHAL Mh TUBING
THEEMOFIT SCL	$\stackrel{\mathrm{RCC}}{ }$	－47	－ 20	SM	225	a 18	Sthi MK TUBIMG
THERMGFIT SCL BLACK－HEAT GUN SHANK	$\stackrel{\mathrm{RCC}}{ }$	－69	－25				SHELAM TOEING
THEEMKFFIT SCL BLECM	RCC	－70	－26	${ }_{10} \mathrm{H}^{54}$	140	AIR	SHELAK TUBIAG
THERMOFIT SCL GEAY	$\underset{\mathrm{BCC}}{\mathrm{RCC}}$	． 71	－34	${ }^{0} \mathrm{O} .5 \mathrm{SH}$	140 140 100	AIE	SHKACH TUBING
THEBMOFIT SCL GEAY SHEINK TUEING LOT I1491 THEERMOFIT SCL WHITE	ECC ECC FCC	.82 -63 -52	-51 -25 .24		140 177 140 140 140		
THEGMOPIT TFE－ TUFCON 50 MLL－ENE FCLYHSTEE RIEBCN CABLE	hay LFug LGG WLG	－ 00 .06 .36 .36	.00 .01 .21 .21	24H	90	A．	SAKLNK TUEING FLES FLEA MIBING

selifion 2 -- cable insulatiqn sarink tuiding

mateilal	$\underset{\sim}{M F B}$ CODE	*TML	JCvCM	CUAE	ATMOS	arthicailca
TXGCN TUBING FCLKUIATION B44-3	NPC	32.91	14.96			10
Tt MAGNET hitab melyuhethane coating a finish/no adh	WWI	-80	-08			- INSULCULICN
YAKGLAS NCi FKAY SIEEVING TYPE HU	VFX	- 58	-11			LUSUL SLEEVE
VAEGLAS S-160 -	VFX	. 60	.05			Wasul bleke
VITCN TUBING C-641-2 47 T	odu	-13	-00			Tuotuo
	${ }_{\text {GEC }}$	1.68	-00			Hiat insul
WIRE INSULATIUN GREEA FLUOEOCAKDCN PULYIMIUE/TFE	Lic	-. 24	. 03			-1acta
WILE INSULATIUN CEANGE MIL-W-22759/10-2U	${ }_{\text {I }}$	-07	-01			Hibc iasul
	GEC	$1: 02$.05			HLELALSSUL
	$\underline{W L i j}$. 03	. 05			WIELASUL
	ITV	$\begin{array}{r}\text { 3:60 } \\ \hline .60\end{array}$	-22			Wraxisisu

SECTION 3 －－COMPORAAL COATING

Material	$\begin{aligned} & \mathrm{MFR} \\ & \mathrm{CODE} \end{aligned}$	\＄TAL	为CVCM	$\begin{aligned} & \text { CUHE } \\ & \text { TIME } \end{aligned}$	$\begin{aligned} & \text { CURE } \\ & \text { TEB } \end{aligned}$	ATMOS	AYPLICATICN
ACRYLOID AU603／DESHODUR L2219a／T－12 CLEAR COATING	HOH	12． 70		14D	25		
AHLGUARD COKROSICH PEOTECTIVE COATIHG／P	NDC	14.01	2.12	24 H	25	AIK	Coating
APCO 1260 A／B LS 1／1 E：	APP	6.46	． 02	24 H	25	A1心	CuAF Coat
APCO 1266 a／bas $1 / 1 \mathrm{BW}$ POLYURETHANE	AP＇	18． 35	． 02	$2 H$ 904	71 80	AIf	
APCO 1266 A／B as $1 / 1 \mathrm{BH}$ POLYUREThan E CYCLED	APP	17.06	． 04	90 H	80	AIn	$2 \mathrm{dicm} 2$
				24 H	－40	E－S	
ARALDITE 502／951／PC－1244 EPOXY	CIB	2.00	.01	1\％${ }^{\text {H }}$	65 25	E $\mathrm{A} \mathrm{I}_{\text {¢ }}$	Cuaf luat
				${ }^{6} \mathrm{H}$	49	AIE	
ARMSTRONG C－7／ACI CABCS	APC $A P C$	1.68 2.13	． 01	3 3	66 06	${ }_{\text {A }}^{\text {A }} \mathrm{Ia}_{4}$	cualing cuadiab
BETACOTE 91－18 A／B AS 3／1 Bil	ESX	7． 10	.00	3\％	66 20 7	${ }_{\text {A }}^{\text {AIK }}$	cuasing Cunt cuat
BlUE Coating II 001057REya flexiele hod epoxy	NCI	． 41	． 04	${ }_{1}^{45}$	71.	${ }^{\text {A }}$ If	
				3 H	200	AIf	cuaciag
CGEMGIAZE ZOOI CIEAR POLYURETHANEKESXIBLE	CRE	10.78 1.42	6.98	70	25	A Iix	dun aciense
CHEMGLAZE ZJO1 CLEAR POLYURESHANE FLEXIBEE	$\mathrm{HCS}^{\text {c }}$	1.18	． 02	30 D	25	ALn	Guar cuat
CHEMGLAZE 2001 CLEAR POLYUXETHANE FLEXIBLE LOT TBA	BCC	1.50	.01	140	25	A İ	cuar cuat
CHEMGLAZE ZUO4 CLEAR POLYURETHANE HIGH FLEX LQT SHA	HCC	1.51	－0 0	140	25	${ }_{\text {A }}$ IK	cuar cuat
CHEMGLAZE 2004 CLEAR POLYURETHANE HIGH PLEX LOT TAA	$\mathrm{HCC}^{\text {c }}$	1.60	－01	14 D	25	Aİ	Cumz cuat
CHEMGLAZE 2004 CLEAR POLYURETHANE HIGHLY FLEXIBLE	HCC	1． 20	.01	14 D	25	AIA	CuAF cuat
CHEAGLAZE ZOS3 CLEAR POLYURETHANE COATING	HCC	2.22	－ 01	14 D	25	AIH	conir cuat
Conathane Ce ilis a／b as $10 / 7 \mathrm{BW}$	CON	11.73 1.60	． 104	30 H	25		cunr cuat
				3 H	66	AIf	cuar cuat
Conathane Ce $1155 / C E L L O S O L V E$ acetatb nulticuae	CON	－81	． 05	104	25	AIK	cuar cuat
				154	49	Aİ	
				3 H	60	AIB	
CONATHANE CE 1164 EIL I 46058 C TYPE UR 2 COATS／FOLL	CON	7.26	． 00	24 H	23	AIf	Cuat loat
				14 D	25	${ }_{\text {AIN }}$	cuar－uat
CONATHANE EN－1145／CONACUBE AH18 AS $5 / 2 \mathrm{BH}$	CON CON	1.09	－10	20 M	149	${ }_{\text {A }}^{\text {If }}$	cuar cuat
CAABOLIN PLASTIK SFEAY DRY 1UM／COAL／ROOM TEMP	CLI	13.84	． 099	16 H	155	A IH	Cuathag
CRAKOLIN PLASTIK SFRAY DHY 10MACOAT／ROCA TEMP	CLI	11.93	－11	24 B	טל 2	AIk	CuAF LUAT
C15－057 A／B AS 160／120 B				12H	60	A In	
D＝O－96－005 OHE PAET SILICONE	DCC	1.43	． 01	4 H	130	AIn	Cuariag
DO OCF－3－6500 ONE EART SILICONE	DCC	1.84	． 58	7 D	25	A1a	GUEF LVAT
	DCC		－34	7 D	25	AIx	EUN：CUAT
D＝ 1107 SIIICONE FIUID UNCATALYZED	${ }^{\text {DCC }}$	13.67	2.65	1H	150	AIS	CLinctue agent
	DCC	6． 13	2.65	18 H	74	AI合	HELLASE AGENT
	DCC	1． 52	－54	7 D	25	A In	ご乐F こuat
	DCL	1.34	． 61	24 H	25	AIR	CJaiadi
D＝ 3140	DCC	1． 54		7 D	－ 25	A $\mathrm{I}_{1 \times}$	
D． 3140	DCC	． 16	． 06	24 H	150	E ${ }^{\text {a }}$	cuailag
D＝6－1104 UNPILLED H／LUMINESCEK 174	GSC	－ 30	.07	$7{ }^{7 D}$	25 25	Aİ	
DE 6－1104／MEK／XYIEAE	DCC	－ 28	． 04	7 D	25	AIN	cuas cuat
DE $806 \pm$ SILICONE IK	${ }_{\text {DC }} \mathrm{DC}$	-19 -90	－ 01	7 7	25	AIf	cumi coat
	DCC	－90	－11	1H	85	AIA	cuaituc

section 3 -- conformal coating

material	MFK	¢TML	¢CVCM	$\begin{aligned} & \text { CuEE } \\ & \text { TIME } \end{aligned}$	$\begin{aligned} & \text { CURE } \\ & \text { TEMP } \end{aligned}$	ATMU	AYPLDCATION
DE 806 A SILICUNE IN XYLENE/TULUR NE/F	DCC	2.14	. 134	${ }^{70}$	25	${ }_{\text {A }} \mathrm{IIA}_{\text {a }}^{\text {a }}$	Cuadidu
	DCC	2.0.7	. 34	${ }^{50} 105$	25	${ }_{\text {AI }}^{\text {a }}$	cuar Vuat
DEEFLEXLC/VERSAHIL 140 AS $35 / 30$ BW EPUAY COATING	DOH	$\bigcirc 91$. 05	$3{ }^{3}$	71	${ }_{\text {A }}$	cuar coat
DX - 4 DRT-KJTE	HYS	. 37	.01	$3 \mathrm{3m}$	204	${ }_{\text {A }}^{\text {A }}$, ${ }_{\text {a }}$	cuadiag
durafilm 300 Series enamel				${ }_{2} \mathrm{OM}^{\text {M }}$	149	dia	
Ea 934 a/e as luc/j3 bW GRay epoxy	HYS	. 79	. 01	$7{ }^{1}$	25	AI¢	cuatang
				$3{ }^{24}$	60 25	AIK	
	HMM	$1: 45$	0.01	48 H	25	${ }_{4}{ }^{\text {a }}$	cour cuat
EECOCOAT CCO2 CUNDUCTIVE SILVER COATING/F	EMC	$1: 37$. 08	30 M	150	${ }^{\text {AIN }}$	cuainag
EECOCOAT CC-4 SILVER FILLED ELASTOMEK	EMC	${ }_{3} 4.24$	2.10	$7{ }^{7}$	25		cual juating
EZCOCOAT EP-3 a/E AS 2/1 Bu EPOXY COATING	EMC			3	95	${ }_{\text {AIM }}$	
Eecocoar tr-11 a/b as 1/1 bV amber cuailng	EMC	1.01	.01	168H	85	${ }_{\text {Ala }}$	cuatam
eccocoar tr-it ajo as 1/1 br anber cuartag				8 H	93	A İ	
	EMC	3.56 1.99	0.74	24id	25		MUCAEACNATEUL
	${ }_{\text {PPR }}$.03 .43	.01	20.	100		Cuaciag
	EPR	1.09	$\bigcirc 36$	18	177	${ }_{\text {a }}$	cuatias
ERON $815 / \mathrm{V} 140$ AS $50 / 50 \mathrm{Bm}$ EPUXY	SUL	1.07	-10	${ }_{4}^{16 \mathrm{H}}$	25	${ }_{\text {a }}^{\text {a }}$ İ ${ }^{\text {a }}$	cuar cuat
EPON 815/V-140 as solju bl epuxy	SHL	1.84	. 08	16.1	25	A IK	cuar luat
	SHL	1.29 2.31	1.27	24H	$\begin{array}{r}25 \\ 25 \\ 93 \\ \hline\end{array}$	AI	courimagat
EPON 828/VERSAMID 140 AS $50 / 50$ EHE EPUXY	SHL	1.01	.01	30 D 7 l 4	25 25 60	Ala	Cuatang
EPON $828 / \mathrm{VERSAMID}$ (140 AS $70 / 30$ Bu EPUXY	SHL	. 234	. 80	30 D 70 24	25 25 25	A $1 \times$	cuatimuj
EPON 828/VERSAMIL 14U/SR 82/DETA/MEK	SHi	4.69	. 00	16.	25	${ }_{\text {AIE }}$	cunt luat
bron 828/Versamil $140 / \mathrm{SR}$ 82/dta/toluene	SHL	1. 35	. 00	1 1H	25 60	${ }_{\text {A }}^{\text {AIn }}$	cumi vont
	TEC	.87 .13	. 00	78 78 2 H	25 70	AIN	CuATING
epoxy antitrack ccating	WEC	2.01	.61	3404 304	1100	${ }_{\text {A }}^{\text {A }}$ IL	Cuaitiub
EROXYLTTE 9653 PCLYUEETHANE E-194 8 CGATS FI 73/DACRON RNIT/ER 127 PRIMEK CN FUIL	${ }_{\text {EPC }}$	4.878	-00		90 120 120		LUNE GUT Cualidi
FPC 461 FlUOROCAFbCN/VINYL COPOLIMER EILM	FPi	. 38	.01	24 H	25		cuading
PPC 461 flujrocamocn/vinyl Cupolymer filh	FPL	. 24	.01	24ii	25	AILi	cuasiug
HL 155-55-1/2 as $4 \mathrm{E} / 1 \mathrm{BW}$ acrylic coatiag	Hy	6.32	. 00	7 D	25	AIk	cuar cuat

SECTIOA 3 -- CONPORNAL CUATING

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline matbeial \& MFR
CODE \& \$TML \& XCvCr \& \[
\begin{aligned}
\& \text { CURE } \\
\& \text { TIME }
\end{aligned}
\] \& CURB \& \(\triangle\) da \& atrincatica \\
\hline \& HYD \& 2 6 9.79 \& .06 \& 70
1 H
2 H
1 H
1 H \& \[
\begin{aligned}
\& 25 \\
\& 25 \\
\& 71 \\
\& 25 \\
\& 25
\end{aligned}
\] \& \& Cudi CuAT \\
\hline \& \({ }_{\text {CTC }}\) \& 2.58
8.66 \& -02 \& \& \& \& Cuni coat \\
\hline HJMISEAL 1 A3 Poly \& CTC \& 8.54 \& -24 \& 190 \& 25 \& \({ }_{\text {A }}^{\text {a }}\) A \& cone cuat \\
\hline \& \(\xrightarrow{\text { cTC }}\) \& 4.98 \& 1.00
.00 \& 24 C \& 85 \& AIL \& cune cuat \\
\hline HUMISEAL 1 bit On Screen \& \& 6.89 \& \& 30 M \& 77 \& AIm \& cuaic cuat \\
\hline \& \({ }_{\text {CTC }}\) \& 9.38
14.04 \& .02 \& 24 H
4 H
24 H \& 25
71
25 \& \({ }^{\text {A }}\) \& cuaj cuat \\
\hline 价 \& CTC
CTC
CTC
CTC \& 3.80
9.74
11.81
3.27 \& .02
0.07
.07
.14 \& 2 H
10 H
10 H
30 m
30 M
30 m \& 66
66
77
78
80
25 \& \& CuAF CUAT
CuAE
CUAF
CuAT
cuat \\
\hline homiseal 2 a 53 a/e as \(1 / 1\) bV mod broxy coating \& ctc \& 1.94 \& .03 \& 20 \& 83 \& \({ }_{\text {AM }}^{\text {A }}\) \& cuar luat \\
\hline humiseai \(2 \mathrm{aj6}\) a/E as \(1 / 1\) bV polyurethane \& crc \& 12.73 \& . 16 \& \(24 H\)
164
4 \& \begin{tabular}{l}
25 \\
85 \\
\hline
\end{tabular} \& A \({ }_{\text {A }}^{\text {A }}\) \& cuar coat \\
\hline himiseal \(2 a 72\) a/e as \(1 / 1\) bv fluorescent polyurethane \& ctc \& 8.63 \& . 02 \& 2 H \& 66 \& \({ }_{\text {A }}{ }_{\text {a }}\) \& cuar cuat \\
\hline humiseai \(2 \mathrm{a} 72 \mathrm{a} / \mathrm{E}\) as \(1 / 1\) by fluokescent polyurethane \& CTC \& 9.38 \& . 02 \& 2 H \& 60 \& A Ik \& cuar luat \\
\hline \& ctc \& 14.80 \& . 47 \& \begin{tabular}{l}
24 H \\
90 H \\
\hline 104
\end{tabular} \& \begin{tabular}{l}
25 \\
25 \\
93 \\
\hline
\end{tabular} \& - \({ }_{\text {AR }}^{\text {A }}\) \& cuar cuat \\
\hline I--2 pcliorethane coating \& EmC \& . 59 \& . 08 \& 24 B \& 50 \& A \(\frac{1}{5}\) \& cuar cuat \\
\hline \begin{tabular}{l}
IJOCHEHREZ \(1251 L Y / 22 H\) AS \(25 / 2\) Bu THERECOND EPOXY ISOLEX R-65 ACEYIIC COATIAG SYSTEM/E \\
ISOHEG ED \(129 / \mathrm{ED} 100\) AS \(1 / 1\) By
\end{tabular} \& \& \[
\begin{aligned}
\& 2.42 \\
\& 5.82 \\
\& 5.82
\end{aligned}
\] \& .09
.092
.02 \& 24 C
108
16 H \& 25

125

55 \& AIA \& | thath coating cuatian |
| :--- |
| cuaf cuat |

\hline 价 \& \& 5.82
1.14
1.14 \& 0.02
-0.16 \& 2M \& 400 \& ${ }_{\text {AIM }}$ \& CUAF GUAT cuatang

\hline \& \& 14.35 \& -23
-39 \& ${ }_{7}^{10} 100$ \& 25

25 \& ${ }_{\text {A A M }}^{\text {A }}$ \& | Cuatian |
| :--- |
| guab igat |

\hline \& AMC \& 9.33 \& -15 \& 2H \& a0 \& ${ }_{\text {A }}^{\text {A }}$ \& Cuating blanket

\hline \& KST \& 1.05
3.69 \& -84 \& 24ir \& 50 \& E-0 \&

\hline OI 100 GLASS EESIA 40% Bu In ETHANOL/E \& OH
OHI \& . 215 \& .07 \& ${ }_{1 \mathrm{H}}^{1}$ \& 1775 \& ${ }^{\text {A }} 18$ \& cous egat

\hline \& HYS \& 13.85 \& :07 \& 7 D
30 af
3 \& 25
25
25 \& A1A \& cour cole coat

\hline $\mathrm{p}=17 \mathrm{a} / \mathrm{e}$ as $2 / 1$ bi flexible ehoxy coating \& HYS \& 7.01 \& . 00 \& $5{ }^{5}$ \& 23 \& AIa \& Cumé loat

\hline p: 18 folyuretiane coating \& HYS \& 4.51 \& . 20 \& 18 \& 71 \& A15 \& cuatiag

\hline
\end{tabular}

SECTION 3 -- CONRORMAL COATING

SECTION 3-- CONYORMAL COATING

haterial.	MFR CODE	\%TML	\%CVCM	$\begin{aligned} & \text { CUHE } \\ & \text { TIME } \end{aligned}$	$\begin{aligned} & \text { CURE } \\ & \text { TEAE } \end{aligned}$	atmus	AEPLICATION
QR-4-3117 ONE PART SILICONE	DCC	1.49	. 19	7 l	25	AIk	CuAR CuAT
				24H	70	AIK	
Q3-6312 CLEAR RTV COATING/F	DCC DCC	3.33	-01	10 D 2 H	25 80	AIA	Cuatamg cuathac
RES 9384 COATED VLALUNINIZED KAPTON	KST	. 73	- 00				CHEAMALS BLANKET
	KST	. 72	-01	24 H	50 25	E-6	TdEAdAL BLANKET
REC-15D OV POIYMER SMES	WRG	2.34	. 21	7 D	23	AIn	Cuncr luat cuar cuat
RRD-15D UV POLYMER	WKG	. 48	-03				conf cuat
RD 1875-3 POLYURETEANE	${ }_{\text {HCC }}$	1.60 1.35	- 28 -18	248	25	A In	cuadinc
				24 H	71	A $\mathrm{E}-3$	Cuatimu
RESIStOR COAting type 100 flat black/e	TNC	1.18	.75	20 H	25 65	$\begin{aligned} & \text { AIG } \\ & \text { AIG } \end{aligned}$	coailag
RESISTOR COATING TYPE 150 RLAT BLACK/E	TNC	. 26	. 13	3 H 15 15	150 65	AIM	Luaf Luat
				30 M	125	Aİ	cuar muat
BESISTOR COATING TYPE 200 ELAT BLACK/F	TNC	. 32	. 08	$30 M$ 158	200	A ${ }_{\text {a }}^{\text {a }}$	cume cuat
				30 M	125	AIE	cuac mar
GESISTOR COATING T1Pe 250 flat Black/E	TNC	. 86	. 44	304 204	200	A I IR	
	INC	- 86	-4	20 H	05	Aİ	Conilng
RESIHELD 7200 A/E 1 S 2/1 BV EPOXY COATING				3H	150		
RESIWELD 7200 A/E/SOL AS $2 / 1 / 2$ a ${ }^{\text {a }}$ EPOXY COATING	FHE	11.01	-03	2 H 16 H	66 25	${ }_{\text {AIM }}^{\text {A }}$	Cund cuat
HMBC 18 A/B AS $4 / 1$ BU CLEAK EPOXY	HVM	0.85	. 01	$1{ }_{16 \mathrm{H}}^{16}$	60 25	A ${ }_{\text {A }}$	COatias
RTV 511/T-12 AS 0. 5 ¢ T -12 BW SILICOME	GEC	. 09	. 00	1 H 3 D	132 25	Aİ	Cuaicing
				160	177	E-j	cuar
	USC	3.19	1.06	70 16 H	25 25	AIK	CunF iUAT
R4-3117 CNE PARI SILICONE - FREE FILA - Cleak	DCC	-61	. 23	154 $96 H$	121	AIN	CuAx cuat
				$24 H$ 140	110 25	${ }^{\text {AIA }}$	Cunc cuat
	DCC DCC	1.43 2.71	-24 -03	14D	25	A In	CUNE LUAT cuaidio
SIOTCHCAST $281 / 2882$ EPUXY FORMULATION	$\triangle \mathrm{MCM}$	4.37	-05	${ }^{4} \mathrm{H}$	120	${ }^{\text {A }} \mathrm{Im}$	Cuatifa
SOLITHANE $113 /$ EICINOLEY ALCOHOL POLAULA 25	$\underset{\mathrm{TCC}}{ }$	4.21 -59	1.38	7 7	25	AIE	Cuac cuat
SOLTTHANE $113 / \mathrm{TP}-440 / \mathrm{TMP}$ FOREULA 27.	TCC	.87	-12	7 D	25	AIs	cuut cuat
SOLITHANE 113/300 AS $100 / 100 \mathrm{BLI}$ PORMULA 4	TCC	- 30	-03	70	25	AIS	CuAF Coat
SOLITHANE 113/300 AS $100 / 73$ B Fim PRGULA	ICC	-32	.04	2 Ua	70	a ${ }_{\text {a }}$	Cuvie cuat
SOLITHANE 113/300 AS 100/73 B P PORMULA	ICC	- 28	-03	24 H	55	A İ	cuaf ccat
	TCC	. 57	. 04	${ }^{7} \mathrm{H}$	54	AI区	cudr cuat
SOLITHANE 113/300/EH-330 AS 100/73/1 BH FOEMULA 21	TCC	. 56	-05	7 D	25	A İ	GUNF CuAT
	TCC	- 38	-02	3 C	93 25	AIM	Cuntrime
SOLITHANE 113/300/CUADROL FOEMULA 24	TCC	-29	-00	7 D	25	A ${ }_{\text {a }}$	cumi wat
	TCC	-31	-00	7 D	25	${ }^{\text {A }}$ I ${ }_{\text {a }}$	CuNC GUAT
SOLITHANE 113/300/I-12/SILFLAKE $135 /$ HEXANE	ICC	.62	.00	7 D	25	A1a	CUMF LUAT

SECTION 3 －CUNFORMAL COATING

MATEBIAL	$\begin{aligned} & \mathrm{MFR} \\ & \mathrm{CODE} \end{aligned}$	＊TML	\％CVC．	$\begin{aligned} & \text { CURE } \\ & \text { TIME } \end{aligned}$	$\begin{aligned} & \text { CUGE } \\ & \text { TEMP } \end{aligned}$	ATロus	
SOLITHANE $113 / 300 /$ TOLUENE AS $100 / 73 \mathrm{BH} / 173 \mathrm{BV}$	TCC	． 50	.03	24 il	55	A In	cuar buat
SOLITHANE $113 / 30 \mathrm{C} /$ TRIETHYLAMINE YOKMULA 22	TCC	.43	． 03	7 D	ל 2	d In	buar wuat
SOLITHANE $113 / 300 / 328$ aS $100 / 14.7 / 11.5$ bim rommula 15	TCC	． 79	－ 04	24H	70	A In	Cuna LuAT
SJLITHANE 113／300／328 AS 100／65．5／1．BM FURMULA 8	TCC	1.19	－08	3 H	66	A Iir	Cuar U UAT
SJLITHANE 113／32 6 ／FLEARICIN 9 FOGMULA 29	TCC	9.60	－ 03	70	25	A In	Cunr－uat
SPACE GARD 4－C－2 2 CLEAR COATING	DEX	9.40	－0	$7{ }^{70}$	20	AIn	Cuar LuAT
SPENKEL A $86-50 \mathrm{CX}$ PCLYURETHANE	SPK	8.72 3.84	－ 02	70 24	25	A In AIN	cuaríing
SPRAY－IAT 1071B STGIPLABLE COALING	SPL	3.84 .30	.83	24H	300		CuAding
STALEPABLE VINYL CCATING	GRU	y． 31	4.97				pautiosive coat
SFYCAST CPC 18 A／E AS $100 / 12.5$ B P POLYURETHANE	EMC	1.31	－ 20	7 j	25	dik	wual 1 MG－POTT1NG
STYCAST CPC 18 A／B AS 10U／12．5 BW PQLYURETHANE	EAC	1.07	． 15	7 D	25	d In	いualmi－POTTING
			12.16	48 H	70	A In	とOA」10G•rOTTING
SIYCAST 1217／9 AS 100／13 BW EYOXY	EMC	1.20	12．16	16 H	52	AIs	Cuab vuas
				24 id	150	A İ	
STYCAST $2850 \mathrm{KR} / 24 \mathrm{LV}$ AS 25／1 BAE BLUE EPOXY	EMC	2.44	． 09	7 D	25 25	AIn	Cundidag
STYCAST	GTS	2.44	.01				Taicismal Conteut
UCARSIL Y－4310 SILICONE	UCC	2.60	－00	6H	125	A In	Cuní unat
UCARSIL Y－4486	UCC	12.07	－27				CUWL COAT
UNICOAT 2081－31A ONE COMPONENT EPOXX／F	AMC	b．95	3.73	2 H	25	AIM	Lunc Luat
UNICOAT 2081－31A CAE PART FLUOHESCENI EfOXY／E	AMC	． 31	－ 11	2 H	25	Aİ	LUNE LUAT
				$1{ }^{1} \mathrm{H}$	180 70	A In	
UNICOAT 2081－31A OAE PAKT PLUUEESCENT EPOXY／F UAALANE 22 i POLYURETHANE	Anc FP1	6.26 1.60	1．25	2H	20 25		Luar vuat
				24 H	75	E－0	
URALANE 22 P POLYORETHANE FILM	EPI	2.44	．05	16 H	75	${ }_{\text {A }} \mathrm{IH}$	Luwg cuat
UXALANE $22 H$ PUIYURETHANE FILM	FPPI	3.44 1.65	． 021	70 $20 M$	25 25	${ }_{\text {A }}^{\text {A }} \mathrm{IK}$	Ludre cuat
URALANE 22H POLYORETHANE 2 Coat SAMPLE	FPI	1．6	.01	201 205	25 25 8		Lunr wolt
	FPI	2.43	－ 8	15 M	85	${ }^{\text {A İ }}$	cuar cuat
URALANE 22h／mDaC Fivgrescent tracer	PPI	2.43	－ 0	24 H	75	E＝0	cuar cuat
	FPI	10.71	0.11	${ }_{3}^{314}$	93	A In	cuinr cuat
URALANE 5750 A／B AS 18／100 B\％	FPI	． 43	.03	$2{ }^{14} \mathrm{H}$	25 00	aIn	Cunt LUAT
URALANE 5750 A／E AS 18／100 BW	FPI	． 83	.03	1 H	25	A IK	Cuar luat
UEALANE 5750 A／B AS $4 / 25$ BW UkETHANE	FP1	． 45	.01	3H	65	${ }_{\text {a }}^{\text {a }}$ Iu	cunr luat
URALANE 5753LV A／BAS 1／5 BU PULYUKETHANE	EPI	． 62	.01	7 D	25	AIm	LuNr LuAT
URALANE S753LT A Did $1 / 5$ BH POLYURETHANE	FPI	． 00	－ 01	24 id	60	aIk	Cudr cuat
UzALANE 8267 Thásfationt polyurethane	FPI	10.00	． 17	24 H	25	A In	Cuafimb
US 0009 a／B AS 100，35 BH PCLYUEETHANE	HYS	13.69	7.55	100	25	A In	cunc－UAT
VINYL DISPERSION PLASTISOL 77X－3720 BLACK	STA	43.89	10.45	5 St	100	${ }_{\text {A }}^{\text {A }}$ IG	cunt cuat
VJRITE 63 POLYUEETHANE COATING	BAK	． 66	． 05	24 H	25	Aİ	CuNF LUAT
WORNOW 1000 MASK FILM GEEEN	WPP	2.07	－43	1 it	135	A İa	AdSK
XR－6－2205 CNE PAFT SILICONE	DCC	2.85	－09	7 D	25	A IR	CuAE OAP
Xr ${ }^{\text {¢ }}$	${ }_{\text {DCC }}^{\text {DC }}$	3．55	1.26	1 H	74	AIS	Cuatring
				6 H	100	Aİ	

SECTION 3 －－CONFORMAL COATING ํํำคำ
 POM MNN
32
19
06
20
32
\％THL
ajig 岛枵品

SECLION $4 \rightarrow$ ELLCTALCAL COMPONENIS

SECTION 4 －－ELECTRICAL COMPONENTS

Material	$\begin{aligned} & \mathrm{HFR} \\ & \mathrm{CODE} \end{aligned}$	\％TEL	\％CVC\％	$\begin{aligned} & \text { CURE } \\ & \text { TIAE } \end{aligned}$	$\begin{aligned} & \text { CUEE } \\ & \text { TERP } \end{aligned}$	AI	asthication
COIL PCRH BASE	CBT	52	． 00				BASx
COIL FGRH PHENOLIC	CHT	4.76	－88				Cuí FURM
CJN	CAN	－76	－ 30				Cuadi insul
CJNAECTOR INSEET TAN RUBBER PER MIL CIB9G9	BEE	4.87	1．64	24i	175	AIs	CUSAELCOR INSUL
CONAEC TOR INSERT TAN RUBBER PER BIL C 38999	PHC	－23	－ 07	241	175	AIN	CUNAELTOR INSUL
CONAECTUR INSERT 4 ＇4－11－96－093 RED FLUORUSILICONE	CIN	－20	－04	24.	175	AIA	CONAECTOR INSUL
CONEECTOR MIL CJEG9 RED INSERT	GHT	． 46	－11				CONH CNSUL
CJ A EECTOR 18．163／4UE GRAY	HIN	－ 52	.01				cusadecor
CJE EECTOR $3612261-01$ BLACK NYLON／GLASS	HUP	1． .25	.05				COANECTOR
CJH	TEL	． .44	－ 01				cund insul
D－8150 POKYALIDE－IRIDE／ADH／COPPEH	BOG	－ 15	.02				HEMUAY CORE
D－8970 EPOXY FILH／ADH／COPPER	ROG	． 42	－00				hadugi come
DA P C MESA PLASTIC		－ 34	－00				CaST LTND
DAP COHNECTOE 3－2－E202 GLASS EILL ED／PLAHE EESISTAHT	HAC	－ 61	． 01				Cundector
	ACA	－ 97	－ 0				CUNaETUR
DAP SDG－F MIL K－14 AAP CON NECTOR	AMP	.44	－ 00				CONametor
DAP／PLAME RETAEDANT－GLASS PILLED CANAQN CON PS－80	CAB	.44	－00				Cumaderor
DEUTSCH CONNECTOR	DEU	． 95	－ 02				Cumbeltor
DEJTSCH COH ECTOF A81510F16－1451 BKOHE SILICONE	DEU	－ 31	－ 10				CUNSELOR
	DRU	2．22	－ 07				CONARETOR
DEUTSCH CONAECTOR ETKO6－16－6 IS GREEA HOLD INSERT	DEU	1． 50	－00				COXAETTOE
DEOTSCH CONAECTOE SILICONE RUBBER	DEU	－09	． 06				
DEUTSCH CONNECTOE $47-010350$ SOLDED INSERT	DED	1.23	－ 01				CGASETOR
DEUTSCH CONA ECTOE 41－010350 kED SILICQNE	DEU	． 20	－05				
DEUTSCH CONAECTOR E825 RH04－442S PHEHQLIC IHSERT	DEU	1.25	－ 00				
DEUTSCH CONAECTOR 6825 RE04－442S SILICONE INSERT	DEU	－ 22	－01				COABECHO日
DEUTSCH CONAECTOR 7221 UR804－212PSILICONE INSERT	DEU	－ 22	－01				CGNASCLOR
DEUTSCH CONA ECTOR 7544 E HE64－212P SILICONE INSERT	DEU	－16	－05				CON日ECTOR
DEUTSCH CTJ SERIES TERMINAL BLOCK RED SILICONE ONLY	DEU	－ 24	－03				TEEAELAL BLOCA
DEUTSCH TERYINAL BIOCK TJ 11E 06－01 SLLICONE INSERT	DES	－19	． 01				TEAdANaL BLOCK
	ACH	． 43	． 00	2H	138	A In	CUABECTOR
	EAC	9.90	． 04	72 C	25		COLi．cuating
ECCOSORB AN 74 ETHANOL DASH－ 3	EMC	． 70	． 07	21H	100	AIf	ABSOHANT
EzCOSORB AN 79 HICKOWAVE ABSORBANT 16H HLTOH ¢ASH	EMC	4.37 1.03	－45				AbSOROANT
ECCOSUEA CK－S 124 A／E AS 100／1 Bw SILICONE BASE	EMC		09	21 H	100	AI品	adsucoant
	EMC	.11	－00	14.	8	${ }^{\text {A }}$	Absundant
E COSORB GDS IEON FILLED SILICONE	EMC	－ 20	－ 08	14	25	AIa	ADSUEVANT
E－COSORB OCE 9 FIAEE RETAED MICROHAVE ABSOLBEE	E®C	3.83	$\bullet 53$				fuat
EGP＝3 HR POLYIHILE IMPREG NOMEX PAPEE HONEYCOHB	DOP	1.97					
	EHC	5.07	－ 29				FUAA
EGA 7037 IEOESCEAT LABPGGEIUES－YELLOU	ARG	－ 41	－ 01				Lats？
EHA 7085 IRON	SBI	23	01				DishbTRIC
EAA 8190 IRON	SBI	$\bullet 21$	－00				DLELELGEIC
GASKET AMP RF－SHA COANECTOR RED SILICONE	AMP	－ 14	． 02				GASK
GSSAET AMP RF－SAA CONABCTOA WHITE SILICONE	AMP	． 64	． 22				GASAET

SECTIOA 4 -- ELECTRICAL COMPONENTS

Material	MFR CODE	万TML	\%CVCH	$\begin{aligned} & \text { CUhE } \\ & \text { TIME } \end{aligned}$	$\begin{aligned} & \text { CORE } \\ & \text { TE } \end{aligned}$	41	Asplication
GJRE-TEMP GTS 810 ELFE RIBEON CABLE	WLG	. 01	-				FLECMAKING
GZOMEET FR SOSHEN EUBBER SILICONE CEHD S 1617	GRC	. 34	. 09				Gruaist
GROHAET JASPEF 1116	JAS	13.51	0.85				gruadil
	GCC	11.92	0.61				gruadiel
	COX	.16	- 01	24 H	125	E-O	HEAIEK
HEATING TAPE CLAYBCRN LABS A-16 DC 282 SILICUNE	CLY	. 41	- 23	24 H	125	E-7	dexa rape
HEATING TAPE こLAYBCRN LABS A-16-2 DC 282 SILICONE/F	CLY	. 10	.01	2 Hi	155	E-1	HiAL 1 APE
HEATING TAPE CLAYBCRN LABS D-16-2 DC 282 SILICONE	Ciy	. 74	- 42	45	140	E-J	dida $A P E$
HEATING TAPE CIAYBCRN LABS DC 280 ADH	CLI	.46	.25	24 H	150	AIM	HEAT TAPE
HEATING TAPE CLAYBCEN LABS F-16-2X DL 282 SLLICONE	CLY	-15	08	30 ia	150	E-2	HEAI LaPE
HEATING TAYG CLAYBCRN LAUS H-16-2X DC 282 SILICONE	CLY	. 07	-03	48H	155	E-2	HCAT AAPE
HEATING TAPE CLAYECEN LABS 1 COATRTV ©-1104	CLY	. 73	- 29				CURIEL HEAT TdPE
Heating TAPE CIAYBCRN LABS 2 COATS RTV 6-1104	CLY	. 50	- 19				CuAjed iteat TAPE
INSL-X-E44F CELEULCSE NITEATE AND SOLVENT	INX	18.48	- 15	24 H	25	Aİ	CuLb TAPETING
INSULATOR AOLDED \&IL M 20693	BEA	2.47	-02				isjusal
INSULATOR 10230-LAE POLYURETHANE COATING	RUS	. 44	- 02				Lajusal OR
INSULTEK 445 UAETHENE DIELECTKIC	IEH	. 38	- 01	$1{ }^{10 \mathrm{H}}$	103 25	${ }_{\text {A }}^{\text {A }}$	
ITT CONNECTOE 7929 DEA-258 BLUE/GEEEN MOLD INSERT	IT T	- 55	- 01				CONa 1 aSUL
MELAMINE G-5 PEE KIL P-15037	NVF	3.21	.00				
MELAMINEGES PEK GIL P-15037B EUSE INSULATUR	NVF	2. 2.44	.00	16H	- 100	AIK	INSULATOK
SICRODOT CONAECTOR RED SILICONE INSERT	MIR	- 54	- 34	10\%	171	AIk	Cuna insul
MICRODOT COANECTOE RED SILICONE INSEAT	M IR	. 18	- 09	5H	171	E-4	CUNA 1 NSUL
HIKROY 750 REG GFAIE LEAD BOKATE/MICA MLX	MEL	. 00	-00				Lujulaticn
NY LAFIL GIASS FIILID NYLON	Fion	1.67	. 02				cujulator
NYLON/GLASS AS 70,30 connectur InSERT - CanNon	CAN	-91	- 03				Cu@utitior
PA 61 CERAMIC	ELK	- 00	. 00				a duulation
PLASTIC PART MOTCECLA CHOS 14011 DTD 7720	MOT	- 27	- 00				SULU END
PLASTIC PART HOTOECLA CHUS 14044 DTD 7731	MOT	- 20	. 01				dulu Cewd
PLaSTIC PAET HOTOECLA 741 S 174 DTD 7733	MOT	-27	-00				MULU CEND
	NSE	- 24	- 00				MUL 4 UND
PLASTIC PAET NATL SEHICONDUCPOR CMOS 4044 DTD 727	NSE	. 26	-00				
PLASTIC PAEI RCA CEOS 4011 DTD 723	HCA	- 27	- 41				MULD \angle KND
	S16	-20	.00				MULD CEND
PLASTIC PAFT SIGNETICS 74LS174 DTD 7723	SIG	- 31	- 82				WULUCEND
PLASTIC PART TEXAS INST $74 L S U 0$ DTD 7710	TLI	- 24	- 00				AULD CHD
PLASTIC PART TEXAS INST 74 LS 174 DTD 7718	TII	- 25	. 01				nubu zend
POLYGON SG-101 CCMEOSITE GLESS/SK 319 SILICOEE	PUEE	7.72	-. 02	124	454 25	A In	cuib cuating
EATE GYAO INSUIATICN HATERIAL	${ }_{\text {ACA }}$	29.02	2.93				Insubatof
REXOLITE 1422 STYRENE	BRX	- 16	-02				IuSulatici
	GEC	. 51	-32	16H	204	A In	CUAMINAL INSUA
SCOTCHFLEX SOCKET CONNECTOR GLASS	HMM	- 19	-04				Cuxaticior
SH 2×2-2.5 HEATEE EED SILICONE	EFH	. 08	- 03				
SH 3/4 55 HEATER - bEL SILICONE	ERH	- 12	- 01				
SILICONE INSOLATOR SO-1058-8913 RED	LCR	-30	-18	24H	125	AIn	GASUhatoid
SIPCAST HI K 500 DIELECTHIC	EMC	. 47	.04				INJUbat'TOR

Section 4 -- electrical components

daterial	${ }_{\text {MFK }}^{\text {CODE }}$	\%TML	mevcm	CUAE	CUEE	a taus	at Plicaticn
	WLG	. 0.0	. 00				¢HEE IASUL
TERAINAL T-2-S CIAYBCANLAES DC	$\underset{\text { Cli }}{ }$	1.89 .87	. 65				
VIEEO-KLO E-301 FECXY POWDER COATING	${ }^{\text {APC }}$	- 87	.08	30 M	180	${ }_{\text {a }}^{\text {Iİ }}$	Hida Coating
YISHAY MOLDED COMECNEN'S 11850 BLACK	VIS DUP	2.09 1.19	-09				BuLD CRND

SECTIUN $5-$ ELECTKICAL SHLELDS

SECTION 5 -- ELECTUICAL SHIELDS

 innjorognmomminguninuronoon

SECTION $6-\infty$ FLLIS SHEET MALEKIALS

matekial	MEK CODE	－142	NCVCM	$\begin{aligned} & \text { CURE } \\ & \text { TIRE } \end{aligned}$	$\begin{aligned} & \text { CUBE } \\ & \text { TEMP } \end{aligned}$	ATAUS	
A ETATE GUTYRATE－CLEAR	CRY	4.73	． 00				Lids
AこLAR 22A CLEAK FILM HOLYCHLOROT RIFLUOROLTHYLENE	ACO	－ 13	－01				c1La
ALLAR 33C CLEAL FILM ROLYCHLOROTEIFLUQROETHYLENE	ACM	－ 11	－U1				くんんい
A＝AYLITE ACEYLIC SEEET	${ }^{\text {ACC }}$	－ 51	－05				SLimulauni
ANTI STATIC FILM 2100 OCK ORE ON GLASS PABEIC	MMM	－32	－01				
AR MALON PILM TGO3SO LLACK TFE UNGLASS FABRIC	DUP	．09	－01				dLat LaRKIER
	CEY	－05	－01				
BETA MARCUISETTE YCVEN FIBERGLASS STYLE 2530	STE	． 03	－$\cup 0$				LaSumalicn
BZT－92 NATURAL ECNLED NOMEX IHEEAD	EDD	3．95	－ 08				Tamead
Caprai 512 NYLun adil Static FIL	AFP	4.93	－ 12				何何ivu
CELLULOSE ACETATE EUTiRATE 200 michun fila pugrle	FAu	－ 95	－ 01				FiLit
CELLULOSE ACETATE EILIM SHIU SIUCK	AR＇I	10．70	1.19				tinu
CELIULOSE TRIACEIATE 200 MICHON KILM ELUE＇	FAE	1.28	－ 00				r1Lar
CHO－THERM 1661 TEEKM CUND SHEET HAITE SILICONE	CHO	－ 76	－ 06				TuERA GONTBOL
CHO－THEKM 1661 THEFH COND SHEET WHITE SIIEICONE	$\mathrm{CHO}_{\mathrm{CHO}}$.10 1.53	.06 .14	24H	175	A In	Takhat con＇raol
CHO－THEKA 1663 T $6 E K$ COND SHEET WHITE SILICONE	CHO	1.53 .26	－J 5	24 H	175	a Ias	Masad coniroi
	CHO	． 45	－13				ULEん cl TEIC
CHO－THERY 1671 TEEEU COND SHEST WHITE SLCICUNE	CHO	． 76	． 07				Taciom LONTEOL
CHO－THERM 1671 TEEEM COND SHEET WHITE SILICONE	CHO	－10	． 05	24त	175	A In	Cacat controi
CHO－THERM 1073 TGEGM COND SHEET GREEN SILICONE	CHO	1． 18	－ 10				Iucas LONTKOL
	CHO	． 11	－ 20	24.1	175	AIK	thema conthol
CHO－THEKA 1074 THEFH COND SHEET GLUE SILICONE	CHO	－12	－ 01	24 H	175	Aln	PaEat CuNTEOL
CHO－THERM 1677 TEEFA COND SHEET WHITE FLUOROSLLICONE	CHU	－ 57	． 01				Ticaa Cont kol
CLOTH TFE COATED FIBEHGLAS STYLE 16781 TYPE 5	STE	－48	.27				6－uta
CONDULUN ANIISTAIIC EILM 2 MIL BLACK	PVL	． 88	． 03				どLLa
CJNDULON ANTISTATAC FILM 4 MIL BLACK	PYL	.76 1.43	－02				
CJNLULON 89－7a AATISTATIC FILM BLACK \＃9437	PVL	1.46	． 02				$\underline{6}+\mathrm{L} 4$
C）VERLITE H FABEIC SS－61811－xA HYPALUA CUATED NYLON	－EE	7.84	4.78				Cousi
CJVERLITE H FABEIC 55－61811－XX HYPALCH CUATED NYLON	REE	1． 11	－ 05	24.	125	E－ 2	Couca
CJVE日LITE G FABEIC 55－61811－XX HYPALON COATED NYLON	HEE	． 98	． 02	72H	125	E－2	Cusia
CRONAFLEX FILM－FECSTY	DUP	． 75	－ 00				LuAmbishENCY
CRONAR POLYESTEA EILG TRANSPARENCI	DUP	． 37	． 01				FILH
	${ }_{\text {ACC }}$	－ 05	－01				GLULK
DACEON DAYBOND Y 4 －4C－8X	HOB	． 45	－04				Cumbaj
DACRON MESH 32A	APS_{4}	－19	－ 03				வicらa
DACRON MESH B2A FCIYESTER NETTING	APX	－15	． 00				GuEMd oLANKET
DACEON NETTING 7C8E6－10	EEE	－ 19	－ 06				NuTicas
DACFCN POLYESTEK CIOTH	BEH	－ 33	． 04				$\mathrm{CLO}_{1} \mathrm{a}$
DACECN POLYESTE＇E MESGi STYLE 15320 DUN - CHROME 500 C DDA TEFLON	SST	－ 12	－ 01				rabail amSHome
DUN 7 CHROME $500 C$ ODA TEFLUN	DUN	． 01	．00				Incaum Blanket
EニTPE EXTBUDED SEEET HI－TEMP APPLICATION	ACM	． 48	－01				insulajicN
ETEFE O－5 MIL FIIM	${ }^{\text {ACM }}$	－ 17	． 05				UECDCA PIL品
ELTFE 10 O MI F FiLK	ACM	． 19	－ 04				UETACaL FILM
	${ }^{\text {ACd }}$	． 62	－03				Dhaskct
ETFE 7.3 OL／YD FAERIC UNCALENDEGED UNWASHED	${ }_{\text {ACM }}$	－． 33	－08				DLAEMKLI
R TEE 7－3 OCOY D FAERIC UNCALENDERED MASHED ETUH／ACE	$\underset{\text { ACH }}{\text { A }}$	1．21	． 07	75m	171	Aln	

SECTION 6-- PILMS SHEET MATERIALS

SECTION $6-$ YILES SHEET MATERIALS

Materinit	$\begin{aligned} & M F \mathrm{~K} \\ & \mathrm{CODE} \end{aligned}$	\％THL	\％CVCM	$\begin{aligned} & \text { CURE } \\ & \text { IIME } \end{aligned}$	$\begin{aligned} & \text { CURE } \\ & \text { TEMP } \end{aligned}$	ax 4 US	AKPLICATION
ORCOPIEM KN－10 KAFTON／NOMEX THEEAD／POLYESTER BINDER	ORC	1． 19	． 08				LaEagas BLAEKET
ORCOFILM KN－11 KAPTON／NOAEX THREAD／POLYESTEK BINDEK	ORC	1.41	． 05				Tucindal blanket
P－6j YOLYETHEE URETHANE FUAM MIIEE	GTE	－ 47	－11				Fuab
P－65 POLYETHEG UREIGANE FUAM HHITE	GTM	－ 29	－11	24 H	100	AIn	Fuas
P－6S POLYETHEE UEETHANE FOAM WHITE H2O－GASHAE WASH	GTE	－ 12	－104	24H	108	A $\frac{1}{1} \frac{1}{1}$	fuam
P－GS POLYETHEG DhETHANE FOAM WHITE GLTOH WASH	GTH	.81	－02	24 H	100	AIE	guam
P－65 POLYETHEİ UKETHAUE EUAM WHITE METOK／H2O WASH	GTR	－ 14	． 05	24 H	100	AIE	cual
PABASOLGG－76 LAMINALE NYLON／AYLAR／ALUA	JSC	10.93	－08				Tacabal CCNTROL
PEEVEL 38056 CLEAR ANTISTAIIC FILM	PVL	31.57	6．22				cinca
PGENCLIC／NATUEAL LINEA SIANDGFF	ATP	3.02	． 01				SRAUCLURAL
PdENOLIC／NATUEAL LINEN STANDOFF	ATP	1.89	． 00	24：	125	A Ik	simulideab
PLEXIGLAS YS－100 CETICAL	HOH	1.00	－ 01				Leds
PJLASHEET GRaY SİICONE SHEET／EMEEDDED MONEL WIRE	MET	1.56	－． 46				Lend
PJLASHEET GRAY SILJCONE SHEET／EMEEDDED MONEL WIEE	MET	－20	． 11	24 i	177	AIK	Smitiou
PJLYCAEBCNATE CIhCUIT CAED GUIDE	CAL	－ 12	－ 02				cuide
PJLYCEROME ELLM	${ }^{\mathrm{PCR}}$	－64	－1．				${ }_{8} 124$
PJLYETHYLENE EILM ANTISTATIC DF PINK	${ }_{\text {SCE }}$.40	.06				
POLYETHYLENE FLLM 2 MLLS ALATHON RESIN－BKANCHED	DUP	－ 14	． 02				F1LM
POLYETHYLENE ULTha HIGH MOLECULAK WEIGHT	PbI	－ 42	－ 00				STIUCTURAL
PJL YeT HYLENE YAPC IILM 0 MIL	EXX	－ 37	－10				ELbM
ROLYEENCO PULYSIYEFNE	PPC	． 09	－ 00				SCaUCLURAL
PJLYURETAAME FILM ES60 W／hUBBEN ADH／E	${ }_{\text {MUP }}^{\text {DUP }}$	7.49 30.31	5.407				${ }_{\text {F }}+1 \mathrm{La}$
PYGALUX FILM POLẎEIDE 2 MILS THICK	DUP	－ 14	． 00	1H	177	AIn	ElLA
BAYBESTOS KJ00 EEICTIONMATEムIAL	RM1	1． 13	． 00	16H	110	シーシ	ExACTIUN PAD
RJ－AS－1200 ANTISTAIIC POLYETHYLZNE FILM	$\mathrm{MCI}^{\text {Cl }}$	－ 29	． 04				HLLM
Q－AS－ 1200 FR ANTISTATIC POLYETHY LENE FILM	RCI	.70 .34	－ 15				F1Lid
	RCI	－． 34	－ 24				F14，
SAILS CLOTH ALUMINIEED FILM W／O ANTISTATIL COMP／CLEAR	RDL	6． 43	－ 06				THEAGAL CONTBCL
SAIL CCMEOSIIE MYLAR／ALUM／NYLON／WHITE PAINT	USE	． 97	． 22				TdEEAKL CCNTROL
SIL－PADS 400 SILICCNE／FIBERGLASS SHEET GHAY	䂙	－40	－ 11				ELin／SbEET
SILK NETTING STYIE 5517	JMC	2． 23	－07				netchag
SLLK NETAING STME 5 St	JMC	2． 34	－ 12	$\begin{aligned} & 54 \mathrm{E} \\ & 3 \mathrm{H} \\ & 3 \end{aligned}$	125 25	$\begin{aligned} & E=6 \\ & E=0 \\ & E-6 \end{aligned}$	abiting
SLLTEMP 84CH YOVEN GLASS CLOTH－BKOwN SIAPA CHECK G FAERIC－LIGHT AQUA／WHITE VINYL	${ }_{\text {AME }}$	117．18	17． 00				THEGA CONTROL PackaidNG
SUELYN SB IONOMER EILM	PIE	． 40	． 05				12La
SURIYN 16522 MIL EAGGING FILM	DUP	－ 39	－09				FLid
TEDLAR COATING ON ALUMINUM	RPC	－14	． 05				cuailas
TEDLAR 150 BL 30 CC BLACK FILA	DUP	－14	－ 30				P1La
TEPLON FEE TNSULATION TX $22-731$	HT ${ }_{\text {D }}$	－0．2	． 80				FASULATEEEI
TEFLON PFA FILM SUEET TE－9705	DUF	－00	－ 0				2LG
TEFLON／GARLOC $201 /$ SILVEB／ALUM FOLL CCMEOSITE	GSC	－ 34	－ 13				Hixacos
TEFLEL PILM 240 MIL	DUP	2.12	－02				HLAMSET
TEMP－PLATE $240 / \mathrm{SCEEEN}$	DUP	4．14	－30				Fía
TAADLON EILM POLYPIEABANIC ACLD（H）	EXX	1． 26	－00				FILA InSUL

SECTIDA 6 - FILMS SHEET HATERIALS
SECTION 7 -a ROAMS

Mategial.	HFR CODE	\%'TML	ECVCM	CUKE TId	$\begin{aligned} & \text { CUBE } \\ & \text { TEM2 } \end{aligned}$	ATMO.	ALCNLCAIIGN
AAP-SS-H RE ABSOREFR METALLIC/GRAPHITE/FUAM	AAP	- 85	. 04				FUAA UMPOSITE
	AAC	.78	- 00	2 H	93	A18	¢U1 cuay
ABLESTIK 801-2, ECCCSPHERES SI AS 55/45 BW - WHITE	AAC	. 80	-01	2d	93	A I	PUR EUAM
A3SAPIL F1200/20 FCAi/ 20% GLASS FiDEuS	FBK	- 93	- 12				vuad
AF 3002 EEOXY EOAM	$\mathrm{ACL}^{\text {M }}$. 94	- 01	$2{ }^{16 \mathrm{H}}$	177	ALa	tuancu aut
AP $3015<C 12509 J-1$ HARD FUAMED ELEOXY	MUC	1.24	- 10				FVau M PE
ANGEL FOAM 6818 CLEAN ROUM WIPE	AUC	1. 15	-01	16H	100	MIn	ruad alpe
ARMAPL EX TUBUAAh INSULATION SLEEVE BLACK	ACL	8.57	2.41				idoulaiticn
CHEM-FOL $30-1961 / 2023$ AS $1 / 1 \mathrm{BW}$ PULYUEETUANE FOAM	Fre	7.07	. 05	724	06	A In	g Jau
CLARK FOAI 1234 EOLYURETHANE W WITE ALCOHOL WASH	CrF^{\prime}	-8	-03	24 H	100	dik	
CJNAFLEX EA-50 PCLYURETHANE FUAM ALCUHOL WASn	BLA	-87	-10	1 H	120	AIM	Fuail
CPR 17-2C FOLYUKETEANE FUAM	UJC	-84	-10	6 H	80	A1K	FUBA
CPR CPR 17-2C POLY	UJC	1.31	- 3	16 H	60	E-0	puad
CPR 17-2C POLYURETEANE FOAB	UJC	- 97	-09	16H	75	A Ia	ruan
CPR 17-2C POLYURETEANE FOAM	UJC	1.26	-04	6H	35	A 1 K	cuan
CPE 17-2C POLYURETHANE FOAM LOT M2280	UJC	1.13	. 06	248	05	A IA	ruan
CPK 9002-3 POLYUEETHANE FOAM BLUE/GREEN	UJC	3.81	0.				puad
CPR 9005-2 POLYUKFTHANE FOAM GREEN	UJC	4. 36	1.05	9611	125	E-1	FUAG
CPR 9005-2 POLYURETHANE FUAM GKEEN 24 M METOH WASH	UJC	2.10	.03	72 H	100	A If	Fuas
	UJC	7.24	. 40				RUAM VAMPEK
CPR 9800-60 POLYESTEK UBETHAME FUAM O\#/CU TT	UJC	1.23	. 46	244	66	E-4	PUAT LAMPER
DC 5370 SILICONE FCAM	DCC	- 31	- 12	10H	204	AIM	ruag
D= 5370 SILICONE FCAM	DCC	- 59	- 0	12 n	100	A	Fuan
DER 60 1/2-PLENYLIMIDACOLE WHITE SYNTACTIC FOAM	MOT	-77	- 20	2 H	93	A Ik	pos ruam
DK 18-05/ECCOSPHEEES STIAS 55/4S XM ESEBLUC	HMC	. 23	. 04	48 H	25	AIk	Fuat
ECCOBUND SFOAM SFF-14 SYATACTIC FOAM - YELLOW EPUXY	EMC	1.00	-34	10 H	80	AIK	2uT tuail
ECCOFOAM EFF-14 SYNTACTIC FOAM - YELLQU EPOXY	EMC	. 88	- 28	1 od	80	A IM	pui' ruait
ECCCFOAM EFF-14 SYNTACTIC FOAM - YELlOM bPOXY	EHC	. 91	. 27	10 H	8	AIM	pua ruah
EC工OFOAM EFF-14 SYATACTIC FOAM - YELlOW LPOXY	EHC	1.23	. 35	16 H	80	A1،	sul suall
	EMC	.93	- 36	2 H	125		FUadi Lamper
ECCOFOAM EFF-14 SYNTACTIC FOAM - YELILQM EPUXX	EMC	-40	. 09	2 H	100	A In	KUat LAMEEK
ECCOROAM EFF-14FK SYNTACTIC FOAM	CMC	2.32	. 99	5 H	110	a Ia	ruas
ECCOFOAM EFE-14FR SYNTACTIC FOAM	EMC	. 72	- 30	2 H	135	${ }_{8}^{\text {A }}$ IM	Pus ruam
ECCOFOAA EFF-14Fh SYNTACTIC POAM - OFANGE EPUXY	EMC	. 67	. 29	2 H	125	AIn	Fuad dampick
	EMC		- 23	2 H	125	AIn	FuAh UAMPER
EこCOFOAM EFF-j4FK SYAZACTIC POAM - OKANGE LOT 518	EMC	1.05	. 56	2 H	100	AIH	pus ruan
ECCOFOAM EPF-14FR SYNTACTIC FOAA - QEANGE LOT 521	EMC	1.04	. 52	2H	100	AIn	PUT RUaM
		4.08	. 79				fuat
ECCOFUAM ES YOLY URETHANE FUAM ETOM WASH ${ }^{\text {K2 }}$	EtC	. 72	-19	$1 i$	100	AIL	Fuat
ECCOFOAM FS POLYURETHANE FOAB ETOH WASH 42	EMC	2.814	- 18 .24	24 H	100	A1،	Scajuinural goam
ECCOFOAM PP-HT-3 MEITE	EHC	2.77	-. 39				FUam

SECTION 7 -a FOAMS

Mategial	$\stackrel{\text { MFR }}{\text { CODE }}$	\%TAL	acycm	$\begin{aligned} & \text { CURE } \\ & \text { TIME } \end{aligned}$	$\begin{aligned} & \text { CURE } \\ & \text { TEBP } \end{aligned}$	AT	AKtilCATICN
	EMC	1.0 .4	. 00				Fuad
E COFOAM SA $2 \sharp / C U$ FT POLYUEETHANE POAM	EMC	1. 59	-02				FOAL
EHPOSORBAN FOLYUR ETAAE FOAME_ABSOREANT 4H ETOL © ASH	EMC	2.10	- 14	25H	100	AIn	ABSUEIOANT
EHP-1 POLYORETHAAE EOAM/BLUE NEOERENS PAINT	CAF	7.73	1.8				FUAM ABSORBER
EPDM SILVER STEIF CLOSED CELL FOAM/ADH FILM/FOLL	DAC	13.63	3.73				PUAE AdSORBER
ERL $2795 / \mathrm{HN} 951$ SYATACTIC EOAM	HAC	. 50	. 02	24H	25	AIn	Puab
ETHAFOAM MHITE	PFI	. 47	. 03				t'uat shd
ETGAFOAM 220 POLYETHYLENE FUAM $2.2 \# / C U F T$	DOW	-36	- 08				ISSULATICN
ELHAFOAM 600 POEIETHYLENE FOAM 6 \%/CU ET	DOW	-26	. 04				IASULATIOM
FLUOREL 1062 FOA	H0S	-38	. 04				Eusua
FLUOREL 1079 FOA	MOS	-38	-12				puad
FLU 41 EPSISY	INR	- 12	- 03	16H	204	A In	fuas
FJA CLOSED CELL PCLYURETHANE MIL P 26514 ETOA WASH	${ }_{\text {ACP }}$. 76	-00	${ }_{2}^{18}$	170 100	AIh	auh ruam
FJAM CLOSED CELL PCLYURETHANE MIL P26514 2 \#/CUPT	EOF	8.840	- 56	24 H	100	AIx	PuAs
FOAM GRAY POLYESTEE 2*/CUET	RFI	1.29	. 02				DAAPLik
FJAG ME-1-1才-74-1 FOLYIMIDE	INT	-40	- 02				TuEay LOUVER
PJAM EL-2-17-52-3 FOLYIMIDE	INT	. 53	. 05				ToEat LOUFER
FJAM POLYUKETHANE SIESHIRECHEM KS 263	GIEC	4.94	-43	8H	125	AIE	Foak
FJAG 1702-1 TAN IEERMAL ACOUSTIC AL	INT	. 00	. 00	8-1	125	41A	yuan
FJam-HOLYURETHANE EH1-00530	ACH	4.80	-00				SUAG
PJambipe foly ine	TEX	3.87	1.86				PUAB
FJAHMIPE TX 704 CLFAN ROOM WIPE ALCOHQL EXTRACTION	TEX	1.53 21.84	-. 41				PUAG
FR-3720 LAST-A-FCAH PULYURETHANE HONEYCQYB EILL	FOM	21.84	. 41				ruag
INSTA-FOAM 2 \%CUFI	INS	10.10	-0 0	16H	43	AIK	ruas
MICROXELI R FOAR UCDigICANT RESERVOIR FREUN TA HASH	$\underset{17}{ } 1$	0.14	- 41				FuAa
MINICEL B-302 CFCSSLINKED POLYPRGPYLEDE FOA I Wilt	Hay	2.82	. 59				Daciecia
HONSANTO 1835 POEYETHER ORETHANE FOAM	MON	3.13 1.25	-60				puad
HONSAGTO 1835 ROLYETHEE-URETGANE POAM ISOPROP WASH	HON	1.29	-08	12H	25	AIS	fuda
MONSANTO 1835 POIYETHEG-URETHANE FOAX METOH waSh	MON	. 27	. 04	2 lH	100 25	Aİ	cuad
M NSANTO 1835 PGLYETGER-UKETUANE FOAM METOH WASH	mon	. 42	. 13	4 H 30 H	10°	${ }_{\text {A }}^{\text {A }}$	
				21 H	100	AIa	ruas
MONSANTO $3865-\mathrm{F}$ FGIYETHER-JRETHANE FOAR	MON	3.05	-71				ruad
NOPCO A206-1	NOP	2.94	.19 .90	72H	120	AIE	Euat
NO PCO G302	NOP	. 30	.07				Puait
NOPCO G50J POLYUREIHANE FOAM - Wdite	NOP	1.19	.01	25M	25	AIE	Eudid
NOPCO H-402N ITH EVA COVER	NO2	21.40	1.03	${ }^{4} 14 \mathrm{H}$	65 92	A In	
WOPCO H-402N WITHOCT PVA COVER	NOP	23.20	1.03	14H	92	Aİ	guaid
NOPCO J10 R POLYUEETHANE NOPCO Jiob POLYUEETHANE	NOP	1. 12	-00				Fuaid
	NOP	1. 19	- 02	${ }_{16 \mathrm{H}}^{4}$	32	CO	civad
NYLAFIL F3/15 NYLCN FOAM/15\% GLASS ELBER	FBia	1.76	- 03				Fuas
	GTH	-60	-13				PuAa
P-17 POLYUKETHANE GOAM 0.062 THICK White	GTE	.49	- 08	16H	100	A IK	Fuar Laípek

SECTION 7 -- FUAMS

SECTION 7 -- FOAMS

SECTION 8 －GLEASES LUEKICANIS

MATEEIAL	MFR CODE	＊TML	SCVCM	$\begin{aligned} & \text { CUnE } \\ & \text { TIME } \end{aligned}$	CUEE	ATinus	
AEEODAG G COLLCIIAL GRAPHITE／LSOPROPYL ALCOHOL	ACl	1.78	． 11	24d	25	A IN	」Uひくルait
AERODAG G CULLOILAL GEAPHITE／ISOPROPYL ALCOHOL	ACH	2.05	． 04	24 H	0	AIK	LU山以上CANT
AEROLAG G COLL	ACH	4.97	－ 19	2411	23	AIa	Lubidcant
APIEZON C OIL VACUUM DEGASSED	Bid	81.19	47.47	1 d	6	E－2	
APIEZUN H HYDLOCAEECN GREASE	BID	－ 25	． 02				
APIERCN L GREASE VECUUM UEGASSED	BID	． 34	． 21	1\％	05	E－2	GuLucicant
APIERON N GEEASE	BID	． 08	－ 30				Gacaji
apIE2ON T GREASE	EID	． 76	－ 12				ckicabe
BLACK MAGIC MOLY SERAY／FOLL－AEEOSOL MQS2	SP_{8}	－ 27	． 02	24 H	25	A In	
BRAYCO 813 CLCAE CIL BATCBEEIA3	BOC BOC	.74 .03	－ 03				LUuAdLaNT
BEAYCUTE 3I－38 GEEASE BATCH DLDI WHITE	BOC	.07	.03				¢\＃¢aSt
BEAYCOTE 3L－38 GEEASE WHITE	BOC	.07	． 03	7H	100	$2=0$	hJouilant
BRAYCOTE 3L－38－MS GEEASE BATCH DLG1 GKAY	BOC	－ 04	.01				G世的
BRAYCUTE 3L－38－KP GREASE BATCH CLT 7 IELLOW	BOC	． 09	－04				GMeAS
	BOC BOC	．02	.01 013				Lusamatiant
	CIP	． 54	－ 09	20 M	177	AIs	LuSastant
				24H	121	E－S	
Ć－ 1103 SILICONE GEEASE	DCC	.17	$\begin{array}{r} 000 \\ -27 \end{array}$				GXeasc
DPI－SLIP POWDEREL LUBEICANT－AEROSOL	BMM	10.73	4.60				Lubuichat
DaILUBE 822 FLUOEUSILICONE LUBRICATING GEEASE	DHi	6.51	2.47				LJDKıANT
EZCOSLIP TK－24 LCW FRICTION EPOXY	EMC	.40	． 00		60		LYUAX LUBE
				1H	80	A İs	
				24H	116	AIa	
EKYCEL WR－25 AROMATIC SOLYESTER／TFE BLEND TAN	CRE ROG	.011 1.94	． 00				
ENVEX 1000	ROG	1.74	$\bigcirc 01$	24 n	204	Ala	
LNVEX 1000 X	ROG	1.87	.01	24H	204	Als	beinazus Mati
ENVEX 1000X POLYIMIDE	HOG	1.83	－ 0				BGAELAG AATL
ENVEX 1115	ROG ROG	1.87 1.29	－03	24H	204	AId	BEAMASGG MATL
ENVEX 1228	ROG	1.29	－ 00	241	204	Ala	DLAKING MATL
ENVEX 1228	ROG	1.25	－ 02	24i	204	A In	¢EAACNG MATL
ENVEX 1315	ROG	2.03	－00				ВEAKAMG वATL
ENVEX ${ }^{1315}$（UCKEM DRY FILA LOBRICANT AEKOSOL	ROG	15.05	7.02	${ }^{24} \mathrm{D}$	204	${ }_{A} \mathrm{Im}$	DLaming Mith
FLUOROGLIDE PB AERCSCL DRY FILM LUERICANT／F	CHE	9.49	3.09	7 D	25	AIn	cubicant
PLDOROSINT 500 MICA FILLED TFE	PPC	． 05	． 00				BCAasNG MATL
GE 1147 HETHYL ALKYL SILICONE LUBE OLL	GEC	4．28	2.41				U1L
HI－VAC GEEASE	${ }_{\text {DCC }}$	1．${ }^{2}$	－34				buballant／GEEASE
JJINT COMPOUND SOCCNY MOBIL TEMP 1 GEEASE	TBT	3.82	1.74				UnEASE
KRYTOX 143 AB IUEEICATING OIL DEVOL AT 93 C	DuP	28.93	13.03				OLio
KRYTOX 143 AX PLUOKOALKYLPOLYETHER LUBEICATING OIL	Dup	28.54	5.71				$0 \sim 1$
KRYTOX $240 A C$ FLUCRCCAMBON GREASE（ $143 A C$ OLL／TEFLON）	DUP		3.00				Au¢ANAN
LOBRI－BONL K SOLID FILM LUERICANT MOS $2 / F$	EFI	1． 918	．15	24 H	25	${ }_{\text {AIM }}^{\text {AIM }}$	LUJiballant Fibu
				11	80	A Ia	
LUBELPLATE 630 A	FIS	31.00	14.59				LUDALCANT／GAEASE
HOLYKOTE G－N PASTE GRAY	DCC	51.76	4.82				bubailant

Matabial	MFR CODE	8TiL	5 CVCM	$\begin{aligned} & \text { CURE } \\ & \text { TIME } \end{aligned}$	$\begin{aligned} & \text { CUEB } \\ & \text { TEMP } \end{aligned}$	A 1	ArPLICATICN
GOLYKOTE GREASL	LCC						
MS - 122 FiUOROCAKBCE DRY LUEAICANI - AEROSOL	MSI	13.19	1.25 6.76				Lubailant
NYE 183 SPECIAL OIL FOR BEARING LUBEICATIUN	NYE	17.07	11.46				Colstcant
HOYCO 43 GREASE EEF MIL G4343B	DCC	85.77	15.05				GKeasc
EF EUROIL 4300 hEIAFCECED TEFLON PTEE	Kug	85.01	15.30				bubkilant
RJLCN A TEFLON FILIED bEARING MATEEIAL	D14	- 00	.00				beadiau matl
RJICN B TEELON FIIIED BEARING MATERIAL	DIX	. 00	-00				טEANL心G MATL
HULON C TEFLGA FILIEL BEAKING MAIEEIAL	DIX	. 00	-00				DEAKİG GATL
RJJLON ID TEFLON FILILED BEARING MATEAIAL	DIX	- 10	. 01				BEAEjug Matl
RJLON 123 TEFLON FILLED BEARING MatEKIAL	DIX	- 00	. 00				bíaugac hatl
SIL VER GOOP GIGH TEMP GREASE	CFC	2.48	. 62				CEAGEHGGALL
TEXACO RB PKEMIU GREASE	TXI	37.82	22.77				LUSHICAAT
THAASLUBE 20204 LUERICANT FILM	JSP	9.13	5.88	30M	121	AIR	bJJHACaNT PILa
	JSp	5.29	2.27				LUS的 $16 \pm$ NT FIIM
VESPEL SP-1-D-1 ECIYIAIDE RESIN GAAPHITE/10\% TEFLOX	DUP	. 58	-01				SULI ${ }^{\text {S }}$
VESPEL SP-21-J-1 PCLYIMIUE/15\% GGAPHITE	DUE	- 52	.01				SULAD LUBE
VESPEL SP-22-D-1 FCLYI HIDE/GRAPHITE AS 60/40 BE	DUP	- 57	-00				SULAD LUBE
VİDAL TUOL ELUORGTELEMEK HOS2 FCRMERLY SP-31-D-1	DUP DUP	. 54	-01				SULID LUBE

SELTLON $9-$ LAEING TAPE \mathcal{E} CORD CABLE TIES

		兂	8rii	зıçan	$\xrightarrow{\text { cind }}$	cive	-100	-
					${ }_{24}^{34}$ 24H 1H 		ceind	

haterial	$\begin{aligned} & \mathrm{MPR} \\ & \text { CODE } \end{aligned}$	\％TML	\％CVCM	$\begin{aligned} & \text { CURE } \\ & \text { IME } \end{aligned}$	$\begin{aligned} & \text { CURE } \\ & \text { te } \end{aligned}$	AT11	ABPLICATION
LACING TAPE PBI STYLE 1330 UNCOATED	GBE						
LACING TAPE PBI STYIE 1330VC VITON CUATED	GBE	6． 6.98	－0 0				LACIN TAPE
LACING TAPE SR MYLCN	$\mathrm{HHS}^{\text {H }}$	2.79	－ 12				LaCi mo tate
LACING TAPE STUh－D－LSCER 18 DB DACEON NYLON WHITE	HB	1.21	－ 18				Látdic TAFE
LACING TAPE SIJR－D－LACE 18 DH SCOURED LOT $30378{ }^{\text {S }}$	GBE	－ 22	． 18	15M	149	AId	LACI do TAEE
LACING TAPE STUE－D－IACE 18DH SCOURED LOT 30378	GBE	－ 51	.01	15．	149	ALa	LACLA
LACING TAPE STUK－D－LACE 180 DP DACEON／PQLYCABBOMATE	GBE	2． 17	1.27				Lacing TAtE
LaCING TAPE SIUK－D－LACE 18 DPT SCOURED PRUD SAMPLE	GBE	－ 14	－02				LaCl ${ }_{\text {du }}$ TAEE
LICING TAPE SUPEK－GUDE－SPACE DPT－H SCQURED DACRON	GBE	－13	－0				LACLAS TAPE
LACING TAPE SDPER－GUDE－SPACE DPT－H SCQURED DACRON	GBE	－ 38	．04				LALIMG FAEE
LACING TAPE TEFGLAS 9OLOP13A FIBERGLAS／TEPLON WHITE	GPC	－． 43	． 05				LACL MG TAFE
LACING TAPE TEMP－LACE H231H TEPLON BEAID／SYM EUBBER	GBE	． 36	． 02				LALING TAPE
LACING TAPE TEAP－LACE H256\％TEFLON BEAID／SYN RUBBER	GBE	－ 24	.05				Lacidu Tape
LACING TAPE TGG－40 ACE R	GBE	－ 24	－． 0				Lacis ${ }^{\text {da }}$ TAPE
NYLOA 6 BLACK CABLE CLABP－WECKESSER	BEK	－ 50	－20	24i			Lacin TAEE
PA－TY CABLE MOUAT	PAN	.63	－04	24i	12 ，	AIK	CABLE Clamp
PAN－TY CABLE TIE	gan	3．44	－01				Cancie ije
PAB－TY CABLE TIE IIGAT BROWN	PAN	3.13	.01				Cable TIE
PAN TYY CABLE TIE HALAR HARCON	PAN	－21	－01				Cadet TES
PAN－TY CABLE TIE NYLON NATURAL	PAN	1.73	.02				Cavie LEE
SECUR－A－TIE CABLETIE NYLON	ONN	2.88	－0				Casle E TE
STA－STRAP SST CABLE TIE NATURAL NYLOA ETHANOL MASH	PAN	3． 25	－01				cader 15
T－ 10 NYLQN WIRE SDEPURT	TBT	1.59	－00				Suktuctir
T－ 101 TY－EAP YYICS CABLE RETAINER	TBT	1.08	． 02				CABLE HETAINEh
	TBT	1.11	． 01	4 ${ }^{\text {d }}$	125	A Ln	
	TBT	6.66	1.72				A Dicsty
T ${ }_{\text {T }}$	TBT	1.05	－01	48H	125	Hİ	CABAEL LAMP
T\％1112 TY－R AP NYLCNCABLE CLAMP	T TT	1.02	． 00				Canie tage
T $1112 \mathrm{~T}-\mathrm{BAP}$ SYLCN CABLE CLAMP	TBT	1.05	.01	48 BH	125	AIS	Cable clich
TV 818 TY－FAP NYLCN CABLE CLAAP	TBT	2.15	.02	16 h	50	ain	Cable Clame
T 828 TY－EAP HYICA MOUNTING PLATE	TBT	1.30	－ 01	24 H	125	A In	suvai miate
TIE 92 TY－RAP NYLCN CABLE CLAAP	TBT	1.18	－00	24 in	125	AIE	CHOAS CLAMP
TIE CORD E 761－1330 TFE TEPLON／GLASS	DIN	． 15	－05				TıE U Und
	DIN	－ 37	－11				TIE CUED
TP $=2 P A N D U T T$ NYLCN SUPRORT	DIAN	.09 1.89	． 01	180	100	A In	
TAINE－IIEEN－ 20 DIAM 3 PLY	LUD	2． 2.94	－24	108	100		Suptuir
TY 25M TY－RAP NYICB CABLE TIE	TBT	1.74	－ 05	10 n	100	AIK	cande
TY 254 TY－RAP TEFZEL CABLE TLE BLUE／GHEEN	2 BT	－ 10	－00				Casice
TI 34 M TY－GAP TEFLCN CABLE TIE	IBI	． 03	－ 00				
TY 46 H TY－KAP NYICA CABLE TIE	TBT	2.49	－02	24H	125	A Ia	çune TIE
TY 46 M TY－RAP NYLOA CABLE TIE	TBT	1.90	－00				Cable TIE
TY 4 6M TY－RAP NYLC CABLE TIE	TBT	1． 24	.01	24 H	125	AIK	Gabag
TY 5 TY－RAP ZYTEL 103 CABLE TIE	TBT	2.49	． 01				C゙ADEと T
TY 523 TY－RAP NYLCNCABLE TIE	TBT	1.85	.00	24H	125	AIR	Cadie TIE
	TBT						
TY－BAP MYLON	TBT	1.83	－ 00				Laca NGTAPE
	TbT	2.60	.00				ごASLETE

SEctiva 9 －－lacing rafe e coad cable ties
：

（1）

 material

matebial	IFB CUDE	粗HL	\％CVCM	COKE TIHE	$\begin{aligned} & \text { CURE } \\ & \text { TEMP } \end{aligned}$	ATAOS	ALPLICATIUN
AEALDITE MY750／HY2 19／DY219／TEXOGLASS 460	CIB	7.55	． 01	30 H	25	A İ	LAdLam
BALL BEARING CAGE IINEN／PHENOLIC－BaTRACTED	SYN	2．85	． 00				STEUCOURAL
CIRCUIT BOABD COBECSITE NRMA G10 MICA／CE 1150	RCA	． 48	－ 01				Cincurf buand
COAST EPGXY PKEPEEG F161－83－1PU8／20	CHS	． 66	－12	2H	163	${ }_{\text {A }}^{\text {a }}$ If	AUa FiLia
				2 ${ }^{\text {H }}$	149	$A I_{a}$	
				2H	204	AIE	
COAST EPOXY／GLASS EFEPREG F161－83－1PU8／20	CMS	． 29	－01	165M	163	AIs	LaAL MATE
CONVAIR GRAPHITE／EEOXY／SI203／ALUHINUA	GDC	． 54	.01				UUAFUSITE
CYCCM 950－S2 EPCXY／GLASS	ACC	.49	－01	1H	60	E－2	STHUCTUEAL
CYCOM 985－T300 GFAEHITE／EPOXY	ACC	－ 37	.01	$1 \mathrm{H}^{5 H}$	138 121	${ }_{\mathrm{E}}^{\mathrm{P}} \mathrm{S}$－${ }^{2}$	SExuClunal
E－720 EPOXY／FIbEhGIASS LAMINATL－POITING FOEMS	SPI	． 54	． 04	2H	177	PSL	CAMLMATE
EPOXY FIBEEGIASS ECOH CYLINDEK	PLI	． 24	－05				Laminate
FIBERGLASS	FLC	1.88	－97	904	121	$\mathrm{B}-2$	Caitisate
FLBERITE HY－E $1076 E$ E2OXY GRAPHI IE LAMINATE	FIB	－50	－ 00	2 H	177	AIK	Latidate
PLBEGITE HY－E－1334A ERUXY／GRAPHITE LAYUP	FIB	－ 81	－0	2 H	177	E－3	Lam 1 NA＇E
FLAEBANTG GLEEGAY／FIBERGLAS	TANS	． 64	－03				LAALMATE
GOUDYEAK GEAPHITEFIBEK EPOXY COMPOSITE	GAC	． 55	－04				Slauciukal
GOODIEAR GRAPGITE EIEEF EPOXI COMPUSLTE／FH 1 U00	GAC	． 82	． 15	24H	121	E－3	Scructural
GRAPHITE FIBEE EEIAFOECED POLIMER HEECUL ES 2002 C	HER	． 48	． 01	6 H	149	E－4	Stmucidaal
GF 5500 COPPER FOIL／EYLAR LAHINATE ONE SIDE	GTS	． 05	.04				LAML MAPE
GY－70／X－30 GEAPHITE EPOXY COMPOSITE	GDC	－ 46	－01				Shtuct ikat
GY－70／5208 GRAPRITE EPOXY COMPOSITE	iicN	． 53	.01	24	177	AIn	Laticmate
GY－70／5209 GRAPHITF EROXY COMPOSITE	HCN	－ 18	－01	2H	177	${ }_{\mathrm{A}}^{\mathrm{A}} \mathrm{Im}$	LAGA NATE
HEXCEL Fi74－120 GLASS CLOTH／POLYIMIDE PRE PREG 7CUKE	HEX	.40	－ 00				LAMtNaIE
HN 7 IINEAR POLAKILEF LAMINATE	POC	2.90	－01				LatimatE
HONEYCCME HKF $176 / 34$ EPOXY／GEAPHITE $/$／FM 73 M ADH	F1B	1.62	－ 3				SFAUCIJKAL
HONEYCGMB SPECIAI COMPOSITE EPON 828／FIBERGLAS／PLUS	FAD	1.27	－ 41				HUNUYLUEB
㫙H－10 NYLOU／PHENCIIC HONEYCOMB CORE	HEX	2.74	－ 00				HUAEXCOAB
JF 100 Chill	LNP	－．64	－ 13				MOLİ C END
KEVLAR 120／NAEMCC E517 STRJCTUKAL COMROSIIE	TRH	1.33	． 00	45M	121	ESI	Lathataic
KEVLAK $49 / 2 \mathrm{~K} 8601$ EESIN PRE－PREG	FBC	4． 51	2.20	2 H	121	E－2	Pat eneg
KPL 4036 ACETAL／ 30% GLASS／15\％TFE	LNP	． 26	－02				STEUCTURAL
KFL 4536 ACETAL／ 30% GLASS／15\％TEE／SILICONE	LNP	－ 35	－ 02				STRUCRJRAL
	ANP	． 53	． 01				STauviugal
LAMINATE AL－3137 FE TYPE FL－GF H／0 COPPER	ATL	－29	.00				Ladagiate
LAMINATE AL－3247 FE THIN W／0 COPPEK	ATL	． 42	－ 00	16	177	PSI	Latidal
LAKINATE AS－4／19C8 EPUKY／GRaPhlte	UER	． 11	． 01	$2{ }_{2}$	121	PSi	canldate
LAMIMATE AS－4／19C8 EPOXY／GEAPHITE	HER	－19	． 03	2H	149	PSI	Leaikate
	GEC	－25	－01				Lata dat e
LAMINATE E33 HIUAAL EYPE GF CUKLAh 5104／心LASS／FR4	FLC	． 62	.00	1H	177	PSL	Laditait
LAMINATE CE339 HRS EPOXY／GEAPHITE TUBE	GEK	－ 54	． 03				Sinuciugar
LAMINATE CRC GG8－1－3－1 RAPTON／COPPER ROLL／KAPTON	GMC	3． 19	．02				Ladinate
Laminate cotton filied phenolic	SYN	3.19	.01	8月	100	AIn	Siauciukal

SECTIUN 10 －－LAMINATES CIBCUit BUAhDS

	malegial	MFH CODE	施TM	名C゙VCM	CURE TIHC	$\begin{aligned} & \text { CURE } \\ & \text { TEMR } \end{aligned}$	AI 40 S	AKRLACATIUN
LAMINATE	CP－109A CMCHUPRED MOLDED CARACN PHENOLAC	HAV	4． 75	－ 00	4 H	149	${ }^{\text {a }}$ In	LnaidmTE
LGMINATE	C＇－109A Th TAPE RAPPED CARBQN PHENULIC	HAV	3.61	－0	4 H	149	i Ik	LAds Nat
LAMINATE	CUCLAD TEELUN／GLASS W／FURTIN ECO31PU3 AUH	MMM	－ 04	－ 01	45 N	177	AI_{4}	LAMANACE
LAMINATE	CUSTOA EAFYY TG TEFLUN／FIBERGLASS	CUM	－ 02	－01				Lamamage
Laminate	EPOXX FIbFEGLASS MULTIWIEE CKT DD	KOL	.43	． 02				LCDOAnd
La MINATE	EPOXY／EIEFRGLASS LOT $79-430 \div(M T)$	FER	1.04	． 23	2H	49 74	$\mathrm{P} \mathrm{SS}_{1}$	Huatexudb
LaMINATE	EPOXX／FIEFKGLASS LOA 79－4835（MT）	FELI	． 94	． 17	2 H	45	${ }_{2}{ }^{2} \mathrm{SS}_{5}$	dusioculib
LamINATE	ERUAY／FILERGLASS IYPE I 1 CLASS E GRADE 2	¢UA	－ 28	.01				Latamate
LAMINATE	EPOXY／EIEEKGLASS／MY74U／HY＜1Y／DX $19 / 1275$	MAS	－93	.00				LAM NAPE
LAMINATE	ERJXY／GLASS ULUE MIL－P13949／4A HULTALAYLE	MUP	－ 35	－ 01				
daminate	EPOAY／GLASS UNLGLASS STYL心 181	UNI	． 30	． 00	${ }_{10 \mathrm{H}}^{2 \mathrm{H}}$	1×1	$\frac{A}{A} I_{B}$	nadinale
LAMINATE	EPSILAK 10 MICaUMAVE SUBSTRATE W／O COPRER	MMM	． 04	－ 00				dama date
Laminate	FLEXIGLE EKINTED WIKING	SPA	－13	－00				Ladilaide
LAMINATE	FiG 652 E －11 EPOXX／FIBER心LASS／FLRE RETARD	MMM	－19	－ 00				LaHANALE
LAMINATE	FLG／EK－4 EC IOARD	USP	－ 32	－ 1				AACd＋NATE
LAMINATE		ATL	－ 12	－0． 0				Lamı ${ }^{\text {Lade }}$
LAMINATE	FR－4 -11 EEUXY／RIBEEGLASS	MCA	－ 31	.01				LaM NATE
LamINate	F161－83－1E08／20 EEOXY／FIBEEGLASS	UEX	． 27	－ 06				LAMINALE
LAMINATE	G－10 BLACK EPOXY FIDERGLASS	ATL	－ 30	－ 01				$\square A M \perp M A D E$
LAMINATE	G－10 EPCXI／FIBER GLASS	MCA	－48	－ 01				Ladinaze
LAMINATE	G－10 TC MIL P13949－NURPLEA	UOF	－ 93	－ 01				Laminate
LAMINATE	G－10 UC MIL P13949 WESTINGHUUSE	WEC	－42	－ 03				LaML NatE
LAMINATS	G－11 UEC－111 EPUXY／GIBERGLASS	SYN	－ 59	.00				LaMa NALE
LAMINATE	GE 11 EzUXY／FIBERGLASS	GEC	－43	－ 01				LaML wite
LAMINATE	GEE MIL E18117 BLUE EPOXY／GLASS	GEC	－ 33	－02				Lama Nate
LAMINATE	GEE TY MII P18177 EPOXY／FIBERGLASS	GEC	－ 52	－ 00				Latin NALECOP
LAMINATE	GEE－FECH3CO hESIN ERUXY／EIBEKGLASS－DLACK	PFP	． 614	.01				PMCMLAMGE COP
LAM1 AATE	G13 ESIIAGLUUSE $65 \mathrm{~m} 25 \mathrm{FH}-4$ FLAME RETARDANT	WEC	． 34	.00				LaM」 Mate
LAMINate	HCNEYCOML KEVLAK／EPOXY／FM 123－2	PAK	1.88	10	$1{ }^{1}$	121	PSt	Siduccuad
LAMINATE	EY1534／934 GKAPdLTE EPOXY	GDC	－ 29	． 00	85	121	PS1	Ladidile
			． 01	－00	2 H	177	dIk	haminaje
LAMINATE	K－50S ${ }^{\text {C／AF }} 46$ FILM ADHESIVE	MMM	－0， 0	－ 01	90 C	166	PSI	LAMLAATE
LAMINATE	Kapton micapsulated copper	DUP	－39	－ 01				Lami Nafe
LAMINATE	KEVLAH／EPCXI	GEV	3.33	－ 12				LAdidate
LAMINATE	KEVLAK／EFCXY	GEV	1．79	． 02	24H	125	A Ifi	LAM NATE
LAMINATE	KCVLAK EFCXY ${ }_{\text {K }}$ STYLE 181	GEV	2.94 2.10	． 06			$\stackrel{+}{5}$	LAMIUACE
LAMINATE	KEVLAR／EPCXI STYLE 181	GDC	2.10	． 01	$2{ }^{8}$	121	${ }_{\text {P }}^{\text {P }}$ SI	Lamanate
LAMINATE	LXO501 FLEAIBLE W／COPPEG	MMM	． 43	． 17				Ladisale
LAMINATE	MICAPLY EG 8J2 TYPE GF M／O COPPEK	MCA	－41	． 02	9031	171	PSï	LAMAAALE
LAMINATE	MICAPLY FG 402 UNCLAD	MCA	－ 91	－0				CHaLMATE
LAMINATE		MCA	－ 38	－03				Ladiadte
LAMINATE	MICAPLY 102－11／G－10 EpOXY／GLASS	WEC	． 44	－ 00	8JM	103	PSL_{1}	LAMI AALE
Laminate	MICAPLY 1C2－28M FR－4 EPOXY／心LASS PRE－EREG	MCA	－3y	． 02	1 d	188	PSI	Lamlate

SECTION 10 －－LAMINATES CIRCUIT bOARDS

material	HFh CODE	STML	\％CVC．	$\begin{aligned} & \text { CURE } \\ & \text { TIME } \end{aligned}$	$\begin{aligned} & \text { CUEE } \\ & \text { TEBP } \end{aligned}$	ataus	AEPLICATIC
LAMINATE MICAPLY 102－69 B－STAGE PRE PREG	MCA	2.11	1.09				
LAMINATE MICAPLY 818 T W／0 COPPER GREEN	MCA	． 36	． 000				Laminale
LAMINATE MICAETA 6 SM50－22 LIGHT UREEN	WEC	－ 28	.00				Lami Matic
LAMINATE MULTI－LAYER PER MIL P55617 555636 P 13949	TCI	－ 32	－ 00				Lambiate
LAEINATE HULTIEIEE PC BOARL	KOL	－ 03	－01				YCowahd
LAMINATE N－105 EECXY／GLASS FL－GF FE－4 W／O COPEER	$\triangle \mathrm{MCO}$	－25	－ 00				LAA \rightarrow A 1 E
LAMINATE N－205 EEOXY GLASS FL－GP FR－4 H／O COPPER	NCO	－ 24	． 01				LaidiamTE
LAMINATE H－4 105 EPCAY／GLASS FLEXIBLE GLASS COPPER	NCO	－ 30	－00				Caminate
LAMINATE NARMこO $32 \mathrm{C} 3-120$ EPOXX／GLASS 10 COREER	NCN	－29	－0 0	900	127		Ladinate
LAMINATE NARMCO 3203－1581 EPOXY／ELASS	HCN	． 32	－ 01	90.1	127	${ }_{\text {P }}$	hatinat
LAEINATE HAEMCO 8517 EPOXY／GLASS	BCN	． 47	.00			P	Lamerat
LAMINATE NEMA FR－4E EY GE H／0 COPPER	GEC	． 23	－00				Lachanate
LAMINATE NEHA G－10 GEC 500E EPOXY／FIEER GLASS	SYN	． 38	． 00				Lamindie
LAEINATE NEMA G10 hESTINGHOUSE 65M27－S－12 NO COPPER	WEC	． 11	． 00				cinatrat
	WEC	． 06	－01				LAMiNale
LAMINATE NEMA G7 GIASS FABRIC／SILICONE	SIN	． 09	． 02				Laint Nat
LAMINATE NEMA／FR－4 MSR1000 SOLDER RESIST FILH	AUG	－ 12	－ 02	5	135	AIN	LAML Mate／RESISi
Laminate nve FiAhe Eetardant Red marking ila cua	$\stackrel{\sim}{\text { V }}$.38	－00				Ladi hat
LAMINATE NVP G－10 CREEN MARKING	NVF	.49	－00				Lagat Hate
	SYN	2.47	.00				Ladidmat
LAMINATE PBI ON 10E－E GLASS CLOTG（PQLYBENZIMIDAZOLE）	HCN	2.77	－ 00	$?$	454	AIn	Lasi Mate
LAMINATE EC BJAED IREADIATED POLYOLEFIN	SAS	． 29	－ 07				
LA MINATE PGEBOLIC／FIBERGLASS PREPREG	VAC	－ 68	． 01				Lasinate
LAMINATE PARYISIDGE EPOXY GRAPHITE	OSP	－48	－01				Ladinate
LAMINATE SHIM ALUMINA	ART	.05	.00				LAat date
LAGINATE SUX Shale al－Kapton／7366 tale／ag－terlon－cta	GSC	－ 58	－10	48i	143	E－0	Sinichu
LAMINATE SUN SHADEAL－KAPTON／7366 TARE／AG－TEFLON－EDG	GSC	． 52	． 06	48 H	343	E－0	Si」tud
LAMINATE TLGI MUITI－AAYEK	HOL	1． 12	－ 00				Ladisale
LAMINATE TUFAOL GEADE OF／4S FABRIC／ELQXI CREAH COLOR	TUF	2． 33	－ 00				＋Aminate
LAMINATE TYPE，GF EFOXY／PIBERGLAS	${ }_{F} \mathrm{FLC}$	－ 20	00				Lambate
LAMINATE V－378A／HMG EPOXY／GEAPHITE	USP	－ 50	－ 01				bial nate
LAMINATE VECTORBOAFD 8JG2 MEE GLASS／EPOXY	VEC	.45	－01				LCumbint
LAMINATE WBC 3201 C UM 112 GLASS CLOTH EPOXY RESIN	FEA	－17	.01	1H	163	dim	Laghatas
LAMINATE 日ESTINGHCOSE EPOXY／RIBERGLASS	WEC			2H	177	AIE	
LAMINATE PLI	YLI		.00				Pusiderice
LAMINATE 55589 E 028 SILICONE／FIBEEGLASS	KCP	1.69	－46				
LAMINATE 602 TEFLC F FIbERGLASS 0 O COPPER	${ }^{\text {ATL }}$	． 01	－ 00				Coduaju
Larc 160 ghaphite／EOLYIGIDE Laminate 5 Step pustcure	LBC	． 83	－ 00	1 H	177	E－	－mil 1 HATE
LOUVER－H 1 －TEAP HCNEYCOMB NABMCO 550／120 EFCMY／GLASS PEE－PREG	UTC UCN	1.43 .69	－01	901			LuUVEATE
NARHCO 550\％1581 EECXY PEE－PEEG	WCN	.69 .60	．06	9011 901	125 120	AIn	LAELIATE LamINatz
NELCO 11－4205－2 E－GLASS FE4 FABEIC／EPQSY COATED	NCO	． 29	． 00	－ 2 B	180	A ${ }_{\text {A }}$	HuLaLG FABEIC
				2 H	163	AIA	HuEaLG FABAIC
PHENOLIC SOD PEA MLRP－79C GEADE NA TYPE FBE	ATP	3.010	－． 04	75M	163	PSi	ADa hamINATE
QOTTING CUP	DBH^{\prime}	． .62	－01	4H	135	AIk	Lamimai

SECIIOA 10 －LAMINATES CIRCUII BOARDS

Mat enicha	Mジィ CODE	枵以	\％CVCM	CUK゙心 TIKE	CURE TEMZ	ATMUS	AKHLCATICN
	DUs	． 52	.00	30 M	177	$\mathrm{p}_{2} \mathrm{~S}_{1}$	Lancall
PYRALIN 3 POLYIAIDE PAEPREG	DUP	2． 37	.07	$2{ }_{2}^{2 H}$	260 177	${ }_{2} 2 \mathrm{SSI}_{1}$	Latst dactis
PYRALUX CCPPEE CIAL 2 SIDES 5．5 MILS THICK	DUP	． 14	.00	1 H	177	A Lk	Ladsivas
RFL 4536 NYLON $6 / 6$ \％／30\％GLASS／1 5% TFE／SILICONE	LNP	1.17	－ 17				S¢aUL゙JRaL
ZIGIEASIP 19010－1 LAMINATE ONLY	BAK	． 57	－ 00				¢AGANATE
RL 4540 NYLON 6／6 K／20\％TEE／SILICONE	LNP	1．40	－${ }^{1} 7$				
	KOG	． 05	－ 00				LaMLNATE
RT CUEOID 60IN－LAMINATE	HOG	－ 33	－ 00				LatariatE
SII REZ 80／S GLASS FILAMENT WOUND COMPOSITE	SCL	． 22	． 03			A IK	SANL
				${ }_{3}^{4} \mathrm{H}$	107	AIM	
				$3 \mathrm{3H}$	177	AIn	
SOOTT POLYORETEANE FOAM／ALUM KAPTUN SANDWLCH LOUVER	SCT	2.84	－13				buUrsa SLADE
SOOTT POLYURETGANE FOAM／ALUM MYL AR SANDWICA	SCI	1． 28	－ 11	65 H		AIa	ISSULA 4 IC
S：OTT POLYURETHANE FOMG／ALUH MYLAK SANDWICH	SCT	1.20	．099	24 CH	120	边	Lususailun
SKYBOND 703 GEAPHITE／POLYIMIDELAMINATE 3 STEP PCURE	HON	． 30	－ 01	1H	177	PSi	LaMs NAIE
STAND－OFF G－10 EFCXY／GLASS COMPOSITION	BPS	－10	． 00				SiAND－UFF
V 378 GRAPHITE／PCLYIMIDE LAMINATE 2 S＇LEP POSRCURE	USP	.60	． 01	30 d	$\stackrel{827}{177}$	PSi	
XP1－MC－154 POLYIMIIE	ACC	1.14	.01				つ\＆xulidat

matesial	MFB CODE	8TML	\%CVCH	CUBE TIME	$\begin{aligned} & \text { CURE } \\ & \text { TEMP } \end{aligned}$	A 1	ASPLICATION
3EADY FILH L $363-\varepsilon 1 \mathrm{~A} / \mathrm{SLLICONE}$ ADHESIVE/F	WHB	1. 17					
BRADY FILM L $363-\varepsilon 14 /$ SILICONE ADHESIVE/F	WAB	. 84	-38	24H	150	A In	LADEL ELLEA
BRADY FILM L363-EIE/SILICONE ADHESLVE/F	$\cdots{ }^{*} \mathrm{~B}$	1.82	-48	24		AIn	Lascl film
BRADY FILY $2303-81 \mathrm{E} / \mathrm{SILICONE}$ ADHESIVE/F	HHB	. 86	- 34	24H	150	A In	Labe'L EILG
BRADY HI-TEMP LAEELS ACBYLIC/ACRYLIC ADH/E	WHB	6.30	-90				Laveit cilm
BXADY LABEL B-637 YELLOM/BLACK TEDLAK/ACRYLIC ADH/F	WHE	3.10	1.07				Lácici
BaADY LABEL B-927 hdig $/$ BLACN/E	WHi3	1.86	. 05				Ladid
BRADY MAEKERS AF-A-2-CAP POLYESTER ADH	HB	1.01	-11				
BRADI MARKERS B-40C TDS-400-1	\%HB	1.20	- 38				diAntia
	WHB	1.80	- 26				dadata
BRADY MAKKEkS B -70C VaM 1-33	$\cdots \mathrm{HB}$	$\underline{2.21}$	- 34				Maskem
BRADY BARKERS $B-70 \leq / \mathrm{F}$	WHE	1.75	.45				Gaghek
BRADY MAEKERS $\mathrm{B}-702 / \mathrm{F}$	${ }_{6} \mathrm{HB}$. 74	-26	48H	125	E-S	Giamaca
B3ADY HAEKERS L-95 hT-200	WHE	1.66	-23	48 H	125	-	Hankea
BEADY MARKEES D-953 HT-200/F	$w 1 i \mathrm{~B}$. 81	-02	24.1	100	A In	dacina
Brady parma code ilabels ${ }^{\text {SRADECLIAL }}$	ni ${ }^{\text {n }}$. 52	- 06				Lives
	CIH	11.08	3.36			A In	LA C cis
$\mathrm{C}-917 \mathrm{MS}$ ELACK I (K, F	CIH	8.91	-. 29	7 D	25	AIL	LNG
C-9 17 HS ELACK IAK/F	CIL	8.12	- 08	24 h	60	AIn	tań
C-917 MS BLACK IAK, F HEAT GUN DEY				$7 \mathrm{7d}$	25	${ }_{\text {A Ia }}$	
CHEMGLAZE 2004 h/10ฎ P-82 RED COLOE PASTE	HCC	6.17	3.20	140	25	AIn	INKKKAG INK
CHEMGLAZE 2004 H/SJ CAROMIC OXIDEPIGNENT	HCC	2.29	- 03	70	25	${ }_{\text {A }}^{\text {A }} \mathrm{I}$	GAEKANG INK
CiEmGLAZE $2004 \mathrm{~h} / 5 \mathrm{~S}$ ChEOMIC OXIDE PIGMENT	HCC	. 83	.03	2 H	25	AIA	Daidinis Ink
CiEMGIAZE 2652 TILI GREEN GLOSS POLYugethane				18 C	60	A In	
CEEMGLAZE E953 HED YELLOW GLOSS POLYUEETHANE	HCC	2.57	.00	14 D	25	${ }_{\text {A }}^{\text {A }}$ In	
D= 92-007 EHITE SIIICONE INK/F	DCC	. 45	-14	1H	25	AIn	Maknisu INK ᄃ晾
				2 H	93	A In	
DECA-DKY DECAL CAREIER SHEET	CPI	8.39	1.51	4 H	149	A If	
DECATDRY LETTER LECALS	CPI	11.26	1.06				yccal laraler
EPON $815 / \mathrm{V} 140 / \mathrm{EMS} 175-E D$ AS SO/b0/5 BW WhITe EPOXY	SHL		. 07	3H	65	AIu	aicking ItK
FASCAL MARKING PLATES FOLL/INK/ADH/R	${ }^{\text {APP }}$	1.20	-08	J	65	AIS	Naditatate
FASCAL 710 CHKCEIZED POLYESTER/ACRYLIC ADH/R	APF	. 42	- 01				Nad́plàte
FASST MARKEG BLACKIEISH LABEL - WHITE	${ }_{\text {APP }}$	5.13	-87				Ladth
HANCO 1355 EGVEN BIACK OPACUE COATING/F	FED	15.75	3.52	7D	25	${ }_{\text {A }} \mathrm{I}_{\mathrm{n}}$	GABAEL
LABEL MAEKING	APK	16.85 5.36	2.12	24 H		AIB	dabkiois MTL
LABEL PRESSUKE SENSITIVE FOIL/F	TMC	+.93	2.11				Ladobia
HARKEM 7224 BLACK INK	MIN	3.12	. 08	24H	25	A_{18}	LaK
MARKEM 7224 GREEN INK 497-F				2H	121	${ }_{\text {AIf }}$	
MARKEM 7224 WHITE INK SLOA SOLVENT	MIN	1.88	-01	4 H	121	AIf	LiNK
MIRKEM 7227 MHITE INK FAST SOLVENT	MIN	1.22	-12	4 ${ }^{\text {H }}$	121	${ }_{\text {A }} \mathrm{I}$	INK
	MIN	9.64	-64	24 H	60	A Ia	1ak
MIRKEA 7252 EHITE INK FAST SOLVENT	MIN	5.34	-01	2 H	107	A In	2ik
MAEKEM 7254 BLACK TNK - PHENOLIC	HIN	4.27	-00		125	Aİ	Luk
MARKEM 7905 WHITE 1 NK A/B AS $2 / 1$ Bu	MIN	8.01	-02	7 D	25^{3}	AIf	INK
AfRKEOL 7905 Wiltee INK A/B AS $2 / 1 \mathrm{BW}$	BIN	3.50	. 02	2H	88	A Iis	Eix

SECTION 11 -- MARKING MATERIALS E INKS

Matekial	$\begin{aligned} & \triangle F E \\ & \mathrm{CODE} \end{aligned}$	\%T ML	¢CVCM	$\begin{aligned} & \text { CUKE } \\ & \text { TIME } \end{aligned}$	COHE	a TMus	arsulcaticin
MARKEM 7906 WHITE INK A/B AS 8.18/1 3 d	K1N	. 48	- 01	2 H	121	$A I_{K}$	1NK
MAKEM 8829 WHITE INK.	SIN	11.33	-13	72H	25	$\mathrm{a} \mathrm{I}_{\mathrm{a}}$	1 K
MARKERS MYLAE L- $124 / \mathrm{ELACK}$ INK	LEEN	2.33 .63	- 88				Matatuste
NAMEELATE ANOTU ALUMLNUM W/AUHON FOIL.	MEL	-10	-01				NAStELATE
NAMEFLATE PHOTOSENSITIVE ALUM/ANODIZED/SEALED	${ }^{M 2 C}$	- 10	- 00				Nadchiome
NAMEELATE PHOIOSENSITIVE ALUN/ANCDIZED/SEALED BLACK	MPC	. 11	. 00				Nidactuate
NAMEFLATE 3655 ELACK/ALUM FVC W/ADd/K	MMM	2.65	. 3 a				Didutate
PY RCAARKER HISI TEAP AHITE MAEKEK/P	TEM	2.83	-42	70	25	AIn	daknian
REDIMARK EELT GAEKER BLACK/F	DXN	18.40	6.62	7 D	25	A In	Mamacn
REDIMAEK FELT MAEKER RED/FEX ULUE/F	DXN	25.35 26.14	10.39	7D	25	AIE	
SANFORD MR SKETCH 200 GUELT TIP MARKLR	SAN	33.70	16.31				
SOOTCHCAL 8001 FED ALUM LABEL UNCUATLD	MMM	. 09	.00				COLA LABEL
S=OTCHCAL 8001 KED ALUM LABEL/COATING 3900	MMM	. 17	- 00				FU1L LABEL
S O TCHCAL 8001 RED ALUM LABEL/FILM 7730	M ${ }^{\text {H }}$	- 12	.01				PUAL LABEL
S OTCHCAL 8005 BLACK PHOTO SENSE FILM/ALUM/ADH/FOLL	MAM	- 12	- 01				UbCAm/MARKEK
S=OTCHCAL 8UJJ EbOIOSENS FILM/ALUM/ACRYLIC ADH	MMH	-10	. 00				DCCA
SOTCHCAL 8005 PROTOSENS FILM/ALUM/VINYLCUAT/ACR ADd	MMA	-19	-01				duLuLh LABEL
SOOTCHCAL 8009 BLUE ALUM LABEL UNCOATED 3900	MMM	-15	$\bullet 1$				KUAL LABEL
SOUTCHCAL 8009 LIUF LLUM LABEL/PILM 7730	HMM	- 14	.01				
SEOTCHCAL 8011 KED PHOTO SENSE FILM/ADH/FOIL	MAM	. 56	- 03				DECAL/GAAKER
SGOTCHCAL 8015 P HOJOSENS FILM/MYLAK/ACRYLIC ADH	${ }^{\text {MMA }}$	1. 57	-03				LECAA/GARKEK
	Ink	6. 31	.79	7 D	2)	A In	Hixakimaink
SPEED-O-EAYUE KEL CPAYUEING LIVUID	G $\mathrm{HB}^{\text {a }}$	5.72	- 00	24 H	25	A In	Aatialug PLUID
SUPER LAMICODS MAEKELS yFD PULYESTEA ADH	STK	2.09	- 21				dakKeys
TEC MARKING INK ELACK LOT $105 / \mathrm{F}$	SAN	16.10	1.84	7 D	25	AIg	INK
TECHEPEN GKEEN I AK FEUM TUBE	MTP	2. 215	1.72	24 H		a\|c	TGinc LABEL
THEEMOFLT ET $1800 / 1$ HL TMS WHLTE AEAT GUN SHRINK	RCC	-. 97	-06				danksa SLEEVE
THERMOFIT FT 18001 HT TMS WHITE MARKER SLEEVE	RCC	- 72	. 05	5 M	175	AIn	Sidk AK TUBING
UNIGLAZE C 1752 GhFEN EPOXY INK	U1C	5.21	- 11	2 H	85	${ }^{\text {A I }}$	Lan
UNIGLAZE 2010/9120 aS 3/1 3W Y LLLUW EPOXY INK	DIC	4.12	- 08	1 H	121	AIn	10以
UNIGLAZE $3005 / 9120$ AS $3 / 1$ EH RED EPOAY 1 NK	UIC	7.82	-12	1 H	121	A IK	InA
WORNOW CAT-L-INK 5C-100/CAT 20 AS $20 / 1$ BW WHITE	$\pm \mathrm{P}$	3.99	- 11	30 M	25	${ }_{\text {A }}^{\text {A }}$ İ	Livi
WORNOW CAT-L-INK 50-100/CAT Y/b0-900 THINNER WHITE/E	WR2	. 62	. 01	30 M 30 M	25 138	AIK	INK
WORNON CAT-L-INK 5C-121869/CAT 28 AS 20/1 By ALUA	WPF	10.94	. 05	${ }^{4} 30 \mathrm{M}$	149	A ${ }_{\text {A }}$	1NK
WOKNOM CAT-L-INK 50-300/CAT 20 aS $100 / 6.4$ Bht GREEN	WPP	8.76	- 18	30 M	25	AIK	IdA
WOKNOA CAT-L-INK 5C-407/CAT 20 AS $100 / 7.6$ BW BLUE		11.75 4.86	-09	2 H SD 1 H	65 25 93	AIK	
WORNOW [1-2-N REL/CAT 4J/T-1 THINNEK/E	WPP	. 40	. 02	1浐	25 149	AIM	L®K
HORNOW M-5-N GEEEN/CAT 45/T-1 THINNEK/F	hPP	. 44	. 02	4 H 3 H 15 M 4 H	149 259 149 149	Aİ AI AIN AIR	LSA

SECTION 11 - MARKING GATERIALS E INKS

Mat eriaj	$\begin{aligned} & \mathrm{HFR} \\ & \mathrm{CODE} \end{aligned}$	*TML	\% CVCis	$\begin{aligned} & \text { CURE } \\ & \text { TII } \end{aligned}$	$\begin{aligned} & \text { CURE } \\ & \text { TEMR } \end{aligned}$	a Inus	4
HOENOH SERIES H KEL INK H-2-N O. 5\% CAT A							
HORNOW SERIES A WHITE INK M-9ーN S. UX CAT	${ }_{W P}{ }^{\text {P }}$ P	9.94 4.63	-05	5 D 3 H	25	AIM	INK
HORNOWINK Y-O-N/CAI A AS 100/4 BW BLACK PBE-MIX INK				${ }_{75}{ }^{\text {72 }}$	51 25	E-G	
	HYS	5.93	-139	75 3 H	25 54	${ }_{\text {A }}^{\text {A }}$ IA ${ }_{\text {a }}$	Ing
HORNOHINK H-2-N/CAI B3 AS $100 / 4$ BUR EDEDEPOXY INK		6.07 4.20	-16	7 7	25	${ }_{\text {A }}{ }_{\text {I }}^{\text {a }}$	iank
HDRNOWIUK M-4-N/CAT 45 AS $20 / 1$ SW Y ELLOEPEPOXY	HYS	4.20 .84	+11 -19	38 18 1	54 25	${ }_{\text {AIS }}^{\text {AIS }}$	tink
	dYS	6.10 4.27	.11	4H 7 D 3 n	149 254 54	AIA A In A In	1sk
WORNOHIAK MOXC/CAI B AS 1/1 BW BLACK	${ }_{W}{ }^{\text {PP }}$	4.27 4.53	. 05	3 a 68	54 60	${ }_{\text {A }}^{\text {A İ }}$	$\begin{aligned} & \text { LAK } \\ & \text { INK } \end{aligned}$

SECTION $12-\infty$ MOLDLNG COAPUUNDS

material	1 CK CODE	-Tal	8CDCA	CURE TIME	CUnE IEMP	ATsuj	Asplecailon
ABS VACUUM MOLDEL CASING	SHE	1.13	- 1	6 M	204	E-L	CuLu LEND
ȦRYLAFIL G47/20 STY $/$ /ACEYLONITRLLE/FIB GLA AS 80/20	FBK	. 23	.00			-	UULD CEND
ACRYLAGLAS S40/35 STYRENE-ACGYLONITRILE/EIBEAi GLASS	PBK	- 22	.03				Buta 6
ADIPRENE L $83 / \mathrm{CAYTUG} 21$ AS $100 / 16$ Bit POLYURETUANE	DUE	7.01	4.96 .03	$2 \mathrm{2H}$	120 120	${ }_{\text {A }}^{\text {A }}$ La	MULU
ADIPRENE L83/CiyTug 21 as 10U/16 ím RQLYURETHANE	DUP	. 34	. 03	${ }^{2} \mathrm{H}$	120	AIn	Husas Letid
AF 1006 acky butallene styrene	L NP	- 20	. 01				SULOU LEND
AMD MCIDING COMPCUND AMSEA	AMP	. 51	- 0				MULD SD
AP3005 FAST CUEE EEUXY ACU-PAK PRE MIX	ALK	3. 90	- 21	24H	25	A IK	AUAESLVE
ARYLON T POLTAKYL ETGER NCLDED AT 260 C	MNC	-30	. 03				AULD CEND
ASTREL 360 POLYAEYI SULFUNE TAN	CR3	1.60	. 00				MUEN GEND
BP 1006 STYEENGACEYLANLNBILE	LNP	. 24	- 01				AULU LKND
BJSHING TYEE HPE MIL H-14 MICA FILLED ESENOLIC	GdI	. 98	.01				-USuInc
CAPBAA 512 H NYLON ASTI STATIC FILM	$\mathrm{hFP}^{\text {P }}$	6.01	- 12				oduciau
CELCON M-90-04 ACETAL COPOLYHER INJECTIUNPMOLDED	CNS	-. 04	.04				GuLN LPNJ
CP 10006 STYRENE/FIEER GLASS AS $70 / 30$	LNP	-10	.01				Avev ckid
CONNECTOR 2UBING ECLYPROPYLENE 20\% Gias fillied	JAC	- 26	. 04				cunadeco
	HYS	. 68	-00	2.5H	105	A Int	dutid - < do
DAE C2580-11BFH FAC - DAPON M	FMC	- 30	- 00				Quld - $\mathrm{SN}^{\text {di }}$
DAP SHORT GLASS FIEEK FILLED BLACK	ROC	- 44	-0 0				Mula CiNu
DEELRIN MCLDING CENL - PUSISTUR BS-1A-XX (ब̄7741).	DCC	. 12	-02	24H	.177	AIK	AULJ GENDPD
DELAIN 550 EUD - WITTE	DUP	. 39	-02				MuLu LeND
DEXSIL 201 - BOFCN, SILICA	CLI	- 07	- 00				AULOD LEND
DF 1006 POLYCAhBCNATE/FIBER GLASS AS 70/30	LNP	-14	- 00				Munu Leio
DJR-O-IITE	CBC	2.87	- 17				Mvin ceitu
ECCCHCID L-28 as 100112 BH	EMC	18 -189	.01	${ }^{6} 4 \mathrm{H}$	127	Aİ	Muhu LYdD
ECCOMOLD L<8/Э AS 100/12 BW	EMC	. 59	. 03	30 H 2 H	23	AIR	avide Cend
E=CCMCLD 77A EPOXY - GOLD 10M AT 163C A/PSI	EMC	- 32	. 07				MuLU LEND
ECOSOGB CR-117 X / Y as $100 / 2.3 \mathrm{Gm}$ DAKK GEAY EPUXY	EMC	. 20	.01	12 H	74	AIn	HULD CRAD
ECCOSOED Cu-110 X/Y AS 100/12 BW EPOXY	FMC	- 52	.00	$1{ }^{10 \mathrm{H}}$	25	${ }^{\text {A }}$ IG	dulu cesd
EKKCEL C-1000 AECMATIC COPOLYESTER BSOWN HIGH TENP EKKCEL I-2000 AECMATIC COPOLYESTER TAN HLGH TEMP	CRB CEB	- 20	- 00				AUKN LEND Aucol $2+$ Bi
ELTEN POLYETHERIMILE	GEC	.65	-01	30 M	316	A In	BULD $2 \times N D$
ES 7302 GLASS FILLED EPOXY	USP	. 48	-00	15 H	135	RSI	MULU LSND
EMC 115-E-1 ULASS/EPOKY	PAC	- 29	- 00		143	251	AULU LEND
EPIALL 1914 EROXY/CLASS - BLACK	$\mathrm{ACM}^{\text {a }}$. 47	-00	70	25	AIf	Hucio CPMD
EPOCAST 403-S-3	EPI	. 32	. 01	4M	163	A İ	HUwD - 5 ND
EPOCAST $461-008$ HIAERAL FILLEU EPOXY	RRI	. 48	- 09				MOLD C END
EXTREN 525 ERCXI	MMF	.85 .12	. 04				SLEUCUEAL
PR PEESTE FM 4005 GLASS REINFORCED PHENOLIC	LNP	1.60	-00				MULD CPAD
PLBERITE PK 4005 GLASS REINFORCED PHENOLIC	FIb	1.60	-	18H	103 100	${ }^{\text {A }} \mathrm{LH}$	MOLD UPND
FIBERITE FM-4005 GIASS REINFORCED RHENGLIC	FIB	2.07	. 01	54	140	PS1	4uiu Lxid
FY 4008 GLASS FIEEF/RGENOLIC BLACK	FIB	1.49	- 02	5M	166	PS1	MULL -PND
FJRADAFIL G80-20 ACETYL/FIBER GLASS AS 80/20 Bw	Fidi	. 44	-00				Mulu
FJRANE $8633-40$ GIASS GEINF CAKBON PILLED EPOXY	${ }_{6} \mathrm{FI}$	- 32	-00	6.	149	AIn	HOLD CPND
GA E-DUR CUR YEILOG	GAR	. 10	$\bullet .82$				AULu CPND

SECTION 12 －－MOLDING COMPOUNDS

Material	MFR CODE	\＄THL	\％CVCM	$\begin{aligned} & \text { CURE } \\ & \text { TIME } \end{aligned}$	$\begin{gathered} \text { CUAE } \\ \text { TEM? } \end{gathered}$	A TMUS	AsPLICATICN
GE 4524U SIEICONE	GEC	． 52	－ 18	25 M 8 H 8 H 8 H	163 121 121 121	$\begin{aligned} & A I_{n} \\ & E=0 \\ & E=0 \\ & E-0 \end{aligned}$	HUんD U゙PND
GEMCN 3010 THEEMCSET POLYIMIDE	GEC	－ 34	． 02				AULy L END
HATHANE $1002-60 \mathrm{DA}$ A B AS $2 / 1$ BV URET HANE	$\underset{H P C}{ }$	1.16	－0 0	24 H			MULD $T P N D$
datuane 1602－60d a，B as $2 / 1$ bV UkEIHANE	HPC	． 72	－0 1	24 H	25	AIH	HULL LPND
HF 1006 NYLON $11 /$ GIASS AS $70 / 30$	LNP	－37	． 02	24 H	60	A1．	MOLU $こ$ CRND
HJSTALEN GUR HIGG EOLECULAK TT POLYETHYLENE	A HF_{5}	.14	.02				MULN PND
IMPAX SH M／UHMEECIYMER－NATUKAL	IFI	． 22	． 03				Sakucturai
JP 1004 POLYEREEESLLFONE／GLASS AS E0／20 EW	LNP	． 59	－00				MUED GEND
JF 1008 POLYETHEGSULFUNE／GLASS AS $60 / 40$ BU BLACK	LNP	－49	－00				Mulu LPND
KE 1006 ACETAL／GIASS AS 70／30	LNP	． 27	． 01				MOLD CEND
KJB CXCOLAC 日LUE SE00 SERIES M／FIKE KETACDANT	BWC	1.06	－ 30				CAGD GUIDE
LAMINATE F550 EPCAY／CELIONT 3000 GRAPHITE CUMPOSITE	B ${ }^{\text {HEX }}$	． 81	.21	6H	121	PSI	Catid GUIDE
LEXAN 500 POLYCAEBCAATE	GEC	$\bullet 10$	－ 0	6	121	PSI	MULD
LEXAN 940 BLACK［IAL PLATE	GEC	－10	． 00				DIAL PLATE
MAI－60 MOLDING CENL－GRAY	$\triangle \mathrm{ACD}$	． 73	.04				HULU CPND
MAL－60 MCLDING CENI－GRAY 70130	ACD	－ 75	． 01	16H	100	A Iin	MULD $\mathrm{H}^{\text {P P }}$
MF 1006 EOLYPROPYIENE／GIASS AS $70 / 30$	LNY	－ 13	－03				NULD CPND
MG8Fi1 ELACA MOLDING COMPOUND	HYS	－22	． 01	$3 M$ 50	149 149	${ }_{\text {A }}^{\text {P }} \mathrm{I} \mathrm{H}$	HULD CPND
Hig F ACLDING CPNL－black			． 01	2M	149 149	${ }_{\text {A }} \mathrm{I} \mathrm{I}_{8}$	
NF 1006 PEO／FIBEF CLASS AS 70／30	LNP	－11	.01				HOLJ SKN
NORYL LN 265	${ }_{\mathrm{h}} \mathrm{PC}$	． 17	． 00				HULD CHXD
NJRYL N300 BLACK	WPC	－ 25	－ 0				BuLu CEND
NY LASINT 64 HY SINTEFED NYLON OI L RESERVUIK	PPC	． 73	－ 02				OI\＆EESERVOIR
NYLON CARD GUIDE EED CLAME RETARLANT	BIV	2.43	.03				GULU CPND
	SER	2.02	－ 03				SEAJCHAAL
HYLON 6／6 PC BD CHANNEL BLACK GLASS GILLED FLAME BET	TEK	1.09	.03				MULD CHED
PENTON CHLOLONATED ZOLYETHER	HEF	1.42	． 33				MOLD CPND
PGENAL 8000 PHEACLIC	$\underset{\text { A }}{\text { L }}$（ ${ }^{\text {P }}$	1． 1.18	－ 01				MULD SPND
PGENAL 8000 Phíaclic	ACM	1.18	－ 00	$\begin{aligned} & 5 \mathrm{H} \\ & 18 \mathrm{H} \end{aligned}$	$\begin{aligned} & 63 \\ & 00 \end{aligned}$	PSI	BOLU LEND
PHENALL 8000 PLEACIIC	ACM	1.34	－ 00	54	149	PSI	NULD $-2 N D$
PHENOLIC MOLD CPND PEE MIL M14－CEI－10 BLACK	FIB	4.82	－04				MULD CFND
PHENOLIC 76－0001－0¢／EROXY ANHYDRIDE 76－0001－10	SHE	3.29 .33	.07	16 H	150 150	AIK	MULD ESND
POLYCARBAFIL ${ }^{\text {S }} 50 / 2 C$ POLYCAİBONATE／EIBEK GLA AS $80 / 20$	FBK	－12	－00				MOLD CPND
PJITETHERSULFONE 2CUP THERMOPLASTIC	ICI	1.04	． 00				MULD SED
PJLYSET 521 BLACK	MNC	． 30	－00				NOLD CPND
POLYSTYRENE CO－EXTRUDED BLUE BOX	SHC	－ 50	． 09				HULD END
POLYSTYFENE CO－EATEUDED WHITL LNSERT	SHC	－ 28	－05				MULD LEND
POLYURETHAIE 9250 ERONN	DIC	1.83	－23				GULD CH
POREX ULTRA HIGH WFIGIiT YOLYETHYLENE HEAT PIPE WICK	POE	． 11	.01				Hicat SLPE WICK
PR 12U1－0 A B AS 1／10 BW POLYSULPIDE	PRC	36.32	2.78	72त	25	AIK	1U20 J KND
	P8CC	． 08	－10	${ }^{7} 1$	25	AIn	MULD CYND
Pa 1538 a／b AS $3</ 100$ bH POLYURETHANE	PRC	． 52	．us	144 H	60	AIE	Hunit u atd

SECTION 12 -.. MOLD ${ }^{2}$ NG COMPOUNDS

SECTION 12 －－molding compounds

MATERIAL．	MFR CODE	江ML	3 CVCH	$\begin{aligned} & \text { CURE } \\ & \text { TIUE } \end{aligned}$	$\begin{aligned} & \text { CURE } \\ & \text { TEMP } \end{aligned}$	ATHUS	axplicat
VESPEL SP－5 POLYIMIDE／30\％SHURT GLASS FIBEAS	DUP	49	． 00				CPND
VP 1007 PVC 35\％FIEEE GLASS	LNP	－30	－05				MUSL LEAD
伊 1000 THEEHOPIASTIC POLYESTER／Eİ̈ GLASS AS $70 / 30$	LNP	－19	－ 00				Hucu－${ }^{\text {den }}$
	LNP	1.06	－ 01				MOLD LKND
	LNP	－29	－0v				MOLD CPND
ZYTEL 101 L BLACK CCNNECTOB INSERT	DUP	2.31	． 03				Cutia casd
2YTEL 7010－33 NYIC EESIN	DUP	1.09	－00				CULD GPND
2YTEL 7110－13 HYLCA EESIN	DUP	1.28	． 01				时枵 LEND

SECTIOd 13 -- paints lacquefis Vaknishes

SECTION 13 -- PAINTS LACQUERS VAKNISHBS

material	MFB CODE	\$TML	\%CVCM	$\begin{aligned} & \text { CURE } \\ & \text { TIME } \end{aligned}$	$\begin{aligned} & \text { CURE } \\ & \text { TEMP } \end{aligned}$	ATM	AYPLICATION
CAT-a-IAC 473-3-1 A/B AS 3/1 BV Clean eruxy	FPC	9.02	.43	$\begin{aligned} & 1 \mathrm{H} \\ & \hline \mathrm{H} \end{aligned}$	25 60	ALk	cuadiag
CAT-A-LAC 473-3-1/X-304 AS 3/1 BW CLEAB EPOXY	EPC	4.36	- 24	$1{ }^{1}$	70	AIa	HaIal
CAT-A-LAC 643-1-1 ALUMINUM PAINT	FPC	2.35	- 19	100 H	43	AIN	PaLir
CHEMGLALE A276 HIGE GLOSS WHITE POLYURETHANE	${ }_{\mathrm{HCC}}$	1.67 2.25	-15	140	25	AIK	PatuT
CiEMGLALE A276 HIGE GLOSS WHITE POLYUEETHADE		2.25	. 02	70 16 H	825	AIR	PA1MT
CAEMGLAZE A276 HIGE GLOSS WHITE POLYURETHANE LOT TJd	HCC HCC	2.37 1.46	-10	140 70	25	${ }_{\text {A }}^{\text {A }}$ IR	$\begin{aligned} & \text { PALUT } \\ & \text { SALUT } \end{aligned}$
				16 H	85	AIf	
CHEMGLAZE A276 HIGE GLOSS MHITE POLYURETHANE/F	HCC iCC	1.87 .99	14 .08	280	25	AIR	
LHEMGLAZE H322 BLACK CONDUCTIVE PAINT POLYURETHANE	HCC	1.92	-07	481	96	E-6	
CHEAGLAZE H322 BLACK CUNDUCTIVE PAINH POLYURETHANE	HCC	. 86	-09	30 H	121	AIt	CuMd KAINT
CHEMGLAZE i30J LLACK CONDUCTIVE PAINT POLYURATHANE	$\mathrm{HCC}^{\text {c }}$	1.57	. 06	140	25	AIk	cuan raint
CIEHGLAZE TC $3692-74$ FLAT BLACK POLYUEETHANE LOT YEA	HCC	1. 18	.01	140	25	AIE	Halma
CHEMGLAZE TE 3692-74 FLAT BLACK YOLIURETHANE LOTADAC	HCC	1.07	. 02	14 D	25	AIx	P¢IUT
CHEMGLALE TS 2881-7 UV RESIST WHITE PQLYURETHANE	HCC	8.57	- 10	74 D	25	AIE	PAiwT
CGEMGLAZE TS 288 1-7 UV RESIST WHITE POLYURETHANE	HCC	4.50	- 22	30 M	2	AIm	Fainc
CHEMGLAZE SS 3107-13 FLAT ELACK POLYURETHANE LOT SHB	HCC	1. 30	. 02	14 D	25	${ }_{\text {A L }}^{\text {L }}$	Palus
CHEMGLAZE TS $3107-13$ FLAT BLACK POLYURETGANE LOT SIA	HCC	1.31	.02	14 D	25	A IK	Pains
CHEMGLAZE TS 3107-13 FLAT ELACK POLYUREIUANE LOT SKA	HCC	1.35	0.02	14 D	25	AIa	Paidi
CFEMGLAZE TS 3692-51 FLAT ELACK POLYURETHANE	$\mathrm{HCC}^{\text {c }}$	2.15	-20	140	25	A In	Pats
CHEMGLAZE TS $3692-54$ FLAT BLACK POLYURETIANE	HCC	1.23	. 02	14 D	25	A If	Paimu
CHEMGLAZE V200 GLOSSY MHITE POLYURETHANE PAIAT	HCC	2.73	- 17	140	25	AId	Paidm
CHEMGLAZE V200/9924 GLOSS WHITE POLYURETHANE PAINT/F	$\mathrm{HiCC}_{\mathrm{HCC}}$	1.52 .72	. 0.07	300 110	25 25	${ }_{\text {A }}^{\text {A }}$ In	¢aías S SYSTEM
				72 H	90	$\mathrm{E}-0$	
CHEMGLAZE V200/9989 AS 50/1.3 OH GLOSSY WHITE PALNT	HCC	6.03	-47	14 D	25	AIR	CALNT
CHEMGLAZE 209 GLOSS WHITE PGLYURETHANE PAINT LOTBHA	HCC	10.19	. 76	70	25	AIB	PALat
CHEMGLAZE VZOF GLOSS WHITE POLYUEETHANE PAINT LOTBHA	HCC HCC	9.97 8.46	- 56	30 D	25	AIB	PAINT
				24 H	60	E-O	
CHEMGLALE V209 Gioss mhity pulyukethanz paint lotbha	HCC	1.07	. 04	50	25	AIB	2¢1at
	HCC	5.48	. 23	48 H	25	AIE	PALur
CHEGGLAZE 2004 BLACK COND PAINT MOD POLYURETHANE	HCC	1.35		$7{ }^{24}$	100 25	A ${ }_{\text {A }}$	CUND EAINT
CHEMGLALE ZOO4 EIACK COND PAINT MOD POLYORETHANE	HCC	. 90	-04	7 D	25	${ }_{\text {A }} \mathrm{I}_{\text {d }}$	Cunu paint
				14 D	75	${ }^{\text {AIK }}$	
CHEMGLAZE $\triangle 04 / \sim C=72 \mathrm{E} / 9924$ PLIMER BLACK COND PAINT	HCS	1.40	.01	7 D	25	A $\mathrm{A} \mathrm{I}_{8}$	CUNA YAINT
CGEMGLAZE ZOO4/9924 FKIMEK COMPOSITE BLACK CCAD MOD	HCC	2.09			23	A IB	COMJ とAINT
CHEMGLAZE ZOO4/S S24 PELAEA COMPUSITE BLACK CEND MOD	HCC	1.24	.04	7 D	25	A Ia	cuns baint
				24 H	70	AIn	
CHEMGLAZE 2255 CHITE POLYURETHANE COATINGOU-16	HCC	2.60	- 02	7 D	25	AIf	PalN
CREMGLAZE 2302 GLCSSY BLACK POLYUEETHANE	HCC	2.39	-00	14 D	25	${ }_{\text {A }}^{\text {AK }}$	PAAMT
CHEMGLAZE 2306	HCC	1.12	. 05	210	25	AIA	Paidis
				24 H	100	E-3	
CAEMGLAZE 2300 Baich L11247	HCC	. 49	. 02	21 D	25	AIR	2414

SECTION 13 －－pAINTS LACQUERS VARNESiES

Material	$\begin{aligned} & \text { UFE } \\ & \text { CODE } \end{aligned}$	\％TML	\％CVCM	$\begin{aligned} & \text { CUKE } \\ & \text { TIHE } \end{aligned}$	$\begin{aligned} & \text { CURE } \\ & \text { TEMP } \end{aligned}$	A TriOS	arPhication
CIL－15 GLOSSY BLACF PAINT	CT L	2． 16	． 06	$\begin{aligned} & 30 \mathrm{M} \\ & 15 \mathrm{M} \end{aligned}$	25	$\begin{aligned} & \text { AI } \\ & \text { AI } \end{aligned}$	Paidal
				2 H	121	A 18	
CrL－15 GLOSSY BLACK PAINT THEEE COATS	CTL	1.81	．04	${ }_{10}^{4 H}$	120	AIK	
				1 H	100	AIE	
CTL－15 HidTE EPOXY PaINT HUGHES ACFT				2424	125	Aİ	
CUVERTIN 3 UG ELACK POLYURETHANE COATING	HNE	2.00 .69	10 .02	12 H	125	E－2	
DAG EC 1652 BLACK EAINT	${ }^{\mathrm{ACH}}$.69 .79	－02	14D	25	A In	
DAN POX ENAMEL 160 E （ AS 1／1 BV BLACK／F	${ }_{\mathrm{DCI}}$	2.54	． 26	7 D	23	A Im	Paint
$\mathrm{D}_{5} 920007$ dHITE SIIICONE PAINT	$\xrightarrow[\text { DCC }]{\text { DCC }}$.91 .63	．36	7 D 24	25 25	Aİ	SALN_{2}
DC 92－019 SILICO				8 \％	60	A In	
D＝ $94-003$ DISPERSICN COATING	DCC	4.12	－ 18	2 H	25	AIk	Pation
D 991 VARNISH－CIEAE SILICONE／P	DCC	2.47	－18	$3^{4} \mathrm{H}$	25	AIM	CUAPDAGAT
	DCC	． 88	－ 50	24 H	125	${ }_{\text {A }}$ Is	cuar coat
DENNIS 162 A／b AS 1／1 BH LACKUEh $1 / 4600$ THINAER	DNS	4.29	． 16	24 H	25	AIx	LaCxU6is
DUPONT ELUE LACOUEE 43907－LHX DETZLER PRTMER DZL－32	DUE	4． 42	－ 66	6 B	70	AIn	PAIND STSTEM
DJPONT 4817 CONDUCIIVE SILVEEPALER PRIAEE DZL－32	DUP	4.57	－ 71	6 6	70	AIK	PA\＆AL STSIEM
DUPONT 4922 A B AS $1 / 1$ BL COND SLLVEE PAINT	DUP	3.84 .61	－04	24H	25	AIn	cond kaint Culu PAIAT
DURALAC BLACK ENAMEL－LOSTERLESS	NLC	2.70	－ 21	48 H	99	AIK	
DOTCd BOY RED ENAMEL 756	NLC	2.94	－ 33	16 H		AIK	rains
D＇D CONDUCTIVE PAIBT	GEV	1.88	－39	48	125	AIE	gaidi
D4D CONDUCTIVE PAIAT	GEV	1.57	． 34	48 H	66	AIK	CON二 5 AINT
D4D LEAFING ALUAINUM	GEC	8.91	． 78	$48 H$ 48	100	A In	PASuT
D4D LEAFING ALUMINUA	GEC	72		140	25	AIK	
	GEC	－ 72	－10	48 C	99	Aİ ${ }^{\text {A }}$	PaLuT
E－KOTE 3030 CONDUCIIVE ACRYLIC PAINT	EPU	． 76	． 05	1 H	06	A If	Cunu taint
E－KOTE 40 CJND SILVER PAINT／ACRYIIC	EPO	3.32	． 10	24 H 16 H	25	${ }_{\text {AIn }}^{\text {A }}$	Cunu taInt
EA 9203 OME COMPCNENT PRIMER FOR EPOXX	HYS	19.65	1.96	24 H	60	AIL	
E二P 2200 BLACK SCLAR ABSORBER COATING／F	MMM	19.65 .08	． .96	4 H	204	AIH	Fximbik
ENAMEL PL ELACK SCL AR ABSOREER COATING\％F	MAM	． 61	－ 27	48	121	${ }_{\text {A }}$	TaEna
	EPC	$\begin{array}{r}.85 \\ \hline .95\end{array}$	－ 14	72 H	100	AIK	2aImi
EPON $828 / \mathrm{VERSAMID}$ 140／CARBOLAC／SYLOID 620	SHL	1． 1.67		$7{ }^{7}$	25	A La	20140
ERON 828／VERSAMID 140／CAEBOLAC／SYLOID 620	SHL	1.66	－07	16 H	25	${ }^{\text {A }}$ In	PaiNP
EPON 956 A／B AS 10C／58 BH／CARBOLAC／NOVACITE 1250				2 H	06	A In	
EPON 956 A／E AS $100 / 58 \mathrm{BH}$ CARBOLAC／SYLUID 620°	SHL	1.90	.12	7 D	25		S连宜
FPRLEY PAESONS BLACK	EPP	13．33	3.65			AIa	paial
	FPC	4.62	－ 10	24 H	25	A In	Påa家
FINCH ELACK PaINT 663－3－2 polyurethane a／b à 4／1 bV	FPC	4.42	． 00	244	25	AIN	Enindi
FINCH PRIMER 463－4－4 A／B AS 3／1 Bu	EPC	7.21	． 00	70 ${ }^{\text {1 }}$	66 25	A In	Patacis

SECTION $13-$ PAINRS LACVUERS VAKNISHES

Matekial	$\begin{aligned} & M F E \\ & C O D E \end{aligned}$	*TM	8 CVCM	$\begin{aligned} & \text { CUKE } \\ & \text { TIME } \end{aligned}$	CUE TiMs	ATAUS	
FISEER BLACK COATIAG 113/113-300/CABBOLAC/MEK/T-12	GSC	. 51	.02	7 D	25	A In	Patar
FLOGUIL ELACK PAINT	FLO	3.85	-28	7 D	25	Ala	
FLUOEOCLAL CLEAE V78VP21	SHW	. 05	. 01	304 15.1	93 260	${ }_{\text {Ala }}^{\text {A }}$	2月+心1
PLUOEOCLAL WHITE G79hP37	SHw	. 67	.05	30 M	93	${ }^{\text {A }}$ Iis	cadis
	GSC	2. 33	. 22	10 D	25	AIn	HALUT
FSS BLUE PAINT/F	GSC	2.71	. 05	72.1	25	$\mathrm{A}_{\text {A }}^{\text {¢ }}$	PALNT
G 3113 BLACK COATIAG ball CHEM ALKYD-SILICUNE	$B \mathrm{AL}$	- 03	. 02	1 da	$\bigcirc 332$	AIn	2atul
G-1897 HT ALUMINUK COATING	BAL	-U9	.04	1 H	232	A Ia	EaCla_{4}
$\mathrm{G}=3230$ ALKYD EHITE PAINT	BAL	3. 13	1.07	24 it	25	a In	Yatwi
GE 7031 INSULATING VAENISH - PHENOLIC	GEC	8.75	.85	$4{ }^{4}$	250	A din din	Vatillan
GE 7031 INSULATING VARNISH - PHENOLIC	GEC	6.87	. 71	45 H	25	AIK	Vakdisn
				$1{ }^{1} \mathrm{H} \mathrm{H}$	80		
GSFC 657-38 SILICCAE AHITE PAINT	GSC	-13	-13	$7{ }^{70}$	25	${ }^{\text {A }} \mathrm{In}$	Katul
GSFC $657-41$ SEITCGAE WHITE PAINT	GSC	-17	-09	30^{50}	25	A Ia	Patind
GSFC 657-41 SILICGAE WHITE PAINT	vSc	. 14	- 00	2411	66	AIn	Palid
GSPC 657-42 SILICOAE GHITE PAINT	GSC	. 21	.08	4 D	25		
GSPC 657-44 SILICCAE WHITE PALNT	GSC	- 15	- 6	208	.100	AIa	
K-1 URETHAXE 2 RIMEE/S FUEANE PLASTICS	${ }_{\text {API }}$	9. 10	98 -03	$1{ }^{15}$	25	A $\mathrm{A} \mathrm{Ia}^{\text {a }}$	Yulutur conthul
KAPTCN/ALUM/H322/9588 FILH COMPOSITE	APL	3.08	.03	24 i	125	AIn	Hhanal CCdimul
Kapton/aLUM/H322/9988 FILH COMPOSITE	AP_{1}	2.15	. 22	15 M	125		
KA PTON/ALUM/H322/9 988 FILH COMPOSITE	APL	2.33	. 25	15%	125	A IL	TaEatial CONTKOL
KJLORAEE U-1-6C02/9500 PRIMER - GLOSS WHLTE ENAMEL	KEE	2.01	- 01	24H	20	AIm	Kalal SXSLEA $^{\text {S }}$
K3YLCN 1302 CLEAF CUATING MULTI-COAT FILA	BCA	7.23	- 42	24H	25	AIk	5alat
KRYLOA 1602 UL'LiA FLAT BLACK PAINT	BCH	5.93	-45	7 D	23	AIn	Yaini
LIMINATE ASHLAM G40 GKADE EPOXY/FIBELGLAS	MMS	. 39	- 01				Latidate
LEACH 009 SEMI-GICSS BLACK LACQUER AEEUSOL/F	LCE	10.74	3.28	7 D	25	AIR	Padad
LEACH 010 FLAT BLUE LACQUEF AEHOSOL/F	LCE	10.82	3.34	7 7	25	AIf	saduit
LEACH O14 AS 4\% BY GLOSS BLACK EPOXY ENAMEL	LCB	8.48	. 52	7 D	25	Ain	Eatur
LOGO 1709/508 LACGOEE/THINNER AS 3/1 3V	BEE	1.65	. 23	1 H	166	Aİ	Lakyúa
M-152 LACOUER BASECOAT	EEE	4.82	1.03				Laty
	BEE	2.43 4.04	.19 1.03				Lacyuen M/ALUA
a-152 Laçuee basecoat m/thinmers - Shaiyed 2 COATS	BEE	4.04	1.03	$\begin{array}{r}1 \mathrm{H} \\ 2 \mathrm{H} \\ \hline\end{array}$	66 121 121	AIM	macxues
MO469/MC470 AS 4/1 BWi Brown wash priner	BCL	9.81	. 41	280 m	25	AId	Maju RKIMEK
				1 H	60	AIH	
	HMI	18.99	-23	1 H	25	${ }_{\text {A }}^{\text {A }}$	Kana
METALAST 920 PRIMEF BASE/DILUENT AS 4/1 BA	-84	11.35 4.95	-. 24	${ }_{7}^{14}$	80	AIS	EAME
				7 D	25	Aİ	
Hay 101 -C 10 VELVET BLACK ALKYD	M M	5.02	. 02	20 i	121	$\varepsilon \rightarrow 4$	cala

SECTION 13 －－PaINTS LaCquers Vafnisines

	MAFERIAL	MFK CODE	あTHL	\％CVCM	$\begin{aligned} & \text { CURE } \\ & \text { TIAE } \end{aligned}$	$\begin{aligned} & \text { CUBE } \\ & \text { TE } \end{aligned}$	ATAOS	APPmICATION
M ${ }^{\text {it }}$	101－C10 VELVET BLȦCK PAINT ALKYD	MMi1	6． 0.2	． 14	6H	25	A It	く41Ni＇
MMM	301 －C10 VELVET BLACK	MMM	5.17	.02	${ }_{9}^{96 \mathrm{H}}$	110 121	Eiciom	Patur
M M M	301 －C10 VELVET BLACK	MHM	b．00	． 02	$6{ }^{6 \mathrm{D}} \mathrm{H}$	25 66	${ }_{\text {A }}{ }^{\text {I }} \mathrm{IK}$	2A14T
	401 ELACK OVEH ZINC CHEOMATE				6 D 5 D	25	AIK	Panal composite
MMA	$401-A 10$ A／B AS 311 BV HHITE PAINT	MMM	4.82 2.88	－ 02	$7 \mathrm{7D}$	25	AIL	PALAHCCOMPOSIIE
MY	401－A10 A／B AS $3 / 1$ BV WHITE WAINT	MMM	2.85 3.09	－03	7 7	65 25		PAl AT HaidT
MM M	401－Cl0 A／B AS 3／1 BV VELYET BLACK	MMA	2.91	． 01	24 H 3	121	${ }_{\text {A }}^{\text {A }}$ IR	Haldi
					50 50 H	25	A I $E=0$	
MM ${ }^{\text {M }}$	401－C10 A／B AS 3／1 BV VELVET BLACK	MMM	3.33	． 02	30 M	121	AIa	matas
Mam	401－C10 A／B AS 3／1 BV VElven black	MHM	3.18	－ 00	72 H 240 H 3	95 25 120	E－S	caIdy
MMM	401－C10 VELVET BLaCK OVEir E－SOLDER 3022 LaYuz				24 H	60	E－5	
MIM		MHM	2.76	－ 01	3 H 30 H	60 120	AIM	matus conposite
MMM	403－C1U $/$／B AS 3．5／1 bV VELVET BLACK	Hing	3.11	.01	10 ${ }^{\text {2 }}$	25	$\mathrm{e}=3$ $\bar{A} I \bar{R}$	Cums LuAt
	403－C10 A AS 3／1 BV VeLVeT BLALK				${ }_{16}^{2 H}$	71	AIR	
MM M	403－C10 A／B AS 3／1 BV VELVET BLACK	MMM	3.00	.07	48 H	66	AIA	Fata ${ }^{\text {T }}$
	125 WHITL COATING BASO4／PVA／KRYLON	GSC	1.70	－ 10	$1{ }^{1} 4 \mathrm{D}$	25 25	${ }_{\text {A }} \mathrm{I} \mathrm{A}$	OET\＆Cal PAINT
MS		DCS	11.60	－33	24.	25	AIK	P凶1adx Paide
MS	74 WHITE CJATING K2SIU3／TIO2／2NO／AL203	GSC	6.27 4.54	－03	$24 H$ 48	25	ALA	Padd
MS	$74 / 5 I L A N E 6020$ ERIMER COMPOSITE／F	GSC	4． 36	－00	$7{ }^{4}$	25	AIN	PAIMS COHEQSITE
MSA	101E GEEEN PAIAT OI 650／CHFOEIC OXIDE	GSC	1.04	.47	6 H	95	Aİ	PainT
	101E GKEEN FAIAT OI $650 / C H R O M I C ~ O X I D E ~$	GSC	－11	－ 00	6 H	150	AI盛	Pains
MSA	102 BLACK PAINI CARBON BLACK 103 BLACK PAIAI OL	GSC	10．95	－35	6．	150	AIK	PaIn ${ }^{\text {d }}$
MS A	5 ELACK COATING	GSC	10． 3.14	5.94	OH 3	25	${ }_{\text {AI }}^{\text {I }}$（	PARAT
MSA	5 ELACK COATING	GSC	2.24	－04	48 H	100	AIK	PAPNA
MSA	82 HITE PAIAT OI 650／NA TEEATED $2 N O$	GSC	． 67	－ 22	O^{H}	150	BIM	Paica
MSA	92 WHITE PAINT OI 650／ZINC OXIDE	GSC	1.40	－ 58	OH	95	AIR	Paty
MSA	90 WHITE PAINT OI 650／ZINC OXIDETAEATED 4 NO	GSC	1.78	． 56	${ }^{6} \mathrm{C}$	150 95	${ }_{\text {A }} \mathrm{I}$ İ	calar
MSA	G4E ELACK PAINT	GSC	3.66	－0	16 H	25	AIE	PaINT
MS A	$95 E$ WHITE PAINT				24 H	70 50	A ${ }_{\text {A }}^{\text {a }}$	
MSA	GOA GREEN PAINT	GSC	2.75	－． 95	2 H	50	AIn	Painas
NEX	SOO ATEK BASE IATEX SIU2 PAINT	NEL	－96	－03	21 D	25	A In	PaIsT
NS		M MSC	2．21	． 37	7 7	25	AIA	EaLnT
	59 GREEN PAINT K2SIO3／2NO AS $1 / 3 \mathrm{Bi}$ W／1\％COBALT	GSC	2． 16	－00	24 H	25	Aİ	Patist
0 OI	650 RESIN REGULEA 650 RESIN HITF PALNT GSFC SHAI	ITR	2． 59	－ 32	${ }_{1}^{1} \mathrm{H}$	321	${ }_{\text {A }}{ }^{\text {a }}$	pains dase
OI	650 RESIN WHITE PAINT GSFC SHAI	GSC	． 71	．02	16 H	100	AIM	PALAL
OI 6	650 G －GIOKI MOE	ITK	.87	－5 1	1H	163	A Lu	＜aic baSE

SECTION 13 －－PAINTS LACGUEES VARNISHES

Material	$\begin{aligned} & \text { MFK } \\ & \text { CODE } \end{aligned}$	¢TML	\％CVCM	CURE TIHE	CUFE TEMP	ATMOS	ArPbLCATIUN
	GSC GSC KOP	2.66 1.59	.00 .03 .07	72 H 7 D 1 H	25 25 60	AIA AIR aIA	
				14D	25	AIR	cand
PaINI 2019	CAC	2.04	． 23	$8{ }^{68}$	71 93	Aly	t＇ciln
				16 H	56	E－0	
PAINT 2019 OVE¢ EKIMEK 2012	CAC	2.92	.07	16 H 2 H	25	AIa	5A14＇S
				24 H	93	E－0	
PALADIN BLACK SATIA LACUUEH	WJR	． 27	.13	30 H 1	177	AIn	Lálibucial
				$1{ }^{1}$	103	AIn	
PALADIN ELACín SATIN LACUUER	WJR	6.42	1.69	1611	100	E－4	Lacruet
P－ 5 BLACK COATING	CCE	4． 31	． 12	24 H	25	A Iu	5AIMT
PLTT－GLAZE 16－40＇LE20 SASE ACRYLIC／EPOXY WHITE PAINT	PPG	2.80	－ 07	140	25	A Iis	
PITT－GLAZE $10-901 / 16-8 U 2$ EASE ACFYLIC／EPUXY WHITE／F	${ }_{\text {PPS }}$	4.23 1.35	－17	10 D	25	AIK	Patat
	GSC	1.95 17.56	1．09	2H	50	${ }_{\text {A }}^{\text {A }}$ isi	
P）TASSIUA TITANALE WHITE EAINI 150 GSFCS SHAL	GSC	． 84	． 00	18 H	122	AIa	HAIaT
PR 1506 CLEAK PAIMEE	2HC	8.97	． 05	2 H	25	AIA	Palaty
PK 1531 PCLYJRETEAAE 2 CIMER	PRC	5.97	2.29	16H	82	AIK	さひLはど
PR 420 ORANGE ERIMEK	PRC	5.41	1.30	2 H	82 25	AIn	
				16H	82	AIK	
PR 420 PRIMER／ACITCNE	PRC	12.49	－01	7 D	25	${ }^{\text {A }}$ In	¢aderim
PRERARAKOTE	DUP	3.43	－ 37	24 H	25	AIk	Patach
	DES	2． 50	．09	14D	25	AIM	K以1 MEK
PRIMEK RANDOLPH GEEEN LINC CHKOMATE	RAN	2． 32	－28	30 M	25	Aİ	Phacisa
				24 H	10	E－O	
	$\mathrm{SHA}_{\mathrm{ACO}}$	3.23 7.06	－22	24 ${ }^{\text {d }}$	25	AIf	Pratiku
PRIAER 6362 ciat e3t as 1／1 LV	HSD	5.24	－19	16 H	25	AIt	Puidsu
PROLITE P－527－66／P－863－66 AS 1／1 BW YELLOW EPUXY／F	$\triangle{ }^{\text {A }}$ C	4.01	． 02	24 H	25	AIK	
	GKO	9.24	． 09	24 H	23	A $\mathrm{Ia}_{\text {a }}$	PdIni＇COMPOSIIE
PC 401 WHITE PaINT	PTI	3.00	1.00	15 M 30 M	25 66	A AR	Pafu＇
				90 M	121	A Ii	
PT 401／H－11 AS 16／1 BV WHTE PAINT	PTI	1.87	． 07	15 M	25	Aİ	rasait
				1.5 H	121	A Ma	
PT 401／H11 AS 16／1 BV GLOSSY WHITE EPQXY	PT1	1.05	． 10	15 M	25	AIM	PAANT
				90 M	121	AIK	
Pr 426 A／E AS $1 / 1$ EV TUP／FILM GLOSSY White EPOXY	PTI	1.89	． 14	7 D	25	AIt	rainm
	PTI	1.28 2.86	． 15	2H	66	AIn	EAIAT COMPOSITE
PYROMAEK STANDAEL WHITE SILICONE ON ALUMINUM	TEM	2.06	－02				YaldT
PY ROMARK STANDAEL HEITE SILICUNE ON EPOXX	LEM	． .40	－03				PalnT
P415A EPCXV PaIMEx	$\triangle \mathrm{BC}$	3.97	－ 10	7 D	25	ìIn	Citaremill

SECTION 13 -- PAINTS LACQUERS VAKNISHES

material	$\mathrm{HFh}^{\mathrm{F}}$ CODE	\%TML	\% CVCA	$\begin{aligned} & \text { CURE } \\ & \text { TIME } \end{aligned}$	$\begin{aligned} & \text { CURE } \\ & \text { TEMP } \end{aligned}$	ATEOS	
P527 PRIMER RPOXY/FOLYAMIDE	ABC	2.16	. 04	15H	25	A If	PGIdEE
61-2577 CLEAR SILICONE	DCC	2. 57	. 85	135	77	${ }_{\text {a }}^{\text {a }} \mathrm{Ia}$	LuLDI dase
1-2577 HITTE SILICOAE	GSC	1.70	-47	250	25	A18	Paicit
BS-12 HICRO SEIEID PAINT	$\triangle \mathrm{MC}$	8.54	2.36	21 D	25	AIf	bocat
RSTY 120 MICRO SHIELD PAINT ON PO1L	$\mathrm{HCC}^{\text {CS }}$	9.58	4.37	2 H	60	${ }_{\text {AIfi }}$	paiac
RTV 602, 764-1A MHITE PAINT FR BATCGI9	GSC	.44 .46	-01	70	25	A. In	YAdal
REV 602/SAC 05 AS 0.25\% CAT DEVOL LOT BH25 ${ }^{\text {SATCE }} 3$	GEC	-65	-05	7 D	25	AIn	PAINI DASE
RTY 602/SRC 05 AS O. 25\% CaT DEVOL LOT CN 258 EATCH 3	GEC	-4 4	-03	7 D	25	A A (\%	PAMAT bASE
RTV 602/SRC 05/CAEEOLAC 1/TOLUENE BLACK PAINE	GSC	1.19	-13	7 D	25	A ik	paiot
	GSC	. 69	-18	70	25	AIE	¢adal
S-13-G SILICONE HAITE PAINT	GSE	. 33	a .00 .09	7 D 48 h	25	${ }_{\text {A }}^{\text {A }}$ IS	Palat
				16H	121	E-0	
	ITR	.82	16 .13	$24 H$ 48	25	${ }_{\text {A }}^{\text {A }} \mathrm{IK}$	Pacat
S-13-G-LO WhITE PAINT A/B aS 100/1 Bie H/TOLUEAE	ITH		- 10	24id	93	AIa	
S-13-G-LO HHIPE EAINT E-127 NO PRIMEK	ITa	- 50	. 12		25	AIK	Palat
S-13-G-LO HEITE PAINT W/PaIMER BATCHE-389	ITR	.37	-02				Paint
S-13-G-LO WHITE PAINT/SS 4044 PRIMER BATCH E-400	ITH	.44	-04				Patis ${ }^{\text {che }}$
S-13-G-LO HHITE PAINT/SS 4044 PRIMER BATCH E-497	ITR	. 40	. 02				Kaid ${ }^{\text {d }}$
SニHENECTADY VAKNISE 170	SCH	1.19	-23	12H	143	AIn	Yakiolua
SEOTCHCAST PRIHEE XR 5137 A/B AS 5/1 Ba thin Coat	HAM	10.62	-19	24H	25	AIn	Padaba
SOOTCHCAST XR-5137 PEIMER FOR POLYURETHANE	AMM	8.58	- 32	24H	25	AIn	Patick
SICON BLACK 7X9055 SILICOHE	DEX	6.04	. 36	24 H	25	AIf	Haini
SICON BLACK 7×9055 SILICONE	MID	-. 98	. 04	30 H	177	AIH	Paiat
SICOA BLACK $7 \times 933 / 5744$ AS 4/1 BV	MID	1.39	-62	304	204	A Ia	paluip
S[COH 3×258 LEAFING ALUAINUM	MID	.05 4.02	.00 1.15	15H	710	Aİ	PALST
SICON 34258 Leating aluminua	MID	. 72	-17	4 OH	25	AIa	Gaial ${ }^{\text {che }}$
SICON 3X258 LEAEING ALUMINUM	MID	. 70	. 11	48 H	99 25	${ }_{\text {A }}^{\text {A }}$ If	Palsia
SICON 3x 258 LeAFING ALUMINUM	MID	. 79	.09	96 H 48 H	71 25	E-3	Kaint
S[LCOSET $152 \mathrm{PaIGEE} / \mathrm{F}$	ICA	3.30	. 09	78	71 25		
SJIITHASE $113 / 300 / \frac{T}{}$ (12/FEERIC OXIDE/LABOSIL	GSC	. 38	. 06	7 D	25	AIB	Painci
SJLITHANE 113/300/T-12/FEREIC OXIDE/LABUSIL	GSC	. 40	. 05	20	25	AIr	Pain ${ }^{\text {P }}$
SPACE GARD 4-B-33 ELAT BLACK COATING	DEX	8.95	.06	246	60	${ }_{\text {AIA }}$	
SPACE GARD 4-B-33 CVEL RANDOLPE PKIMER Tら4/E	DEX	1.78	.02	2 H	25	AIK	PaLat composite
SPACE GARD 4-B-33 CVER RANDOLPH PRIMER T54/F				24H1	69 100	A $\frac{1}{2}$	
	SPX	3.44	.83	7 D	25	AIS	Patat cuitugsite
SPEREX SP-101 Vhi EIGE TEHP COATING-WiITE SILICONE	SPX	- 29	-01	15 15	25 121	AIS	Pa- ${ }^{\text {a }}$
SE 240 SILICONE EEAFING ALUMINUM	GEC	. 58	. 19	${ }^{1 \mathrm{H}} \mathrm{H}$	316	AIA	2014
SZ 240 SIIICJide IEAFIdG ALUMINUM	GEC	.74	- 24	48 H	99	AIK	2atil 2
				96H	71	E-3	Ralal

SECLION 13 －PAINIS LACzUEKS VARNISIAS

Material	Mri CODE	的T1L	zCVCM	心UんE TIHE	CUHE TEMP	ATMUS	AERMSCATION
Sa 240 SILICOIVE IEAFING ALUMIAUM	GEC	． 72	． 18	48 H	25	A Ik	Hdist
STAG SOLITE 20678 CVEF STAG PKEVUX 1760 PELMCR／F	HA3	4.27	． 36	$7{ }^{80}$	71 25	ASİ	
SUPEG KORCPON FLUIL EESISTANT PAIAER GREEN EROXY／F	DES	3.97	.36 .13	48 d	75		Munctu SSTEM
SUPER KOROPON FLUIL hESISTANT PEIMER GUEEN EPOXY／F	DES	1.55	－15	48 H	100	Aİ	Ratach
SUPEE KOFCPUM FLUIL RESISTANT PRIMER GUEEN EPQXY／F	DeS	1.31 5.03	．19	7 D	100	${ }_{\text {A }}{ }_{\text {A }} \mathrm{I} \times$	Puickil
				30 M	74	AIa	
	BAL	8.55 .75	． 36	5 M	93	A 14	
TIIXUN -317 UKETHANE PEIMEK－BEOWN	DAY	5.96	.79	11	60	AIK	Paimen
TLLE COTE 1201 A／B AS 1／1 BV WhITE ELOXY SAINT	Sta	8.08	－ 09	1 H	25	Aİ	PALaT
TOEXUE－SEAL FLUORESCENT LACQUER		10． 16	1.08	2H	60 25	AIK	
VARNISH STEKLING AEEKMOPOXY T－653－i BH	STV	1.82	． 31	8H	135	${ }_{\text {A }} \mathrm{IV}^{\text {a }}$	backuck
VARNISH STEKLING TEEKifopoxy t－b53－LBH	STV	． 70	.02	4 H	180	A14	vainisio
VINSYNITE AU－1／bT 215 AS 1／2 BV	SPC		． 01	24 H	25	E－ja	
Y－210 VARNISd－TEEKHODOR	STV	6.86 7.27	.24	20 H	149	${ }_{\text {AIR }}$	¢adaca
Y－210 VAANISH－TbEKMODUR	STV	． 50	.07	2 OH	149	${ }_{\text {A }} \mathrm{IA}_{\text {a }}$	VAaidica
Z 93 POTASSIUM SILICATE $2 N O 2$ inATER BASE 2－6040 SILANE PRIMER	GRU	2.54 7.97	1．00	24 H 24 H	125 25 25	EOO ALu AIM	Patur

SECTIOA $14-$ POTTIAG COHPOUNDS

material	$\begin{aligned} & \mathrm{MFR} \\ & \text { CODE } \end{aligned}$	8TML	\％CVCA	CUKE TIME	CUBE TEMP	41 H	AYPLACATICN
ABLEBUND 731－1 A／B AS 100／47 BW YELLOW EPQXY	A AC	－92		3H	79	A In	PUTLIMG
ABLESTIR 857－1 ECIYUKETHANE	AAC	1.08	－ 10	4H	71	Aİ	PUTR1MG
ABLETAERM 7－2 FILIFD SILICONE	$A{ }^{\text {A }}$	． 29	－ 10	4 H	74	AIK	PUS114G
ABLETHERM 7－5 A／E AS 1UUGM／14 DRUPS FLLLED SLLICUNE	$\triangle A C$	． 68	－19	4H	74	AId	PuTisus
ABLETGERM 7－5 A／E AS 100GM／7 DROPS FILLED SILICONE	${ }^{\text {AAC }}$	－ 51	－ 28	24H	65	$\mathrm{S}_{\mathrm{s}}-6$	PuTalmg
ABLETLERM 7－J OXILE FILLED SILICONE	AAC	－ 31	－ 14	8 B	80	AIm	PUITENG
ABGCN EPOXY－CLEAh	${ }_{\text {A }}$ ACT	1． 32	． 010	4 H	74	Aİ	PUTEING
	DUP	－． 74	.07	48 H	50	AIK	PUSLING
ALLACAST 1776 POTTING CPND PUR OPTICAL COMPONENTS	BAC	． 25	.01	24H	25	A $\overline{1}$	PuTilag
ARALDITE AV100／fiV100 AS 1／1 EW EPOXY	CIB	$\begin{array}{r}\text { a } \\ \hline .57 \\ \hline .59\end{array}$	－15	$3 \mathrm{3H}$	60	AIn	AUH MUTTING
ARALDTTE CY179／906，065／MS－XL EPOXY ETUXY	CIB	1.39 .16	． 04	24 16	25 9	${ }_{\text {A }}^{\text {A }}$ IR	20Ling
	CIB	1.14	-37	3 H	70	AIK	PUIIING
ARALDITE MY750／iT972／MARBLE FLOUB AS $100 / 27 / 100 \mathrm{BH}$	CIB	． 26	.01	3 H	80	Aİ	Pustang
ARALDLTE M Y $50 / \mathrm{HY} 974$ as 20／4． 4 Ba EPUXY	CIB	． 27	－03	45 M	100	A I	avd puITING
AXALDITS DO04／508／CALUSLL／DP－138／951／PC－1244 EPOXY．	CIB	3.74	.07	4H	25	AI立	PUK1LXG
A3－4219／Hi－3404 AS 100／9 BW EPOXY	HYS	2.90	.06	3 7	60 25	AIM	
BACON IND IMPEEGAAAT NO 2	BAC	． 27	.01	4 H	71	AIm	ROACLUG
BAKEG LOLYURETHANE SYSTEM OS	BAK	． 28	． 03	4	25	AIH	Cunc LuAT－POT
BAKER fOLYURLILANE SYSTEM 65				16 H	80 60	AIK	
BR－620 ONE COMPCNEXT HEAT COLING EPOXY	${ }_{\text {AC }} \mathbf{C}$.82	－01	$1{ }^{16}$	121	AIK	CUALIEMSAT－POT
BSL 201 A／E AS $11 / 1 \mathrm{Bm}$	CIB	2.59	－ 03	16 H	25	AIK	人v＇inimg
BSL 201 A／E AS 11／1 BN	Cİ	1.46	． 05	30H	100	A If	gutilas
BSL 206 ELACK EPCXY	CIB	1.42	． 15	${ }^{\text {1H }}$	25 120		Pumilnis
	CIB	1.42		2． 5 H	40	AIEi	purins
				1H	120	${ }^{\text {A }} \mathrm{I}$	
BSI 308 EPCXY	CID	.82 .49	.11	${ }_{1}^{1 H}$	104		PuTituc
	HYS	$\bullet 74$	－ 06	4 ${ }^{\text {H }}$	130	${ }_{\text {A }}$	PuTPLAG
CASTALL CX2303 3 CLEAK SILICONE	CAS	1.61	－57				Puricis
CESEA 60 POLYUEETEANE	CEL．	1.08	－ 24				PuTitig
CEBLA TO POLYURETHANE	CEL	1.07	－ 36				Pulilin
CF 3003 EPGXY rE HUGHES CCNAECTOK $138 C 320$ HO 1	HAC	． 43	－04				PUT 246
LIEMLOK $203 / \mathrm{CHEMLOK} 2<0$ aS $1 / 1$ By aS FREE EILM	HCC	ל． 95	.03	30 M	25	AIn	PURLING PEIMER
	HCC	0.84	． 01	30 H	25	${ }^{\text {A }}$ IR	PUSTId心 PEILER
COLAD 984 A （B AS 3／1 BV mHITE QUICK SEL LPUXX	CCD	1.19	－ 02	308	60	AIR	
CJIAD 984 A／B AS 3／1 3V WdITE UUICK SET EPUXY	CCD	． 84	－0 0	164	100	A In	POTLING
	CON CON	－33	－U2	24H	60	Aİ	PUTCIAG
CJALIANE EN－1才 ALE AS	CON	－ 27	－ 1	24 H	60	AIn	puiling
	CON	－43	． 02	24 H	55	AIn	PuTcing
CJNATHANE EN－11 A／E AS $100 / 55$ Bd PULYULETHANE	COS	－ 38	． 01	24H	50	A	PursIag
COAATHANE EN－12 A／E AS $100 / 5 \mathrm{~J}$ BM	CON	． 43	． 01	48 H	50	Aİ	putalas
CONATHANE EN－12 a／E aS 71．3／75 bu butadiene uesthaue	COM	． 44	． 02	12H	38	${ }_{\text {A }}$ Im	SuTEANG
	CON	1.15 .78	．49	24 D	80 25	AIn	PUHLLMG PuT1imG

SELTIUM 14 －－potting compounds

HATEALAL	MFK CODE	8 CLL	7CVCM	CUKE TIME	CURE TEM？	ATd0S	AKLL」CATION
Cudathane En－7 a／a as fuU／17．j be polyunethane	CON	． 32	． 01	20 H	23	A 1\％	Yuliluiu
COnATAANE EN－9 PCLYUhETHANE	CCN	－ 39	． 00	30 H	25	AIb	Puislas
				81 164	93 60	AIE	
	CON	.74 2.83	．01	164 24	20	AIn	
	UJC	1.04	－．j0	18 H 5	25 93	AId	curilisis
CaEST 7340／7109／7120 E2POXY	CPL	． 35	.04	2d	100	Aİ	Puitisab
				2 H	154 204	${ }_{\text {A }}^{\text {AIK }}$	
，15－015 EPOȦY	HYS	5.69	． 00				yusitag
C゙2－4259／34 1	HYS	－ 55	． 01				Puricug
C9 F7U0 EPOXI	HYS	.16 .50	－．00	4 24 H	77 215	${ }_{\text {d }}^{\text {din }}$	Purling
	HYS	． 50	．00	24H	2135 125	${ }^{\text {A Lin }}$	PuTidNG
CY－4190／n8－3J03 AS 10／13 BV RED FLこAEBLE EYOXX		． 43	－	25 H	125	AIS	
	HYS HYS	． 38	． .09	8 8 8 8	60	A In	Puithas
C3－5340／3426 AS 1U0／8．3 iS EPOXY	HYS	－ 0	.05	8 H	25	AIK	50 ctag
DAPCN 35 SEALANT／IEPKEGAANT	FMC	13.98	－us	${ }^{1} \mathrm{H}$	149	${ }_{\text {A }} \mathrm{IK}$	Luratualat
D＝ 3101 LUh DEASITY SYNTALTIC FOAM A／B AS 10／1 BW	DCC	1． 25	． 30	2 H	70	AIK	PJCPiag FOAM
	DCC	－90	． 25	3 JD	25	AIN	didara
	DCC	1． 13	－ 34	30 D	25	Aİ	cacars
D工 $3116 / \mathrm{CAT}$ S／E－12 AS $10 / 1 \mathrm{BW} / \mathrm{l} 10 \% \mathrm{~T}-12$	DCC	1．46	． 47	4 d	66	A In	gncars
$D=3118$ DIMLRIIYL SILUAONE	DCC	－ 92	－ 32	7 D			PUHAING－ENCAFS
DC 93－500 A／3 AS $10 / 1$ OH SILICONE	DCC	－ 16	－ 00	7 D	25	${ }_{\text {A }} \mathrm{la}$	PJETAMS－ENCAPS
D＝93－500 A／E AS $10 / 1$ 3N SILICUNE	DCC	－ 29	－ 00	24 d	25	AIk	POTHLAG－ENCAPS
DE 93－500 A／3 AS $1 \mathrm{C} / 1 \mathrm{BH}$ SILICONE LQT E2134－10	DCC	－ 12	． 00	7 D	25	AIS	PORPLNG－ENCAPS
D＝93－500 FM 029159 FEB 79	DCC	－ 17	－ 12				PuTrinu
	${ }_{\text {DCC }}$.39 .28	－18				PUCIEANG
	${ }_{\text {DCC }}$	－28	－10				pucidat
	DCC	1.72	． 24				puiticag
DELTA CAST 153－K－A EPGXY KIT 153／RTA2 AS 20／1．5 BU	TAK	1.62	.01	8 H 40	25 25	${ }_{\text {A AK }}^{\text {A }}$	pulichag
DER $332 / \mathrm{MEA} / \mathrm{LITHAFEAK/P-200} \mathrm{MODIFIED} \mathrm{GEAY}$	DON	． 50	． 00	18 H	65	${ }^{\text {P SI }}$	Rucring
	DOw	.48 .54	． 00	18H	65	PS	PURTANG
DE世	DOw	1.34	－08	2 H	60	A In	purctag
DER $332 / 732 /$ AEP／SR－82 AS 60／40／16／4 DROPS SR－82	DOW	1.32	.07	12 H	35	AIf	puttiog
				2 H	88	${ }_{\text {AIM }}$	
				1 H	60	AIn	
DEQ $332 \mathrm{LC} / \mathrm{HV}$ AS $10 \mathrm{C} / 18 \mathrm{BH}$ EPOXY	DOU	－ 33	.01	5 H	25	A In	PuIting
				24 H	90	Aİ	
DJLPLON CB－1078／EE－2000 AS 20／1 EW BLACK EPOAY	JCD	2.09	． 01	300	25	AIn	Yutalivi
DOLPHCN CE－1050／EE－2010 AS 20／7 EL	ICD	2． 80	－01	30	25	A in	P．Tilidi
E 788 POITIMG EESIA	USP	1.25	－ 01	4 H	177	AIK	PUTG14G
	USP HYS	3.87	． .02	24 H	25	AIK	PGTHANG

SECTIUA 14 -- pJTIIN COMPOUNDS

mateaial	$\stackrel{\mathrm{MFH}}{\mathrm{COD}}$	万TML	CVCM	CUKE	$\begin{aligned} & \text { CUBE } \\ & \text { TEMP } \end{aligned}$	AIMO	APrLACITION
ERON 828/LINDADE 8/DAP 30 AS 100/90/1 BW ERUXY/SAND	SH	. 04	. 00	${ }_{48} 18$	700	${ }_{\text {A }} \mathrm{I} \times$	puramu
EPON $828 / \mathrm{S}$ AS 4/1 LW CLEAN EPOXY	SHL	1.73	. 26	$2{ }^{2}$	5	AIM	pusitnu
	S $\mathrm{HE}_{\text {L }}$	$\bigcirc 40$	-00	70	25	${ }_{\text {A }}$	cutino
EPON 823/VERSAMILT 125 AS $65 / 35 \mathrm{Ba}$ EPUXY	${ }^{\text {SHiL }}$	- 59	-01	70	25	${ }_{\text {A }}$	pustins
	SHLL	-74	:19	7 D	25	${ }_{\text {AIK }}$	Putixu
EPO 828 VERSAMIC 1400 AS $45 / 55$ Bu EPUXY	SHLL	1. 28	0.05	7 7	25	AIK	PuTRN心
EPON 828/YEESAMID 140 AS SO/50 BW EPUXY	${ }_{\text {SHL }}^{\text {SHL }}$	-86	.01	7 7		AIL	Sutasuc
EPUN 828/VEASAMIC $44 C$ AS $0 \cup / 40$ BW EPOXY	SHL	-43	- 01	7 D	25	AIa	Purtan
EPON 828/VERSAMIL 140 AS $65 / 35$ Bu EPOXY	SHL	-30	-00	7 7	25 25	${ }_{\text {A }}^{4} \mathrm{Ia}$	P0¢1axis
EPON 828/VERSAMIT 140 AS $70 / 30$ Bh EPOXY	Siid	-19	-01	70	25	${ }_{\text {A }}^{1 / 5}$	Putaids
EPON 828/VEaSamiL 140/b40a michoballuqns	GSC	. 6		90.4	${ }_{126}$	${ }_{\text {A }}$	PuTtian
epon 823/versamil 140/cabbulac/b-22a bubbles	SHi	1.74	. 13		25	${ }_{\text {A }}$	cutiduc
EPON 828/VEKSAMID $140 /$ CAREOLAC/GLASS BEADS	SHL	1.80	. 094	78 70	$\begin{array}{r}25 \\ 25 \\ \hline\end{array}$	${ }_{\text {a }}^{\text {A }}$ ILu	
EPON $828 / 871 / A E P A S 35 / 65 / 15.5$ B	SHL	$1: 01$:05	${ }_{2}^{2 \mathrm{H}}{ }^{7}$	$\begin{array}{r}4 \\ 4 \\ 3 \\ 3 \\ \hline\end{array}$	AIM	¢GALING
			. 02	10.1	65	${ }_{\text {AIb }}$	Eufrlau
EPON 823/871/AEP AS 40/60/15:5 B	SHL	1. 16	. 08	7 D	25	dir	Stidus
EPOXI-PATCH KIT 56C Midite EVUAL LENGTHS FE TUBES	HYS	-34	-02	OH, 30.1	81	${ }_{\text {A }}^{\text {A }}$ a ${ }^{\text {a }}$	eustaw
EPOXYLTTE 6203 A A A AS 2/1 BW EPOXY	EPC	- 43	. 03	4	121	ALt	Purtimu
FLUOEINATED ACKY A A E	NRL	-12	-00				9, 1400
FJRMULATICN E EPCXY	GEV	2.43	-13	70	25	${ }_{\text {a }}^{\text {I }}$ ii	puritng
FR-8136-H A/BAS 2 CHALOW DENSITY EROXY - LREAM	${ }_{\text {P }}^{\text {PRC }}$	6.35 .524	2.80 .01	24 H	25	dis	Putatas
	GMC	- 24	-	12H	23	dis	cuitus
	CTC	1. 12	. 05	$2{ }^{24} \mathrm{H}$	257	${ }_{\text {A }}{ }^{\text {a }}$ IK	SuTimis
	${ }_{6}{ }_{\text {EI }}$: 36	-00	3 H	177 135	${ }^{2}$ Stict	Susing
				72 H	150	A Ik	
INSULBOND 810/INSUICUHE 24 AS $4 / 3$ BM BLACA EPQAY 	${ }_{\text {PY }}^{\text {PY }}$	$\begin{array}{r}\text { 1:97 } \\ \hline .50 \\ \hline 18\end{array}$	-95 .05 .00	70 ${ }^{4 \mathrm{H}}$	25	${ }_{\text {A }}^{\text {A }}$ IR	
	bac	-12	.00	43 H 16 H	56 100	${ }_{\text {AIK }}^{\text {AIK }}$	SUTANG
loctite pms-10 impeeg resin clear	LTC	3.40	. 11	${ }_{30}^{30}$	25 65		LARAESNANT
LOCTITE PMSE10 PHDE METAL SEALANT LOCTITE PKS-10E FHLR AETAL SEALANT	LTC	3.24 3.80 3.97	-20 -31 -31				LGYAGGMANT ARELGAAN
LJCTITE PMS-50E FWLR METAL SEALANT	${ }_{\text {LTC }}$	3.97 9.93	-31				ideacomant
MERECO 4501 A/B AS 1/1 Bh Cleak flexible epoxy	MEP	6.59	4.06	${ }^{24} 4$	35	${ }_{\text {A A A }}^{\text {A }}$	Putiaus
	BAC	0.17	-0 01	${ }_{16 \mathrm{H}}^{7}$	80°	${ }_{\text {a }}^{\text {AIM }}$	\%urtivo

SECTION 14-- POTRING COMPOUNDS

SECTION 14 -- POTTING COAPUUNDS

SECTION 14 －－pOTTING COMPOUNDS

		${ }_{\text {Srai }}$	ncich	－		A1700	aphicaition
		1：7id	（－30		㐌管	$\xrightarrow{\text { ALİ }}$	隹
	（ix	－	： 02				
		－ 38.00^{37}		cin			
		4.58	1：80		${ }^{65}$		
		（i：\％${ }^{\text {a }}$	－${ }_{\text {：}}^{\text {dib }}$			coly	
		：${ }^{\text {\％}}$	： 14	${ }_{4}^{4}$			成
5：\％	${ }_{\text {mat }}^{\text {and }}$	： 35	：08		－${ }^{155}$		$\underset{\text { punticis }}{\text { pur }}$
	${ }_{\text {\％}}^{\text {\％}}$（	：45	：39	，	${ }_{\substack{3 \\ 9 \\ 90}}$		Refiniau
	（ind	7．598	1：48	${ }_{\substack{84 \\ 48 \\ 124}}$	25 25 25		
Stur－Lor sle 3009 froay－greba	sık	1.20	． 18		－		pur
		（1：22	： 0_{39}		－		Rersilut
	越	ci．	． 45	${ }_{\text {did }}^{24}$	－		¢，
 		li： 1.038	：${ }^{45}$	${ }_{\text {¢ }}^{\text {¢ }}$	${ }^{25}$	－	
		：${ }^{40}$	：098	${ }_{\text {did }}^{168}$	－		隹
		－	：3i	cion			

SECTION 14 -- potidng compounds

matefial	$\begin{aligned} & \mathrm{MFE} \\ & \mathrm{CODE} \end{aligned}$	it ML	xevem	$\begin{aligned} & \text { CUEE } \\ & \text { TIME } \end{aligned}$	CURE	atio	acrincation
SJIIthane $113 / 300$ /LABUSIL MS5/RO DAEINE b/T-12	TCC	. 47	. 00	7 D	25	A1.	PuTicas
SJLITHANE $113 / 300 /$ CABOSIL MSSMT 12	TCC	-42	- 01	70	25	A LA	2urauc
SJLITHANE $113 / 300 / \mathrm{CALUSIL}$ MSS/T- $12 / \mathrm{FLUORESCENT}$ DYE	$\underset{\text { ICC }}{ }$. 06	-09	15 ii	50	${ }_{\text {A }}^{\text {A }}$	何tas
SOLITHANE $113 / 360 / \mathrm{T}-12$ AS $25 / 18.25 / 1 \mathrm{DEOE}$ BW	TCC	-37	-0 01	7 D	25	${ }_{\text {A }}{ }^{\text {I }}$	A PHLANGE
SJLITHANE $113 / 300 /$ TEPA/ALUAINA T $61 / 800$	${ }_{\text {SLC }}$	-14	.02	$7{ }^{7}$	25	${ }_{\text {A A M }}$	Putionc
SOLITHANE 113/300/2NG AS $20 / 14.611 \mathrm{Bu}$	TCC	- 44	-04	20 H	60	${ }_{\text {AIf }}$	PUt1ag
SOLITHANE $13 / 3000328$ AS $100 / 44 / 6$ EM FOREULA 1110	TCC	-34	-00	1oidi	70	${ }_{\text {Ala }}$	PuTfaug
SOLITHANF $113 / 300 / 326 / \mathrm{L}$ 35A GLAS 5 BUDBLES	TCC	- 21	.00	210	25	A 1 a	Puftias
SOLITLAAE $113 / 30 \mathrm{C} / 328 / \mathrm{ECCOSP}$ GERES SI	TCC	- 53	-00	$1{ }^{16 i 1}$	57	${ }_{\text {a }}^{\text {a }}$ Ia	Puticus
	EMC	$\bigcirc 74$	-09	16 H	25	${ }_{\text {a }}$	Fuaib
STYCAST $1090 / 11$ AS $100 / 12$ Ey EPOXY FUAM	EMC	-49 -38	-0\%	${ }_{3}^{24} 4 \mathrm{H}$	100 95	a ${ }_{\text {ana }}^{\text {a }}$	fuam
	EMC	-72	.07		25 25 77	${ }_{\text {a }}^{\text {A }}$	fuan-putting
STYCAST 2057/CAT 9 AS 100/6 BHE EOXY	EMC	- 72	-01	24.	25	A 14	Putitau
STYCAST $2651 / \mathrm{CAT}$ 9 EPPOXY	EMC	$\bullet 37$	003	8 H	$\cdot 25$	AIt	POTAANG
STYCCAST $26662 C A T 14 A S$ A $1 / 1$ BW BLACK EPOCY	EMC	-. 63	-00	$2 \mathrm{2H}$	$1 \begin{aligned} & 120 \\ & 149\end{aligned}$	diva	purtidug
	EMC	. 25	01				5uctus
STYCAST $285 \mathrm{FT} / 11$ AS $100 / 3 \mathrm{Bm}$ BLACK EPOXY	EMC	-40	.81	2 chi	75	${ }_{\text {AIL }}^{\text {A }}$	
				304 304	120 100 200		
	EMC	. 40	. 00	${ }_{4}{ }^{\text {H }}$	60	${ }_{\text {AIL }}$	puldiag
STYCAST $2850 \mathrm{KT} / 24 \mathrm{~L}$ V AS $25 / 1$ UW BLUE EPOXY	EAC	: 55	.02	24 H	25	${ }_{\text {Ald }}^{\text {a }}$	puiting
STYCAST $2850 \mathrm{KT} / 24 \mathrm{LY}$ AS $25 / 1$ Bu BLUE EPOAY	EMC	. 34	. 01	16 H	65	${ }_{\text {a Ia }}$	puthein
STYYCAST 2851 KT ONE CGMP BLJE THELM COND EROXY	EMC	$\begin{array}{r}\text { P } \\ 1.04 \\ \hline .05\end{array}$.04	${ }_{16 \mathrm{H}}^{2 \mathrm{H}}$	775	${ }_{\text {A }}^{\text {a }}$, ${ }_{\text {a }}$	PuTHCN0
	GSC	. 75	. 01	${ }_{7} 72 \mathrm{H}$	\%	${ }_{\text {a }}^{\text {a }}$	cutias
STYCAST 3050/18 AS 10\%3 BH DAEK RED EPOXY	EMC	1.47	-07	78 88 88	25 60	${ }_{\text {a }}^{\text {a }}$ ILa	PuTasag
	${ }_{\text {EHC }}$	1.64		70	25	${ }_{\text {A }}^{\text {a }}$ IA	Yuthmi
SHS 934 ONE COMPCNENT SILICONE W HITE	Siss	-43	-21	${ }_{2}{ }_{2}{ }^{2}$	250 10	${ }_{\text {a }}^{\text {a }}$ Ia	yortexu
	${ }^{D C C}$	1.109	$\because 33$	2 D	25	${ }_{\text {a }}{ }^{\text {a }}$	3uthauc
SYLGABD $184 \mathrm{~A} / \mathrm{B}$ AS $10 / 1 \mathrm{EW}$	${ }_{\text {DCC }}$	1.01	$\stackrel{+8}{-49}$	2H	170	${ }_{4}^{\text {A }}$ Lid ${ }_{\text {d }}$	Shbicure
SYLGARD $185 \mathrm{C} / \mathrm{A}^{\text {S }}$ AS $10 / 1 \mathrm{BH}$	${ }^{\text {DCC }}$	1.80 2.54	1.20	18	10	AIa	STLICUAE
SYLGARD 187 A/a AS 10/1 Bu Slliccae	${ }_{\mathrm{DCC}}$	1.25	. 44		121	E-1	MSLU CEAD
	DCC	2.45	-80	728	88	dis	Stsicune
THALCO $331 / 732 / \mathrm{AEP} / \mathrm{BLACK}$ DYE	THEN	1.54 .30	-01	$24 i 1$	25	din	PuTilas
TajCAST IIM/THUCUEE 901 EPOXY	FEN	. 00	. 01	3 H	06	ain	putilag

SECTION 14 - POTTING COAPOUNDS

matekial	MRK CODE	碞ML	\% CVCM	$\begin{aligned} & \text { COEE } \\ & \text { TIAE } \end{aligned}$	$\begin{aligned} & \text { CURE } \\ & \text { TERP } \end{aligned}$	dTa0s	ARPLI	CATIOU
TJ-0590/XHD-0158 AS 1/1 BW GREEN POLYURETHAAE	HYS	. 85	. 02	4	25	A Ia	PUTTIAG	
			. 38	6H	50	AIA	PuITIAG	
	${ }_{\text {FPI }} \mathrm{FPI}$	18.28	1.18	16H	82	A IK	Pusitiou	FOAM
UQALANE 5753LY A E AS $1 / 5$ BH POLYURETHAEE/PEIMER PR 1	FPI	.87	.01 .02	70 140	25	AIE	Pueradu	
V $357-80$ A/B AS $1 / 1$ Big BLACK POL YOEETEANE	FPI	$\begin{array}{r}\text { - } \\ \hline .19\end{array}$	-02	14 D	25 82	AI品	PUTRING	
VABY-FLEX EPOZY ECIYAAIDE	SIK	. 04	$\bigcirc 01$	24 H	25	${ }_{\text {AIs }}$	puTdiać	
XIU-M179 A/B AS $10 / 4$ dW POLYUKET HANE	HYS	15.72	1.06	40 H 16 H	121 85	${ }_{\text {A }} \mathrm{IH}$		
XCU- 4179 A/B AS $10 / 4 \mathrm{BL}$ POLYURETHANE	HYS	17.61	1.51	7 7	25	Aİ	putatag	
XR-5140 A/B AS $2 / 3$ BW BROMN SEMI-EIGID EPOXY	MMM	1.29	- 52	16H	90	A IK	gutiling	
XR -5166 A/B AS $2 / 3$ Bh FLEXIBLE BLACK EPOXY	MAM UYS	1.39 .51 .87	.39 .07 .07	16 H 8 H 24 H 6 H	90 66 70 25	AIK E Aİ AIa	POTLING POTT PUGL	
	HYS	.83 1.93	-01	4 H 24 H 48 H	60 50 25	AIM	PUTciab POLIIMG	
yarsiey i $100 / 6 / 4 / \mathrm{y}$ POiqurethane formolat ion clear	YAR	1.77	. 12	48i	50 50	${ }_{\text {A }}^{\text {A }} \mathrm{I}_{\mathrm{K}}$	corimeg	

SECTION 15 －AUBBERS ELASTOMEÑS

mateeial	12 FL CODE		¢CVCM	CDRE TIME	$\begin{aligned} & \text { CUBE } \\ & \text { TE } \end{aligned}$	ATdus	AxPrication
ABLETHEAM 7－5 A／E AS $100 \mathrm{GM/4}$ DEUPS FLLLED SILICONE	A AC	38	－12	6 H	67	A In	EFL GASKET
AF－E－332－11 EidiYLEME JKOPYLENE DERIVATIVE	TRW	－ 60	－ 08				HoavDea
AMS 3345 SLLICONE EUBBEH	AHS	－ 11	－ 04	48 H	121	¢T4	cisher
AX SOBED XECON SILVEA FILLED SILICUNE	MET	－ 42	$\bullet 11$				GuUndet
BRR II SILICONE GECMMET CB 1077－40 BAQWN	LOK	－． 39	.09	24H	230	AIa	Vabeck
BTR RUEBE日 HD22－31	LOK	－39	． 0	10 H	82	AIs	
BTE EUEBEE HD22－31	LOR	2.28	． 52	24 H	250	AIH A	DAMEEA
BT\＆RUEBER HD222－22－2	LOR	1． 39	． 13				Datioca
OTA EUEBEG HD2 $22-2<-2$ IA ALUMINUM SANDHICH	LOH	－ 28	－ 01				dadera
BTR RUEBEF HTO（J－9330－5－1）／21	LOR	1.44	－ 20				Dadera
BTR BUEBER VIGKATICN ISOLATOK HT 2－100	LON	1.34	1.45				muosku
BUIYL 218 CU区ED	ENJ	3.50	1.37				
DUTYL $218-\mathrm{M}$ CURED	ENJ	2． 3.17	．37				¢JBoza
BUTYL 218－K UNCUKEL	ENJ	3.20	1.15	2H	160	AIin	
CEB 4012 FLUGROSILICONE COATED DACROA PABEIC	CHE	． 45	－09	2			GajoEL
CHO－SEAL 1230 ¢EINFORCED SILICONE GASKET SEAL LED	CHO	． 27	－ 12				¢AJía
CHO－SEAL 1285 ELEC COND SILICUNE BLUE	CHO	－ 41	－ 12				GASKL SEAL
CHJ－SEAL 1285 ELEC CUND SILICUNE BLUE ELIJE SILICONE	CHO	.12	－ 13	24D	25	AI葆	Taciat conthol
CHJ－TH2RM 1042 A／B AS 100／3 BAFPILLEDELUESILICONE	CHO	.404	－ 01	24 H	175	AIK	chascunz
	CHi	.37	－14	24			TUEGM COATROL
CJHBILASTIC EFI GASKET GO16 ALUM ELGTH／NEOPKENE	CHK	4.64	2.27				KEI GASKET
CJHRLASTLC RFI GASKET 8020 ALUM CLOTH／NEOPRENE	CdB	3.73	1．74				EGL SASKET
CJHRLASTIC RFI GASKET 8S10 ALUM LLOTH／SILICONE	CHR	． 52	－14				ari Gasker
	CHE	． 67	． 24	6H	249	${ }_{\text {A }} \mathrm{IK}$	rual $\frac{1}{}$
CJablastic RUDEER biO470＊1	CR		－		100	E－0	
CJHRLASTIC RUBEEF F10470 SILICONE SPONGE	CHK	－10	－03	24 H	204 182	Aİ	Dadach DAAREX
CJHRLASTIC RUBEEK F 10470 SILICONE SPONGE BROAN	CHR	． 12	－ 24	24 H	182		DadPEa
COHRLASTIC K 10450 GLASS HEINF DARK GKAY SILICONE	CHK	． 49	－18				Dastea
	CHR	－ 61	－31				DAESEK
CJHRLASTIC R 10480 EHUWN SILICONE SPGNGE－MEDIUM	CHE	－94	－38				Dadeka
CJGRLASTIC K10480 EED SILICONE SPONGE－SOFT	CHR	－67	－38				Datirsa
CJGALASTIC A 10480 hed SILICONE SPONGE－SOFT	CHH	1.21	－ 56	100 B	100	$\mathbf{S}+0$	GASKEI
	CHR	． 63	－ 27				Gascis
CJHELASTIC 400 SILICONE HUBBER SHEET GEN PURPQSE	CHE	1.07	－ 43				SPAAEE
CJHRLASTIC 500 SILICONE RUBBEK SEEET	CHE	－ 26	－13	48H	140	A In	SpALEA
COHBLASTIC SOJ SILICGNE RUBBER SEEET	CHR	1． 90	.59 -34				GASKEL
CJHRLASTIC 600 SILICUNE RUBBEA SEEET GEN PURPQSE	CHR	． 85	－15				GASKEL
COHELASTIC 9235 SLLICUNE RUBBER SHEET HIGH PERFORA	CH3	． 83	－ 43				GASAET
CJHRLASTIC 9255 SILICONE RUBBER SHEET HIGH PERFORM	CHE	－ 77	－ 29				Gasnet
CכHRLASTIC 9275 SILICONE RUBBER SHEET HIGH PERFORA	CHK	－67	$\bullet 18$				Gajkes
CJHRLASTIC 9855 SIIICUNE RUBBEK SHEET HLGH PEEFORM COKK／DC100 SHEET	ACL	5．05	1.58				Dadrem
CP 1006 NATURAL KULBER	BAE	10.09	3.14	20 M	146	${ }^{\text {A Ia }}$	DAdtica
CP 6002 SILICONE CLBBEH	BAK	4.35	1.16	${ }_{4}{ }^{\text {5M }}$	143	${ }_{\text {A }}^{\text {A }} \mathrm{IA}$	dajrea

SECTION 15 -- RUBERRS ELASTOMERS

SECLIUN $15 \rightarrow$ EUBBEKS ELASTOMERS

Matekidal	MFK CODE	\％＇EML	SCVCM	$\begin{aligned} & \text { CURE } \\ & \text { TIME } \end{aligned}$	CURE TEM2	aldus	Astut CATION
ECCUSHIELE SX SILVER FILLED SILICONE PASTE	EMC	1.05					Lt Statciod
ELCOSIL TP－50 A／E AS 100／9 BW SILICONE EASTE	EMC	1.07	－ 33	7 D	25	AIn	Suanamid
EJCOSIL $4952 /$ CAT 50 AS $10 / 0.02$ B F FLLED SILICONE	EMC	－ 29	． 14	7 D	25	AIA	focma contaid
ECOSIL $4954 / C A T 5 C$ AS 10／0．01 BW FILLED SILICONE	EMC	－ 24	－ 10	7 D	25	AIn	TaEaIL UUATKOL
EED 006 PEKFLUOFCELASIOMEE	DUP	－ 14	． 00				د心A\＆－6ASKiT
	DUP	． 51	－ 00				Scab
FAIKPEENE M5550 CUFED	DUP	6．90	． 79				HUSLEM SEALANT
FLJObOSILICONE GASKET WHITE THEEE PAKT SYSTEA	EEd	.41	－U5	8d	200	A In	vainci
FLURAN P5000 BLACA ELUOROELASTOMER TUBING	NPC	－ 10	． 03				PJblu
PLUEAK FSOOS VITCN A GED TUBING	NPC	． 53	． 00				fusidu
GEVAC YaC SEALANT 1	GEC	12.08	1.41	24 in	65	A IK	SEALAat
	GEC	2.82 .05	1． 54				Smateasid
GJBETTEX DUPED TIOA／CAEBON AS 9／1 Dit－GEAY／inlte	GOR	． 18	.03				Dantica
GכRE－TEX MODIFIED IOPED WITH CAK BON－BLACK	GOa	－10	－ 01				心atircia
GROMMET ELACK KUEBEA HIL G3036	AIH	10.85	4.82				Gmuatar
HS 50／VABOX／EUBLER ADDITIVES ULUE COMAECTOE INSUL	DCC	－ 79	－ 31				cums insul
HS $50 / \mathrm{VARO} / \mathrm{RUSBBEh}$ ADDITIVES BLUE CONNECTOK INSUL	DCC	－ 12	－ 00	7.5 H	255	AIs	COud 1 ASUL
	DCC	． 13	． 01	${ }_{8}^{4.5 H}$	204		cuad inSul
HYDRIN RUEBEK EPICELOKOHYDRIN－ET HYLENE QXIDE	BFG	1． 22	－ 18				mJousam
HYTAEL 4055 POLYESTEK／ANTI－OXIDANT	DUP	－ 22	－08				
INPALENE TUBING STABILIZED PCLYPEOEYLENE	IMP	－29	． 113				Tうめ1才心
INTERFACIAL SEAL SILICONE UC－K－1314	UCS	－21	－06	26d	125	A In	SEAL
KALREZ 1050 PEAELUCROELASTOAEB	DUP	． 44	－ 00				0×100
KALREZ 3018 PEFFIUCROELASTOMER	DUP	－40	－ 00				
KIRKHILI SILICONE SPOXGE FUBBER	KRC		－ 10	24i	177	AIn	¢a＞n cit
KIAKHILL SILICONE SEONGE HUBBER	KRC	1.50	.71				gasaer
LATEX SURGICAL TUBING	HDM	6.10	1.44				TJBiNu
LD 400 VIBRATIOA CAMPER	LOR	12.82	6.35				Dasacka
LST LST 350 EMI SUPPEESSANT TU日ING	LES	－37	－14				MaG SH1LCD
	LES	1．22	111 .39	16 H	150	A In	dan Sinlemb
HL 6－5j UHETHANE HIGH FRICTION ELASTOMER CLEAK	MEH	1.20	． 36				Eidstumed
Mal 801 A／B AS $10 / 1$ Bï SEALANT	¢ AH	40.24	1.78	24H	25 49	A I ${ }_{\text {d }}$	Scialaivis
MOSITES 1028 BLACK FLJOREL SPONGE RUBBER	MOS	． 81	． 20				cusalus
HOSITES 1028 BLACK FLUOREL SPONGE RUBBEA	MOS	－ 30	－ 08	96H	125	A Ia	cusadua
HJ SITES 1028 SPONGE	MOS	－ 21	－ 00				cusabua
M S ITES 1059 FLUORFL PLUUROCARBON ELASTOMER	HOS	． 05	－00				clastuma
MJ SITES 1071 FLUOEEL PLUGROCAKBO E EASTGMEE	MOS	－64	－ 35				Ela Sluath
	MOS	． 24	－ 00				ELLASIUGER
MS－30C02	mox	.07	.05				ElaStuabr
NEOPRENE GASKET SEAL	HNR	9.04	－85				Stab
O RING－SILICONE	AHI	1.12	－ 29				$0 \times 2 \mathrm{Ho}$
0 RING－VITON A ${ }^{\text {a }}$ O	${ }_{\text {AM }}$	－ 21	－ 03				$\bigcirc \mathrm{CiNo}$
0 KING PLEXCO 4069 RED SILICONE	EXC	1． 16	－ 31				
0 0 0 RING 1109 BLACK EITEILE HUBBER	DSL	8.35	3.61				0 0 0 0
PA BREE O－LUBE BAKIUM DASE GREASE	PSC	47.70	25.00				Gucasi
PABKER O－RING B 612－70	PSC	1.20	－ 00				$0-\mathrm{HLDG}$

SECTION 15 －－hUBEERS ELASTOMERS

万CVCM CUKE CUFE ATBUS

- conmmisinnornoonornn
irgornnvigomgomos
nom
-
ROMNT
のーローロックロッか

40489

1
㘯TMi
$\stackrel{\mathrm{MF}}{\mathrm{CO}}$
SECTION 15-G iJBBLRS ELASTOMERS

Matehial	MFi CODE	\%14L	\%CVCM	CUAE TIME	CUAE	atuus	astillaticn
SILASTIC 68-110 A/E AS $25 / 1$ ¢W	DCC	1.23	- 26	24 H	25	AIK	SLLICUNE
SILASTIC $08-110$ A/E AS $25 / 1$ Eid	${ }^{\text {DC }}$ DC	1.15 .84	.35	150 H	2.5	${ }^{\text {a }}$ IN	SiLucuns
SILAS'I IC 6 $6-120$ A/E AS $25 / 1$ EW	${ }^{\text {DC }}$ DC	.84	. 25	24 150 H	25	A in d	SLEiCUAE
	DCC	+.88	. 25	150 Hi	25	Aİ	SlLACUME
SILASTIC $68-210$ A/E AS $25 / 1 \mathrm{BW}$	DCC	1.24	.38	150 H	25	a Iu	Slailume
SILASTIC $63-2$ U A L E AS $25 \% 1$ U心	DCC	-91	- 16	24 H	25	A In	SLL+CUME
STLASTIC 68-220 A/E AS $25 / 1$ BW	DCC	1.03	- 18	150 H	25	${ }^{\text {a }} \mathrm{In}$	SLicicunt
SLLASTIC 68-310 A/E AS $25 \% 1$ UW	DCC	1.50	- 25	24 H	25	A In	SLiolcune
SLLASTIC 6 $6-310$ ̇/E AS $25 / 1$ [W	DCC	1.24	-33	150	25	AIE	Shuicude
SILASTIC 68-320 A/E AS $25 / 1$ 以iw	DCC	1.64	-32	24 H	25	AIn	SLhatcune
SILASTIC 6S-210 ÁE AS 10\%1 DH	DCC	1.02	. 24	24 h	25	A In	Sisacuay
SILASTIC 69-210 A/E AS 10\%1 BW	DCL	1.04	- 26	150 H	25	AIn	SLLICUNE
SLEAS'IC 69-210 iCI EU 103007	DCC	. 80	. 27				cuajlag
SILASTIC 69-210 ICI EJ 103007	DCC	- 02	. 00	16H	250	A IN	COATiag
SILASTIC	DCC	1.16	- 28	2450	25	Alk	S 1 LiCume
SILASTIC $69-220$ A/E AS 25/1 BW	DCC	1.31	- 25	150 H	25	A Iu	Shatcude
SILASTIC 731 ETV SEALANT	DCC	1.39 1.63	- 38	24 2 H	25	Aİ	SLALAAST
SILASTIC 75 SILICUEE	DCC	1. 16	. 22				ט-aldid
SILASTIC 75 SILICCIE	DCC	-29	- 09	31	204	AIN	Valyessat
SLiASTIC 881/CAT AS 14.2\%.55 Bd Sllilane	DC	1.63	- 43	90 M	38	AIn	SLILCUAE
SILASTIC 910	DCC	. 40	- 00	24 H	249	A 1R	SHiLCume
SILLICTIC RUBBEG - VILEATIUN DAMPEK BLUE/GRAY	BAI	3. 87	- 80				DASAES
	BAI	. 29	- 11	24.	204	AIA	DAdrEs
SILICUNE RUBBER MII $2 \triangle-6-765$ CLASS IIB GE $65-75$ RED	GRE	. 60	- 20				UAdtstity
SILICONE RU®UEh MIL $2 Z-8-765$ CLASS 2 Ghade 5U - GQAY	$\mathrm{FCC}^{\text {EC }}$	1.51	.40				gasker
	CHK	.36	- 21	24 H	160	AIa	Dasctia
SILICCNE EUBBER EEF AMS 3332 KED (WGP	2.82	1.32				Gusker
SILICCNE EUBEEF EEK AHS 3332 RED	WGP	- 31	- 20	24 H	175	A Ia	GdSket
SILICONE EUBBEK UNION LAHBIDE	UCC	1.04	-35				SLbICOAE
SILICCNE RUBBEK UNIUN CARBIDE	UCC	-10	-. 09	$6{ }_{6} \mathrm{H}^{4}$	232 204	AId	Sjuntiua
SILICONE RUBEEG 16S54 GHAY SHEET	TAM	.73	- 39	6 H			CUSLIUNAD
SISS-06 R/F SHIEIDING SPIEAL GASKET	SMC	. 71	- 25				GASKLi
SLM 71271 A/B AS 911 BW KED SILICONE	HAL	. 49	. 04	7 D	25	A In	Seidioant
SYRD 10U (43-3) FIIIED HYDBUCARBON KUEBEE	GEV	1.11 2.40	-13				Namk bux
SMRD 100F90	GEV	2.40	. 27	24.	100	A $\mathrm{L}=3$	Dalisem
SMRD 100F90	GEV	1.52	-19	16 H	100	AIt	Nagerk
SMRD 10JFgo cyclehtyane ansh - Internal zortion	GEV	1.67	-22				Dadera
	GEV	2.28	-27	24 H	25	AIt	Dancem
SYED 100 F 90 FLEXIBIE $\triangle P O X Y$ FOAM	GEV	1.10	-11	96 H	130	E-O	DAMP Ea
SYRD 100 F 90 FLELIELE ETPOXY POAM	GEV	1.00	- 11	168 H	138	E-b	NudeEa
SMRD 100 F 90 FLEXISIE EPOXY POAM	GEV	1.23	- 11	9 OH	135	E-	Dambek
SURD 100 F 90 NEN GESIN REP LACEMENT	GEV	1.39	- 17	8 H	100	E-3	Dadtem
	TCC		-0 1	7 7	25	AIR	Sageba
SJLITHANE 113/300/CABOSIL MS/CARBOLAC 1	TCC	1.36	.51	7	25	AR	$\begin{gathered} \text { SEALANT } \\ 0 \end{gathered}$

SECTION 15 -- RUBBERS ELASTONERS

material	$\begin{aligned} & \triangle F B \\ & C O D E \end{aligned}$	\%TAL	\%CVCa	CURE TIME	$\begin{aligned} & \text { CURE } \\ & \text { TEMP } \end{aligned}$	A IM	arblicatiun
SJLITHANE $291 / 271 /$ TIPA AS $100 / 48.5 / 7.9$ B	TCC	1.45	. 57	$\begin{aligned} & 1 \mathrm{H} \\ & 16 \mathrm{H} \end{aligned}$	60	E-3	CuSalum
	SRC	.91	. 40				datiesa
SPONGE RUEBEK SIIICONE AMS 31950.031% CU IN	SRC	- 71	. 40	24 H	138	A Ia	Daheca
SPONGE RUEBEE SIIICONE AMS 3195, 0 - 31% ICU IN	${ }_{\text {SRC }}$	- 07 -53 -48	-00	22 H	177	AI」	Damesia
SPONGE ROBUEE SWS2G9/SE546 AS 1/1 BM SIIICONE	CWR	. 48	-23	42h	177	A In	Daditia
SR $2702-75$ VITUN PER MIL 883248 TYPE 2 CLASS 1	STI	-16	- 00				DuSis Seal
	STI	-46	- 00	24i	260	A 1ix	O BA -
TECKNIT 86-10005 BIACK EUBBEii GASKET/0 BING	TEC	-35	-11				GuAnciolo kIdg
	TEC	. 09	-04				
TH 1006 SILICONE	LNP	$\square 71$	-15	10 H	116 149	Aİ	SEAT
				4.4 16 ti	204 246	A $\mathrm{A} \mathrm{I}_{\text {a }}$	
THERMACOTE 250 TEFEMAT JOINT CEND	THE		-02				Stainat
TI-R-300 INSULATICA - UNFIRED	TCC	2.09	-20				LaStimalion
TJER SEAL A B AS 1/1 BV	VAE	. 84	-03	24H	25	AIn	a da Slatant
TUBING-SILICOAE-EET GRADE 60 CL2 SPEC ZAR765	MET	- 75	- 26				Tudituo
TY GONG-SILICOAE-REL GRADE GO CL2 SPEC Z2R765	MET	- 09	- 19	24 H	106	A 14	TUEA 40
V-7000 ${ }^{\text {S }}$ / ENZOYL EEROXIDE AS $100 / 1 \mathrm{BW}$	NES	. 44	-19	10n	93	AIa	2ubemb
VACSEAL SİICONE LFAK SEALER	SEL	3. 52	-70	7 D	25	A 1 m	Scachat
VACSEAL SILICONE LEAK SEALER	SEL	1.48	-45	24H	100	AIn	SEALANT
VALCOR O BING - ETV 75	DCC	- 25	- 09				0 Etimo
VITCON A O EING NAS 1593-012	DUY	- 21	. 02				Stan
VITCN B	AGI	-89	. 00				vaumact
VITCN B DUPONT	DUP	. 86	- 04				Scat
VITON B-525 FOAK BUBBEK BLACK CLOSED CELL	INR	-33	-06	16 H	204	AIR	¢ UAM UAMPEK
VITRON CMEGSE	DUP DUP	- 3 l	- 03				MUB 1 Nu
HASHER BROHN SPONGF KUBEER SILICCAE AMS 3195	CHE	-85	-19				Dadzem
HASHER POLYPHENYIEAE SULFIDE 40% GLASS PILLED	THE	-08	-01				-asmeia

SECTION 16 －－CAPES

Matemial	MFK CODE	＊TML	${ }^{\circ} \mathrm{CV} \mathrm{CCM}$	$\begin{aligned} & \text { CURE } \\ & \text { TIME } \end{aligned}$	$\begin{aligned} & \mathrm{CURE} \\ & \text { TEMP } \end{aligned}$	ATAUS	ateincatich
C－725 TAPE PJLYESTEK FILM／2 SIDE ACRYLIC ADti／f	AAT	1.	－14				2 SaSCL TAPE
C－727 TAPE PVC EILE／2 SIDED ACiKLIC ADH／F	AAT		－ 21				2 S $1+\nu L$
CIECLE K 05 TAPE PCLYPROPYLENE FILM／2 SIDE ACIA ADH／P	Kas		4.72				
DABUFN TARE ST 275－3／4	DAD	3.	2.73				宥矿
	DNN DNN	1.	． 79				
DEV SEAL 750 MA TAEE POLYESTER FILG／2 SLUEACK ADH／F	DTC	1.	． 04				＜ShDin TAFE
DJDGE IND TAPE 2045－3 PTEEFILM SILICONE，ADH／E	DIN	－	－11				Tatic
DJDGE IND TAPE 2J42－2太 KAPTON FILM／ACHYLIC ADH／F	DIN	1.	－ 17	24 H	60	AIK	Tari
DJDGE IND TAPE 234 － 2 K KAPTON FILA／ACRYLIC ADH／F			． 24	24 H 16 H	00 65	A IK	
FASSON ALUEINU i FOIL／ACEYLIC ADH／VINYL．COAT／ii	APP		－ 14				＇tak＇
FASSON TAPE 1 ALUM FOIL／ACEYLIC ADH／4	${ }_{\text {APE }}$	1.	． 42	10 n	65	i If	TAPL
FASSON TAPE 220 IISSUE PAPER／2 SIDED ACHYLIC ADH／F	${ }^{\text {APF }}$	1.	－ 01				S Stumi IaFe
FASSUN TAPE 431 ELACK POLYETAYLENE／POLYESTER ADH／F	${ }_{\text {APP }}^{\text {F }}$（ ${ }^{\text {P }}$	2.	－ 09				
FLOLMEL TAPE 404 AIUM POIL	FLL		.01				Tats
PLUORGLAS TAPE $234{ }^{-14} \mathrm{~K}$ KAPTON／ACKYLIC ADH／F	CMG		－ 03				TdP5
FLOORGLAS TAPE $2345-1$ KAPTON／SILICUNE ADH／F	OMG		－ 16				Tats
FLUCRGLAS TAPE $234 \mathrm{E}-1 \mathrm{R}$ KAPTON／2 SIDE SILICONE ADH／F	OMG		－ 11				2 S¢ Lid TAPE
G 1033 TAPE ALUM KAPTUN／SILICONE ADH／R	GTS		－32				TARE
	GTS		-48	48ıi	125	E－3	20inuch Tape
G 406400 TARE AU CCATED KAPTON／ACEYLIC ADH／F	GTS		－01				$1 A L S^{2}$
G $406405-020$ TAPE KAFTON／AU MEHALD EL／Y 960 ADH／E	GTS		－ 02				PALS
G 407710 TAPE ALUMINIZED KAPTON／SILILCNE ADH／F	GTS		－ 57				CAKEDEL TAPS
G 410310 TAPE ALUAINİEU KAPTON／SILILONE ADH／F	GTS		－53				TAts
G－400／100 TAPE／S	GTS		－00				Hatt
GF 100 TAPE GYLAh COMPOSITE AS MYLAh／GT 100／MYLAE	GTS		． 08	5M	149	AIr	GAEG UMPUSITE
GT 100 TAPE THO SILED HEAT SEALING POLYSTER FLLA	GTS		－15	4 4	216	${ }_{\text {A }}{ }^{\text {a }}$	Catbeciay
GT 300 TAPE ONE SIIE HEAT SEALING POLYESTEF FILM	GTS		1．16	4M	216	AIk	Mapy
KAPTON H FILH－ALUMINIZED W／MMA $467 \mathrm{ADH/F}$	MMA		.04	$24 i 1$	100	E－3	－ats
KAPTON TAPE 6U3－1 SIIICONE ADHESIVE／F	TPE		－ 61				TALE
KAPTON TAPE GO3A KAPTON／ACRYLIC ADH／h	TFE		－12				Taye
KENDEL TAPE 292 FIEEHGLASS／SILICONE ADH／S	KEN		1.17 .80				catc
KENDEL TAPE 294 \％IEERGLASS／ACRYLIC ADH／R	KEN		－ 70				Taxi
LAMART TAPE 892 ALUM FOIL	LAM		.01				TAPE
MHA FOLi 7800 ALUMINUM／ACEYLIC ADH	MMM		2.74				PU\＆
MHA TAPE X－11J7 ECIYESTEE FIBEK／THERAOSET 区UEBER／日	MMg		2.50	oh	107	Alu	Tape
MY M TAPE X－117U ALLH FOLL／COND ACRYLIC ADU／F	MMM		－ 27				TALE
MY T TAPE X－1181 COFPEE FOIL／ACRYLIC ADH／F（ECC 4868P）	MGM		－ 04				Tare
MYY TAPE X－1205 KAETON／ACRYLIC ADH／F	MMM		－0	1d	125	A l	Hapt
MHA TAPE X－1237 AYION PAPER／ACBYLIC ADH／B	HMM		． 05				TAEE
MSM TAPE X－1242 ECIYESTEE／THEKMUSET KUBOER ADH／R	MMG		． 42	3 H	121	AIa	cars
	MMM		1.04	$1{ }_{16} 16$	130 120	${ }_{\text {a }}^{\text {a }}$ I ${ }_{2}$	TASE
MM T TAPE X -1257 EMEOSS AL／ACKYL ADH／P BAKE ON SCREEN	MMM		－25	16 H 16 H	120	E－2	TH2E
MAG TAPE X－1267 EMEOSS AL／ACBYLIC ADH／F BAKE AS ROLL	MNA		－ 19	16 H	120	E－2	Catc
MM M TAPE X－1267 EMEUSSED ALUM／ACRYLIC ADE／F CDSDUS86	SMM		$\bullet 21$	2H	121	AIf	

		Mategial	MFB CODE	\＃1ML	\％CVCM	$\begin{aligned} & \text { CURE } \\ & \text { TIHE } \end{aligned}$	CUBL TEMP	a T MuS	ASPLICATION
	TAPE	Y－8437 ALOM／AYLAE／ACK ADH／E（FOEGEE Y－9360）	MHM	． 68					
	TAPE	1－9040 2 EIL ALUM FOIL／SILICONE ADH／F（433）	HMM	.47	－21				Raph
My	TAPE	Y－9050 ALCM FOLL／GLASS CLOTH／SILICONE ADH／B	M ${ }^{\text {M }}$	－91	－38				Tape
MM ${ }^{\text {M }}$	TAPE	Y－9133 GREEN PULYESTER FILM／SILICONE ADH／F	M⿴囗	． 7.75	$\bullet 34$				TAPE
MH	TAPE	Y－9134A GCLD LEAF／ACEYLIC ADH／R	HMM	1.42	－01				TAPE
M19	TAPE	Y－9224 TE\＆LON YEP／ACRYIIC ADH／K	MMM	2.24	－4 03				CAPC
M ${ }^{\text {H }}$	TAPE	Y－9339 ALUM FUIL／ACKYLIC ADH／K TYPE 2－2 UAL	Mrin	－ 80	－02				TAPG
MY M	TAPE	Y－9339 ALCM FOIL／ACKYLIC ADH／E TYPE 3 －3 UAL	MAM	－ 20	－ 00				TAPE
MM M	PAPE	Y－9300 ALCH／UYLAB／ACEYLIC ADH／E	M CH	． 54	－01				Tars
M日 ${ }^{\text {a }}$	TAPE	Y－940 S ISCTAC ACRYLIC T KANSFER FILH $2 \mathrm{MIL/F}$	Min	－85	－ 00				TUAESFER TAPE
MM	TAPE	Y－9473 ISCTAC ACRYLIC TRANSFETEM $10^{\circ} \mathrm{MIL} / \mathrm{F}$	MMM	1.29	－ 02				TGASSEEE TAPE
MM M	TAFE	Y－9567（467 WEA）TRANSFER FILAACE／F SND HCH	MMN	1.27	.03				TKAidFer TAPE
MM ${ }^{\text {M }}$	TAPE		4Hy	1.02	－01				TaAMSFER TAPE
MH	TAPE	Y－967 TEAASFEE FILM ACRYLIC／FOIL SADDHICH	M8M	1.81	－ 01				TadiSter tape
HMM	TAPE	Yk－364 EXFELIMENTAL ALDH GLASS CLOT	MHM	1.44	－ 81				TAMASER TAPE
${ }^{41}$	TAPE	1194 COPPEF FOIL／NON COED ACSYLIC ADH／F	MMS	－28	－ 14				TAPE
MY ${ }^{\text {M }}$	mape	1245 EMEOSSED COPPER FOIL／ACRYLIC a $13 H / \mathrm{F}$	HiAM	． 26	－12				cal SnIELj
MM	TAPE	363 aLU GLaS	B4i	－ 48	－13				Tare
M14	TAPE	363 ALUH GLASS CLOTH／SILICONE ADH／F	MGA	1． 28	－ 43				Tare
dMM	TAPE	305 GLASS CLOTH／HHERMOSET HUBBELI ADH／R							
MYM	TAPE	4032 SCOTCHMOUNT FOAK／2 SIDE ACRYLIC ADH／E	MHM	2.09	－ 10	3H	121	AIK	TAEE AUUBT
MYM	TAPE	4032 SCCTCHMUUNT FOAM／2 SIDE ALGYLIC AD U／F	MHM	2.20	－15	24h	90	E－J	TAEE GUUET
M19 4	Tape	420 LUEEEF bASE ADHESIVEE OALRYLIC ADH／F	MAM	.91 1.85	． 01				2 SINEL TAPE
MM	tape	4205 MIL LEAD EOIL／RUBEER DASE ADH／E	Mnd	1.85	0				case
M 1	TAPE	422 aCkyiIc a diesive oniy ${ }^{\text {a }}$	MMM	1.03	－04				Tapb
HYM	TAPE	422 LEAD FOIL／ACRYLIC ADH／F	MMM	． 05	－0J				Tars
HH^{H}	TAPE	425 ALOM FOIL／SYNIHETIC AD	Ham	.24	． 03				TAES
M ${ }^{\text {HM }}$	TAPE	4253 MIL ALUM FOIL／ACRYLIC ADH／F	AM＊	－ 20	． 01				TaPE
MS	TAPE		M ${ }_{\text {M }}$	－ 79	－ 28				Tats
MH	TAPE	465 SEANSFEF PILM SYN ACRYLIC／FOLL SANDWICH	MMM	1． 23	－27				Capa
MY ${ }_{\text {M }}$	TAPE	4óf Thaivibea rilk ackylic／FUIL SANDaICH	MM	． 88	． 02	24H	75	AIK	Thadjeca TAPE
MMM	TAPE	467 NBA FIEEK LMBEDACEY LIC TRANS FILH／F	$\mathrm{BHM}^{\text {B }}$	－83	－04	$24 n$	75	AIK	hadicseke tape
M M	TapE	4945 SCCTCHMCUNT ACLY PGAB／2 SIDE ACE ADH／F	MMM	0.30	2.91				TaPL
M19	TAPE	4962 SCOTCHMOUBT NEOP POAH／2 SIDE ACR ADH／F	MMA	1.24	－ 1				2 3 LDED TAPE
MMM	TAPE	5 POLYESTEE／ACHYLIC ADH／R	MMí	2．04	． 00				2 Sthel TAPE
HMM	TA PE	53 POLYESTEK／THERMOSE＇T KUBBEA ADE／R	HNM	1.02	$\bigcirc 13$	3d			
$\mathrm{MM}^{\text {M }}$	TAPE	5411 KAFTCN／SILICONE ADH／	MMM	． 58	－03	1 H	125	Aİ	Pap
MY M	TAPDE	5413 KAPTCN／SILICONEADE／F	MGM	－ 87	－32	1 H	125	${ }_{\text {A }}{ }^{\text {IK }}$	TASL
MS ${ }^{\text {M }}$	TAPE	50 POLY	MAM	2.72	－ 40				Cap
AYM	Thape	56 PJLYESTEK／THEHSUSET HUEBAE ADH／K	HMM	2． 1.22	－27				Tata
MM	TAPE	O1 TEFLCN TEE／THELHOSET SILICONE ADH／K	MAM	1.14	$\bigcirc 07$	3 H	260	A Ia	TAMC
MY ${ }^{\text {M }}$	TAPE	61 TEFLCN TFE／THERMOSET SILICONE ADH／R	MMM	－33	－09				TAS
MYM	TAPE	65 TEFLC	MAM	． 33	． 03				Tayc
MH	TAPE	67 LPUXY FESTN GLASS CLOTU／THEAMOSET HUB／R	MM	2.76	． 71				242\％
CHM	TAPE	070 CLLIOEHANE／TISSUL PAPER／ACBYLIC－RUBBER	MMM	2．92	1.09				Hats
त6	TAPE	69 GLaSS CLOTHTHERMUSET SILICONE ADH／S	MMM	2.25	1.18				Tape

hatekial	${ }_{\text {MPa }}$	x［4i	xcver	$\begin{gathered} \text { CuAE } \\ - \text { TIML } \end{gathered}$	${ }_{\text {CuRe }}^{\text {Cump }}$	a 1100	－ 6 51cailo
Min TAPE 70 SILICCRE RJBEEK TAPE／SILICOME ADH／K MMA TAPE 74 POLY ESEEL YLLM／T	MMM	$\begin{aligned} & 1.02 \\ & 2.40 \\ & 3.120 \end{aligned}$	－73 .070 .72	24 H	121	c－s	
mm Tape 75 polyestek film／thermoset bubdelt adh／h		5.26	． 75	24		E＝0	Papt
	M M M	5． 584	－75				
		$1: 81$	：02				
	${ }_{89}$	$1: 99$	－71				${ }_{\text {Ta }}$
	${ }_{\text {M M }}$	－ 78	－09				Tater
MMH TAPE	MMM	\％ 3.61	\bigcirc				
	${ }^{\text {Mmi }}$	2：79	： 12				${ }_{\text {Pat }}^{\text {Pate }}$
	M9\％	2．28	－25				Stap
	${ }_{\text {BCCM }}^{\text {gic }}$	$4: 49$	1.22				Stapmanble tate
MYSTE PAPE 40 S ${ }^{\text {P }}$	${ }_{\text {BCM }}$	－ 41	－06				$\mathrm{Tape}_{\text {Tape }}^{\text {Pa }}$
MYSTIK AAPE ${ }^{\text {a }}$	${ }^{\text {BCCC }}$	3：73	－				TRELDAL TApe
	${ }_{\text {BCA }}$	1： 51	2.01 1042				
	${ }_{8}{ }^{\text {BCa }}$	2.41	1.45				PAL
	${ }_{\text {BCy }}^{\text {BCy }}$	3：22	－49				TARESLINTAPE
	${ }_{\text {BCH }}$	． 23	－04				Tams
价		－19	－ 03	488 245 15	150		－
	BCM	－92	$\cdot 27$	${ }_{96 \mathrm{H}}$	25	$\stackrel{\text { E\％}}{\text { E－}}$	Saps
	${ }_{\substack{\text { BCM } \\ \text { BCM }}}$	：97	194 -17	488	150 80 100		
	BCA	4.85	10.10				${ }_{2}$
	${ }_{\text {BCa }}$	2．197	－ 32	${ }^{248 \mathrm{H}}$	${ }_{138}^{80}$	术品	2 ${ }^{2}$
	${ }^{B C H}$	4.92 2.99	1.49	24H	150	$\mathrm{E}-\mathrm{O}$	2 Sideid Tape
	${ }_{\text {BCM }}$	2.63 $: 69$ 0	－04	24.	，	－0	Tate
	${ }_{\text {BCM }}$	－： 0.45	－02	24H	93	ariis	Pape
	${ }_{\text {BCa }}$	1.44	－00				Tat
	${ }_{\text {B }}{ }_{\text {BCA }}$	1：69	－35	1a	121	8－4	TAREL
MYSTIK TAE ${ }^{\text {M }}$	${ }_{\mathrm{BCH}} \mathrm{BCH}$	3． 21	－ 01				Trats
MSTSTIK TAPE ${ }^{\text {S }}$	$\mathrm{OCH}^{\text {O }}$	－ 24	－06				TAP可
MYSTIK ${ }_{\text {MS }}$	${ }_{B C H}$	：09	－00				TAPL

Hatbalal	MFK $\operatorname{coD} E$	\％TH	\％CVCH	CURE TIHE	$\begin{aligned} & \text { CUBE } \\ & \text { TEBP } \end{aligned}$	ATaOS	AFELICAIION
MISTIK TAPE 7503 TEFLON／SILICONE ADH／E LOT ALM4AT1E	BCM						
MYSTIK TAPE 7505 TEFLOK／SILICONE ADH／E ORCOTAPE OT－6／P	BCH	－ 21	－ 0				Tata
PERMACEL TAPE EE－6 79 KAPTCN H／SLLICOME ADH	CRE	12．26	7.39				Tape
PERHACEL TAPE SE－6EOO ALUE／POLYESTEE BUBBEA ADH	PEK	8.50	． 80				TAPE
PERMACEL TAPE EE－6761 KAPTON／SILICONEADIJS	PEE	2.74					care
PERHACEL TAPE EE－6G62 KAPTON／2 SIDE SILICONE ADH／E	PER	1．94	． .77				Tare
PERGACEL TAPE EE－7240 GLASS CLOTH／ACRYLIC ADH／K	PEk	． 45	． 03				Matebill tape
PERMACEL TAPE EE－7390 MYLAF FILM／ACRYLIC ADH／R	PER	． .71	－02				TAKE
PERMACEL TAPE P－051 2 SIDE ACRYLIC ADH／F	PEK	2.36	． 03				2 SiUdi TAPE
PERMACEL TAPE 21.100 ALC FOIL／GLASS FAEHIC／SIL ADH	PEK	3． 08	1.79				TAPC
PGRMACEL TAPE 212 EIT TEMP GLASS CLOTH／SIIICOAE AUH／R	PEK	1.35	－34	1H	145	A In	TAPE
PERMACEL TAPE 213 CLASS CLOTG／ACRYLICADH／F	PER	1．497	－ 70				TAtc
PERMACEL TAPE 221 PAPTON／SILICONE ADH／F	PER	9．27	． 55				Tade
PERMACEL TAPE 221 FAPTON／SILICONE ADH／F	PEix	1． 30	.63	48H	150	E－5	Tats
PERMACEL TAPE 223 KAPTON FILM／SILICONE ADH／F	PER	1.80	.73	48a	150	E－j	Caziund Papt
PERMACEL TAPE 252 EYLAR／TEERHOSET RUBBER ADH／B	PER	． 60	－ 01				Tatb
PEAMACEL TAPE 262 NOHEX FENYLON PAPER／TS ACE ADH	PER	7.90	3.58	30 H	149	AId	Tati
PERMACEL TAPE 2650 REDSILICONE TAPE WRAP ACK AD	PEE	． 87	3.58	2H		A In	Tare
PERMACEL TAPE 422 TEELON／SILICONE ADH／R	PER						Tape
PERMACEL TAPE 4220 TEPLON／SILICONE ADH／F	PER	.70	－ 33				Tate
PERMACEL TAPE 423 TEFLON／SCLICONE ADH	PEK	． 65	－37	3H	21	A If	Tak
PERMACEL TAPE 423 TEFLON／SILICONE ADH／S	PER	1.39	． 75	H		A $2 \times$	TAP号
PERMACEL TAPE 921 EHIERGLASS／SILICOAEADH／S	PER	12.69	5.95				以゙ムぐ
PJIYCOHR 630 TAPE EOLYOLEPINPILMAUEBER ADH／F	PEH CHis	4．91	1.27				iate
PP 87 TAPE YOLYEROPYLENE FILM／SYN LATEX ADH／F	NOI	2.29	1.84				
SB TAPE GLASS REINFORCED SILICONE EUBBER TAPE	BIS	2.17	－36				TAKE
S3 1020 GLASS REINFOECED SILICONE EUBBER TAPE	MOX	． 90	－33				
STRIP－N－STICK SILICONE TAPE 4405 R	$\mathrm{MOX}_{\mathrm{CH}}$	2.05	－05	16 Hi	125	E－2	Tare
STRIP－N－STICK 200A EED SILICONE SPONGE／ACRYLIC ADH／F	C ${ }^{\text {Ha }}$	2.30	－ 10				Pate
STEIP－N－STICK 300AE BLUE SIL SPONGE／ACHYLIC ADH／E	CHE	－ 34	-11				Tape
TAPE TEFLON 03041 TPEPILH／SLLICONE ADH／F	TPF	－38	－17				1AP5
	$\mathrm{CHR}^{\text {CHR }}$	－47	－20				TALE
TEHP－R－TAPE C TEFLCN PEP／SILICONE ADH／F	$\mathrm{CHR}^{\text {che }}$	．87	－14				TAF
TEAP－R－TAPE C－400 TEFLON FEP／SIL ICONE ADH／E	CHE	－ 27	－09				Tatic
TEGP－R TAPE G－550 tIbERGLASS／ACEILIC ADH／F	CHK	－30	．05				AAPE
TEMPR－R－TAPE G－557 SILICONE COAT FIBBEGLASS／SIL ADH／F	CHE	1.28	46				Cat
TEMP－R－TAPE G－565 FIBERGIASS／SILICONEADH／E PLAHE R	$\mathrm{CHK}^{\text {CHi}}$	2.14	－02	4d	205	A IK	TAFE
TEMP－R－TAPE G－569 FIDERGLASS／ACRYLIC ADH／F TLAM	CHi	2.72	1．45				¢
TEBP－R－TAPE GV FIEEFGIAS／SILICONEADH／E	CHM	1.69	－93				case
TEGP－R－RAPE HH－225 TEFLON TEE／SILICONE ADH／F	CHE	－． 22	－10				carc
TEMPRR－TAPE HA－255 TEPLON TPE／SILICGIE ADH／F	$\mathrm{CH}^{\text {cher }}$	1． 10	－67				TAFi
TEMERR－TAPE HM－352 TEFLON TFE／SILICONE ADH／PGIMER／F	CHR	－ 28	－15				Taje
PEMP－R－TAPE HM－430 TEFLON TPE／ACEYLIC ADİF	CHE	－ 26	－15				Tix
TEMP－R－TAPE HM－650 TEFLON TPE／SILICONE ADG／F	CGR		.07				TASE
TEME－R－TAPE HA－650 TEFLON TPE／SILICOUE ADH／R	C ${ }^{\text {cher }}$	－19	－08				2ast
TEMP－R－TAPE K－100 RAETON／2 SIDE SILICQIE ADH／KAPTON	CHii	1.74	.60	24i	66	E－4	Thá cuapgsite

SECTION 16 －－TAPES

Mateelal	MFH CODE	\％T ML	－ CVCO	LUKE TIME	$\begin{aligned} & \text { CURE } \\ & \text { TEMP } \end{aligned}$	ATA	ASHL」CATIUN
TEAE－K－TAPE K゙－102 KAPTON／ACBYLIC ADH／E	CHR	． 65	－01				AdM
TEMP－K－TAPE K－10 2 KAPTUN／ACKYLIC ADH／E	CHA	－78	0.01				RAS＇S
TEMP－K－TAPE K－104 RAPTON／SILLCONE ADH／F	CHE	1.42	－ 70				¢AES
TEMP－R－TAPE K－105 FAETON／SILICONE／F	$\mathrm{CHF}^{\text {che }}$	． 64	－ 15				1425
TEGE－R－TAPE K－250 RAFTON／SILICONE ADH	${ }_{\text {CHK }}^{\text {CHR }}$	－ 88	－ 32	$24 i 1$	66	c－4	1＇AL＇L U URPOSLTE
TEAP－K－TAPE K－350 kAPTON／SILICONE ADH／F	CHK	.81	－30		66	L－4	CACES
	CHR	．93	－47				1ヵ2
TEMP－R－TAPE M－U0／ThANSPARENT POLYESTEK／ACKYLIC ADH／F	CHE	． 48	.04				Tats
TEME－R－TAPE M－69 MYLAL FILH／2 SIDE ACRYLIC ADH／F	CHh	． 63	－02				2 SADLL TAPE
TEME－R－TAPE 4 －706／6EITE POLYESTELi／EF．ACKYLIC ADH／E	CH_{4}	－ 41	． 04				jurs
TEMP－K－TAPE M－97 MYLA凶／ACRYLIC ADH／YELLOW／F	$\mathrm{CHK}^{\text {che }}$	． 52	． 07				1ate
CGEOK－TAPE M－99 MYLAK／ACHYLIC A UH／F YELLOW	CHH	－ 37	． 05				Pats
TEMP－K－TAPE TA TEFIONTFE／SILICUNE AUH／F	CHE	． 44	－ 20				「4むく
TEMP－K－TAPE TG－900 TEADLUN／SILICONE ADH／F	CHE	1.07	． 41				tare
TEMP－R－TAPE TV TEFIONTFE／SILICONE ADH／E	CHE	－ 30	． 27				14tis
TEMP－R－TAPE TV－350 TEFLON TPE／SLLICONE ADH／F	CHR	－ 71	－4				PaL
TEMP－R－TAPE TYEE T TEFLON FEP／SILLCONE ADH／E	CHai	． 52	－ 31	245	100	A IR	CALC
TEMP－R－TAPE TYEE T TEFLON TFE／SILICONE ADH／S	CHK	59 -42 -42	－ 53				PALS
VALCA TAPE 7910 PIFELILM／SILICONE ADH／E	VAi	． .35	－． 14				TALE

SECTION 17 －－thegimal vREASES

MATEBIAL	MFE CODE	男TML	XCVCH	$\begin{aligned} & \text { CURE } \\ & \text { TIME } \end{aligned}$	$\begin{aligned} & \text { CURE } \\ & \text { TEME } \end{aligned}$	AIMOS	AKELICATION
CASTALL 832－M HEAT SINK GREASE－PINK	cas						
CASTALL 832－MJ HEAT SINK GREASE WHITE	CAS		3.47				Tdc凶u GREASE
	$\mathrm{CHO}^{\text {CHO}}$		． 10				CUAD GAEASE
D： 340 HEAT SINK GFEASE	DCC		－				cacaumi GEEASE
D＝ 340 SILICONE／ALCMPIGKENT AS 25／1 BW	${ }_{D C C}$		－12				Heal $31 N K$
EこCOSHIELD CO GKAFHITE FILLED SILICONE GHEASE	EMC		22．20				GEAS SINK
ESCOTHERM LN 80142 FILLED HEAT SINK GREASE	EMC		． 16				CHEAH GREASE
E＝こOTiERM TC 4 FILIED HEAT SINK GEEASE	EMC		.05				Tosion Grease
ENCOTHERM TC 4 FILIED HEAT SINK GKEASE	EMC		－17				TuEan Stease
EECOTHERM TC－4 FILIED HEAT SINK GREASE BTCH 10803014	EMC		－19				Tucha GREASE
E＝OTHERM TC－6 FILIED HEAT SINK GREASE	EMC		－10				THEix G GEASE
EOETHERA TC－7 FILIED HEAT SINK GREASE	EMC		－15				Tacin Guease
G－640 INSULGEEASE EEAT TRANSFEK	GEC		－12				GaEaH GREASE
G－64？INSULGREASE	GEC		.07				TuEaju GaEASE
－642 THEAMAL G／EASE－WHITE SIITCOUE	GEC		$\bullet 38$				THEXdun GMEASE
G－9042 THERIAL GEEASE WHITE SILICONE	MCG		－00				Taciuaz GEZASE
GAKEPIELD TiEKMAL GAEASE 120 －BLACK SILICONE	MCG		－ 01				CONL GIEASE
	WAK		－17				Gatasa

SECTIUN 18 －－MISCELLANEOUS

MACERIAL。	1RR CODE	芴TML	\％CVCM	CUnE	$\begin{gathered} \text { CUEE } \\ \text { TEMP } \end{gathered}$	aTaus	arymication
AAP－HC HCNEYCUEIb MICIINWAVE ABSOREEK	AAP	1． 75	． 04				abjumiss C
ADIPEENE L100／MOCAA AS 100／10 BL	DUP	1． 15	－ 15	7 D	25	AIA	Cuar cuat
ALUMINIZED MYLAE 1 CUN4 2	STC	－13	－01				GSHLELTOR
ALUMINICED HYLAE／EACHON DUPONT ADH 46960	22 C	． 40	.09				Cuad riLM
	${ }_{\text {APC }}$	2． 36	－ 03	2 H	60	Aİ	A DHCSLVE
ARBSTRCNG X－81 EFOXY X－81／A AS 10／1 BE／2PLEX RESIN	${ }_{\text {APC }}$	1.50	－ 13	2 H	74	AIk	cunt luat
3－010 ONBONDED B FIBEi	JON	－ 21	－ 1				Lasulatical
B－010 UNBQNDED B FIBER	Jun	－ 07	.00	1H	482	AId	INOULA」ION
BALSAM RESIN－	222	20.36	4.15				HCSA ${ }^{\text {d }}$
COKGN NITEIDE EEAT SLNK WASHGR	OCC	11.12	． 00				ABSHEX
C－99／DE＇TA AS 25／1 En EPOXY FILM	wop	11.07	． 04	2 H	¢0	${ }^{\text {A }} \mathrm{I}$	PLLú
CARKCLL 1019 EPOXY A／B AS 1／1 Ba	CAC	3.30	3． 30	5 D	25	AIK	ava csive
CONAFLEX EA－5U PCLYUGETHANE FUAM W／adh Backidg	BLA	8． 86	3． 17				LaSULation
CONAFLEX EA－50 PCLYUh＇THANE PUAM $1 / 0$ ADH BACKING	BLA	1.93	－ 34				Lujulacion
CJNATHANE CE 1155 ／／b／CELLOSOLVE aCeiate as 10／7／3	CON	1.30	． 08	30M	25	${ }_{\text {A I }}^{\text {I }}$	cone voat
CROFON IIGUT こONL CEEAK NO JACKET	DUs	． 37	． 08		－	A	F1Din OPTIC
CROFON 1 COND／JACKFT IELLO CODE	DUP	． 23	． 05				FGEK UPTIC
CYOFUN 1 YELLDN CCLED JACKET ONLY	DUP	－ 26	． 08				FIDSH UPTIC
CROFGN 3 CUND／JACKET GHEEN CODE	DUP	－ 20	－06				Fidin uptic
CZOFON 5 CUAD／JACKFT ULUE CODE	DU？	－23	－02				F1BELA UPTIC
CSB－40 STAR NYLUN ECNDED F 1 NISH	ATC	4．01	1.14				Addadu
CIL－15 BLACA EPOXY EAIHT EATCH 1541 dughes acft	cris	5.36	． 00	15M	25	A Ia	ralur
				15 H	66 6	AIK	
CPL－15 WHITE EPCXY SAINT BATCH 1694 HUGHES ACFT	CTL	3.85	.00	15 M	25	Ala	HaHCL
				15	66	Aİ	
				4 H	66	AId	
D＝24－F3 SILICONE	MSF	1.02	－ 21	14 D	25	A Lia	gadal baSE
	DCC	1.46	－36	3M	149	Aln	SHEACUNE
DG 510 SILICUNE FLUID 30，000 CPS	DCC	2.11	－39				Dadrem FLUID
D＝ 510 SILICONE KLUID 30，000 CPS DEVOLATILIZED	DCC	－ 48	－43	24H	80	2－2	Datutia FiUfj
D＝ 510 SILIEONE FLGID 30．0U0 CPS DEVOLATILIAED	DCC	． 16	－13	24H	80	E－2	Datatek PLUid
D＝93－500 UNCUREL KONOHEH LOT E2467－133	DCC	.06	． 02	24	125	AIK	Uddren PLUID
DYNA－FELT EEFEACTOEY FIBEA PELT－ETUH WASH	Jom	－09	.01				Hest
DY NA－ELEX nefanctoey fiber felt	JOS	－13	． 45				FEL＇
E－SCLDER 3022／HAELENLEA 18	EPO	1.25	－ 10	24H	25	AIn	Gudu auHESIVE
				$3{ }^{3}$	65	${ }^{\text {A IR }}$	
ECCCFOAM FPH 12－10E A／B AS 4／3 BW POLIUEETHANE FOAM	EMC	1.93	． 01	24 H	40	A La	fual
				4 dH	40	E－5	
	ERC	． 49	.86 .85	${ }^{1 \mathrm{H}} \mathrm{H}$	118	AIE	STEuclural AOJUODAAT
EこCOSORB AN 79 MICFOLAVE AESUXBANT／3M ADH 44	EMC	1.10	－ 39	3 H	25	A Is	adSumasit
				21 H	100	AIE	
ERON $328 / \mathrm{VERSAXIL}$（4C／SA－82／DETA／TOLUENE	SHLi	2.91	－00	${ }^{4} \mathrm{H}$	25	AIk	CuAESAE
				4 H	60	AIa	Cude CUAT
				411	60	$\mathrm{E}-\mathrm{o}$	

SECTION 18 －－MISCELLAAEOUS

MATERIAL	MFE CODE	＊THL	${ }_{5} \mathrm{CVCH}$	$\begin{aligned} & \text { CUiRE } \\ & \text { TIME } \end{aligned}$	$\begin{aligned} & \text { CURE } \\ & \text { TEMP } \end{aligned}$	ATaus	AKRLICATICN
EPON 828／815／140／CAEEOLAC／NOVACITE 1250	SHL	1.72	－ 10	$\begin{aligned} & 16 \mathrm{H} \\ & 2 \mathrm{H} \\ & 7 \mathrm{D} \end{aligned}$	$\begin{aligned} & 25 \\ & 65 \\ & 25 \end{aligned}$	$\begin{aligned} & \text { AI } \dot{\alpha} \\ & \text { AIK } \\ & \text { AI } \end{aligned}$	Muncsa VE
EPON 828／871／AEP／CAB－0－SIL AS $40.60 / 15.5 / 3$ Bi EPOXY	SHL	1.24	.01	8 B	54.	a Lik	ADdesive
ERON 929 EFOXX	SHL	． 60	－ 00	1 H	149	ALid	ADİ
EPOXYLITE P EPOXY	EPC	5.84	－02	72H	50	E－O	A UAESIVE
EPOXYLITE 8712 VAENISH	EPC	8.41	.03	24 H	52	${ }^{\text {A }}$ IK	CdFAEGNANT
EPOXYLITE 9653 PCLYUEETHANE E－160 8 COATS	EPC	9.15	.01	1H	71		cuar buAT
FASTENER 06077 INJECTION MCLDED POLYUAETHANE	DNN	． 76	－ 12				Fasicuisk
PELT GRADE S－600－1／8 POLYUEETHANE	SCT	2.05	． 32				¢ $\triangle 1 / 2$ SAD
PIJER OPTIC CABLE CC－100	BRX	． 27	－07				PLDER OPTIC
FIBER OPTIC CABLE 5030ST	P1a	－ 33	－13				FABL E UPTIC
PIBER OPTIC CABLE 50.30 ST－NO SILICONE	PId	－ 28	.07				PLDEAI OPTIC
FY 123－2 EPJXY ADH FILH PUEPLE	$\xrightarrow{A C C}$	1.23 .92	－14	${ }_{10}^{10}$	121	${ }_{\text {A }}^{\text {P S }}$ S	Avd $\mathrm{F}+\mathrm{LH}$
FHD 60－FURF FLBEEGIASS BATTING	OII	－6y	.01				CNavLAIICN
FJRMYAR HAGNET HIRE COATING 105 DEG C USE	22\％	$\bullet 23$	． 04				W\＆KE COATING
FSP43 CONDUCTIVE CGATING	JMH	4.32	－00				PaIat
FJLLER 171－A－152 ALUMINUM SILICONE PAINT	$\bigcirc \mathrm{HB}^{\text {C }}$	3.20	． 73	24H	25	d上氏	CuND Kalint
FS－1100 CONTRJLLED VOLATILITY FLUID	DCC	． 07	． 04				SLLICUAE PLUID
F6－1101 CONTROLLED VOLATILITY FLUID	${ }^{\text {DCC }}$	． 05	． 03				SLAACUNE FLUID
FJ－1107 CONTROLLED VOLATILITY FLUID	$\bigcirc \mathrm{DCC}$	－ 11	－06				SLLICUME FIUID
GPRP TUBE	¢ZZ	． 68	． 02				STHuCiURAL
GLASS／POLYESTER TUEE	POL	－ 54	－ 01				STKUCiJEAL
HEATER KAETON TS Q－9485	STS	． 58	． 01				héajex
HIGH K－707－£－9	GEC	． 07	－ 00				WIELETBIC
INSULATION BLANKET MULTILAYER	NMC	－ 01	－ 03				INSULAICN
LAMINATE MASEG－TE－${ }^{\text {L }}$	2Z2	． 37	－ 00				CAdAAATE
LIQUID CRYSTALS FNCAPSULATED IN PLASTIC／ADHESIVE	HLR	5．99	－93				
MAGIC VULC NEOPAEME EUULSSION	MAG	2.12	－ 21	1H	125	E－4	cuver
MAG ET FLEXIBLE STEIP MGO－ 1016	MM	－34	． 07				ang huld down
METASEAL 19V5 THEAEOSET POLYESTER／STYEENE COYOLYAER	AMS	9.38	－49	3H	149	A In	AKPGSUATE
BETHYLPENTENE PCIYPER	IBA	． 67	． 16				Wavsculde
GICROLITE FELT AA C．G\＃AU FT W／SALICOAE BIND－CENTER	JOM	． 29	－ 9	1H	200 330	${ }_{\text {A }} \mathrm{In}$	IuSusution
MIN－K TYPE SS HT IASULATION	JOM	． 20	－ 00				INSULaLICN
	JOM	． 51	． 06				Insidialion
MYM TAPE ALUM／MYLAE／ALUM／ACRXLIC ADH／B（Y－9360）	MAM	.79 1.25	． 06				TaPa
MOBAY－TEXIN 35SD ECLYURETHANE AASTENER	40B	1.03	－23				FaSicacis
MS 224 MHS MOLI EEIEASE ON FOIL	651	． 37	． 08				HuLS
MS－136 FLUOROCALBC E MOLD RELEASE ON FOIL	MSI	10.42	4.72				dulu iscisase
NAS 102303 PASTENER EEU INSERT	DEL	2． 20	.03				Fajısick
NICKEL BLACK EELECTROLESS PLATED ALU日I MUM	GSC	－ 32	－04				CUALING
NICKEL D GLLOSLITEDALEDALUEINUM	GSC	－12	－03				Cuating
NICKLE BLACK／COPPEF／ALUMINUE	GSC	． 28	．05				CuATANG
NORTOE EAR VIBRATICN DAMPING FOAM	22Z	15.49	9.35				fuad
NYLCN NETTING MIJ E－17091	2ZZ	1.41	－03				NELITNG
NYLON ROD PER MIL＿E－17091	DNA	1.13	． .05	72H	31	A In	Cuducedme

SECTION $18=-M I S C E L L A N E O U \dot{C}$

Matekial	$\begin{aligned} & M F H \\ & \text { CODE } \end{aligned}$	别江	\％CVCM	$\begin{aligned} & \text { CURE } \\ & \text { TIME } \end{aligned}$	CUEE TEMP	a 1 aUS	AEELACATION	
ORTEC EPCXY ALUMINUM COVER	ORT		． 00				DLSLCTUK	
ORTEC EPOXY GOLD CCVEK	ORT	8.	． 05				UEILCluR	
P－49 POLYESTEA M／2S UENZOYL PEROKIDE	KOH	1.	－ 05	104	104	AIA	IUdi	
KTV 602／SRC 05 AS C． 25 \％CAT DEVOL BATCH 10	GSC		－U 1	7 7	25	${ }_{\text {A }}^{\text {A }}$	kutidas	
RIV OUT／SRC O5 AS C． 25 N CAT DEVOL BATCH 20	GSC		－ 02	7 D	25	A14	以uだメu	
RTV 602／SAL U5 AS O． 25 \％CAT UEVOL LATCH 25	GSC		－01	7 D	25	A La	＜uTisNu	
R90－709 SILICONE JUNCTION COATING	DCC		． 37	1 H	70	A In	Sıbı6UNZ	
SAM SILICONE EESIN RIGIDIZED W／SliICa FIbEiS	GEV		． 02	96 H	204	A A a	aunarive	
S＝OTCHMATE POLYESTER FASNENEH HOCK／NAP	MMA		0.3				rasimitu	
SCOTCHMATE SJ3401 AYLON HOOK AND PLLE	MBA		.01				raSictuth	
SCOTCHMATE SJ3402 MYIUN HOOK AND LUOP	MMA	1.	－00				FASTEMEA	
SCOTCHMATE SJ3402／SJ34J1 NYLON HUOK AND LQOP BLACK	MMM		－ 06				raja cinior	，
SCOTCHMATE SJ $3526 / S J 3527$ ADH BACKED $4 Q O K$ \＆L LOOP	MMi		2.22					
SiJ 2 D 10－10 FASTENER Ghay AnUdIZE	GEL		－ 31	3 H	204	Alis	SLALCNE	
T3S 757 FLAME LETAEDANTSILICONE BAEKIER	GEC	2.	.76	5M	149	Ala		
TECKFELT 45－09802 SILICUNE IMPEEG SNI STAINLESS $^{\text {S }}$	TW？		－29	24a	100	A1a	$\mathrm{F}_{\text {ciot }}$	
TECKFELT $45-09810$ CNFILLEL SINT STAINLESS	TEC		－ 00				Hider	
TECKNIT 82－124571 SILICONE SPONGE W／SCEEEN	TEC		－ 74					
TECKNLT 82－124571 SILICONE SPONGE	TEC		－ 02	48 H	121	E－J	Datickit	
TEEKNIT 82－124571／72－UOUU2／82－124571 COMPOSITE	TEC		．01	48 H	121	E－j	Datgith	
THELCMA－FILE ASTEO HEL PCLYESTEK－BETA GLASS－TEFLUN－PLUUREL	THEL		－ 10					
VELCRO HI－AIG FASTENEK NUMEX／FLAME RETAMD	VEL		2.04				EADIEAEK	
VELCEO HI－AIE FASTENER NOMEX／FLAME RETAKD／ETUA WASLI	VEL		－ 01	16H	1 J 0	A Id	FASt bater	
VELCRO HI－AIR EASTENER NOMEX／FLAME RETARD／EXTAACTED	VEL		－00				FASAEAEA	
VELCRO HI－AIA HOCK／LOUP FLAML EETARD 0399 BACKING	VEL	5	1.93					
VELCRO AI－AIR OU2－C66－017－0399 HUOK L LUCP	VEL		－ 58	24H	105	E－L	FASLCAER	
VELCEO MIFTEMP EASTENEK NCHEX／POLYIMLDE	VEL		－00					
VELCGO MIDTEMP FASTENEh NOMEX／POLYI GIDE／EXTRACTED	VEL		． 00				FASicincm	
VELCEO NYLUN HOOK AND LUOF	VEL		． 05				CHOLENEX	
VELCEO NYLON HOOK／LOOP 0199 BACKING	VEL		－ 04				Chithidu	
VELCEU NYLON NAP FESTENEKUNEEL／TEFLON LOOPS	VEL		－ 20				FASMENET	
	VEL		－ 1				casisime	
VELCXO 100 PULYESTER HOOK AND LOOP	VEL		－02				FGSLENCA	
VELCEO 100－0 C3－0 17－0327AB NOMEX HOOK／LOOP W／ADH	VEL		1.70	14 D	25	A 5 k	caらtsivek	
VELCRO 100－005－012－0199AB／100－101－012－0199AB HEL	VEL		－ 02				EaSCEMEK	
VELCRO 100－006－715－1299AY STAINLESS LOOP	VEL		－ 0				CASLEMER	
VELCRO ${ }^{\text {VELCEO }} 1000-081-012-0199 / 1000-009-012-0199$ WHITE	∇ VEL		． 03				FASAEMSG	
VELCEO 1000－081－106－0199／1000－009－100－0199 OL／GREEN	VEL		－ 05					
VELCEO 1000－061－33C－0199／1000－009－330－0199 BLACK	VEL		－ 06				Fistembin	
$X-850$ FILA LAMINATE ALUM MYLAR／DACHON SCXIG／AL MYLAR	GTS		－ 14				CuVEa	
XR PERFLUOROSULFCNIC ACID MEMBEANE	DUP		．02				Mand latac TJBL Mu	

SECTION B

MATERIALS - ALPHABETICAL LISTING

mateeial	DATA GEFERENCE	KTML	xcych	$\begin{aligned} & \text { CURE } \\ & \text { TIME } \end{aligned}$	CURE	$1{ }^{1}$	APPLICATIO
A-1177E A/E AS 1/1 But EPOXY - Brown	GSFC7166	. 45	. 02	24H	25	A	dUHESIVE
	GSFC9 936	-75	.04	308 488 C 16 H	82 25 25	${ }_{4}$	ADHESIVE
A-1362-B ONE COMECAENT EPOXY				151	121	${ }_{4}$	
$\text { Al } 196 \text { AB } \mathrm{EPO} 10 / 8 \mathrm{Eh} \text { EPOXY }$	$\begin{aligned} & \text { GSFC9 } 298 \\ & \text { GSFC } 8300 \\ & \text { GSF } 451 \end{aligned}$	1.18 1.69 1.54 2.85	.34 .65 .04	18 70 7	${ }^{121} 12$	${ }_{\text {A }}{ }_{\text {A }}$	
A-4000 A/B AS $100 / 4.5$ B SIlicone	GSFC 3451 GSFC	$\begin{array}{r} 1.54 \\ 2.85 \end{array}$.04 1.63	${ }_{10}^{70}$	25 25	${ }_{4}{ }^{\text {A }}$	ADHESIVE aDHESIVE
AAP-HC HCNEYCOMB MICROWAVE ABSORBER	GSC13006	1.75	. 04	2 H	93	AI	AaSOBBER
ABLEEOND 16-1 A/EAS 10Q/7 BH/ SILVER FILLED EPOXX	GSFC ${ }^{\text {GSFC9 }} 3928$	-85	:04	24H	25	AI	GUAM COMFOSITE cund adhesive
				16 H 2 H	65 77 7	A A	
	GSFC5531 GSFC5 250	1.39 3.19	-080	30 M 15 c	150 65	${ }_{\text {a }}{ }_{\text {a }}$	GUND ADHESSIVE
	GSPC ${ }^{\text {GSC }} 3$	-39	-00	${ }_{\text {i }}$	52	${ }_{\text {AL }}$	ADHESSIVE
ABLEBOND 293-1 A/E AS 25/4 Bu EPOXY EPQX	GSC1 GSFC	2.05 1.32	-02	$4{ }_{4}^{4 H}$	74 74	${ }_{4}{ }_{\text {a }}$	\triangle DHESI VE
	GSC10 836	1.05	. 07	2 C	65	${ }_{\text {A }}$	ADHESIVE
ABLEROND $41-5$ EPOXY	GSFC5693	-30	-00	30 H	150	A 1	CUUD ADEESIVE
ABLEBCND 4 ¢-6 EPCXY	GSFC 5637	- 34	-01	30 H 3	150	${ }_{\text {AI }}$	A A H ESSIVE
ABLESCND 403-1 A/E AS TOGM/16DeS SILVEF FILLed EPOXY		. 62	1	$1{ }_{1}^{2 H}$	25	${ }_{\text {AI }}$	CUND ADHESIVE
	GSC12148 GSC10814	2.59 .24	- 16	2 H	71 150	A1	AUUESIVE
abledund 71-1 Silviel fllled poly midde	GSC11651	- 25	. 00	10 H 304	275 150	${ }_{\text {A }}{ }_{\text {A }}$	UUND ADHESIVE
ABLEBOND 731-1 A/E AS 100/47 BM YELLOM EPOXX	GSic 720		. 11	$3 \mathrm{3OH}$	275	${ }_{A 1}$	
	GSFC7802	.98 2.76	$: 03$ $1: 19$	- ${ }^{30} 8 \mathrm{H}$	150	${ }_{\text {A }}^{\text {A }}$ a	YUND ADHESIVE
ABLEEOND 88-1 A/E AS $1 / 1$ Bu SILV EK FILLED EPOXY	GSC11696			90M	125	AI	
	GSC1 1699	$\bigcirc-41$	-04	1 H	83	AI	CUND ADHESIVE
	GSC11824	2.02	:0\%	$1{ }^{1}$	125 150	A1	CuND ADHESIVE
ABLEBCND 88-1 A/E AS $1 / 1$ Bh SILV EK FILLED EPOXY	GSC11887	2.76	-00	1 H	150	41	CUND ADHESIVE
	GSC11932	-81	-01	${ }^{24 \mathrm{H}}$	$1 \begin{aligned} & 155 \\ & 15\end{aligned}$	B-	culd adamsive
ABLEFTLM ECF S 35 CIOTA SUPPOKT S ILVEE PILLED EPOXY	GSFC7763	-88	-16	3 H 2	174	A1	FILM ADHESIVE
ABLEFILM ECF SSO-1 GLASS SUPPORT SIIVEFT FILLED EPOXY	GSC12490	037	-10	3 3	125	${ }^{\text {ald }}$	GLA ADHESIVE
	GSFC ${ }^{\text {GS }}$ G12	1.62	-08	${ }^{3} \mathrm{H}$ m	74 149	A1	ELIM ADHESIVE
ABLEFILM 504 CLOTE SUPPOET/EPOXY RILM ADB - WHITE	GSFC ${ }^{\text {GSFC }} 792$	-38	-00	1.5 H	93	${ }_{\text {Al }}$	RTIM ADHESIVE
	GSCl ${ }^{\text {GS }}$	1.05 .90	-37	$3{ }^{3} \mathrm{H}$	100	${ }^{\text {alt }}$	K1LM ADHESSVE
ABLEFILM 507 GLASS CLLOTH/B-STAGED EPUXP	GSFLS 5491	- 38	. 02	1.5 H	163	AS	C1LM ADHESIVE
ABLEFILM SiJ-IV CLCTH SUPPORTEPOXY FILA ADH PINK	GSPC 2272	-07			74	A 15	Fth ADHESIVE
	GSFC8717	-83	-00	3 B	165	41	FALM ADHESIVE
	GSFC8798	-31	-04	2 C	125	ait	FiLM ADHESIVE

Material．	$\begin{gathered} \text { DATA } \\ \text { RERERENCE } \end{gathered}$	＊THL	\＄CVCn	$\begin{aligned} & \text { CUKE } \\ & \text { TIME } \end{aligned}$	$\begin{aligned} & \text { CUKE } \\ & \text { CEIE } \end{aligned}$	al huj	APELICATIUN
$\triangle P C U 5313$ A／B AS $100 / 8$ Bu GEEEN EPOXY	GSC10553	1.80	． 0	1 H	66	dik	A HESSL
APIEZON C OLL YACULA DEGASSED	GSC1 1800	81.19	47.47	1 id	65	c－2	LUBRICANT
APIELON H IYY DAOCAhbON GREASE	GSFC4696	－ 25	． 02				uncise
APIEZO N G GREASE VACUUM DEGASSED	GSC11803	－． 34	． 019	1ri	65	¢－2	LUEASE
APIEZ心N N GEASE	GSFC6380	． 08	－ 00				Gacase
APIEZON T GREASE	GSEC5813	． 76	－12				ن¢EASE
A？PLETCN CUNHECTOS KED SILICUNE INSEKT	GSC11222	－ 33	－ 14				UUNA INSUL
APPLETCN CUNNECTOE RED／BLACK PHENOLIC FIBEEGLASS	GSC1 1219	－ 24	－ 00				－und INSUL
APPLETCN CONNECTOR HHITE FLUOKOSILICONE INSEAT	GSC11216	． 24	． 09				－UNN INSUL
AP8004 FAST CUAE EEOXY ACU－PAK PRE－MIX	GSEC7079	$2=91$ 3.90	：22	24 Hi	25		A 4 UESIVES
	GSFC 1123	． 57	．15	3 H	60	¢ 16	avii rOTIIN心
ARALDITE AV100／HV1C0 AS 1／1 ⿺𠃊⿴囗十丌 EPOXY	GSEC 1126	.78	． 10	7 D	25	$4+\mathrm{h}$	
ABALDITE AV124／1iv948 as 1\％1 Bh EPUXY	GSFC4432	3.01	－ 20			H	AUKESIVE
ARALDITE AV138／HY9G8 AS 100／40 BW EPUXY	GSFC6 899	． 97	． 05	7 D	25	A 1 K	a ${ }^{\text {a }}$ LESIVE
A日ALDITE AW134B／EYC94 AS 100／40 BH ESOAY	GSFC7109	1.59	． 04	2418	25	A1k	UUTIING
ARALDITE CY179／906EOLS／MS－XL EPOXY	GSFC4552	1．16	.007	${ }^{16 \mathrm{H}}$	93	$\Delta+K$ $A+K$	suTTING
ARALDITE MY750／HIS $72 /$ HARBLE FLOURAS 100／27／100－	GSFCO050	1．26	． 01	3H	80	A 1 K dit	CUTTING
ARALDITE MY750／HY2 19／DY219／TEXOGLASS 480	GSFC 726	7.55	－ 01	30 d	25	A 1 n	LAM ${ }^{\text {NATE }}$
ARALDITE HY750／HY974 AS $20 / 4.6$ Bin EPOXY	GSFC 1135	－19	． 01	3 UH	60	A 1 K	AUH YOTILNU
ARALDITE MY750／HY974 AS 20／4．6 BHEEPUXY	GSFC 1138	． 27	－ 03	45 M	100	A 1 k	AUH POTANG
ARALDITE 106／HV953U AS 1／1 BL EPOXY	GSFC6578	5.18	－ 33	24 H	25	A 1 H	aUnESIVE
	GSFC 3043	1.88 2.00	．03	24 H	25	A1K	－UNESIVEL
ARALDITE 508／EPON E28／araLCITe＇9bl／PColdu4 ERQXY	GSFこ4768	2.31	． 42	$6{ }^{6}$	49	A1发	
	－5に，768			1611	49	ALi	antesive
ARALDITE 6004／568／CABOSIL／DP－138／951／PC－1244 EPOXY，	GSFC4770	3.74	.07	${ }_{5}^{4 H}$	25	Aik	rUTPING
AR EMCO－BOND 517 THERMAL CONDUCLIVE EPGAY－Biack	GSEC8012	． 91	． 04			Ain	AUHESIVE
AREHCO－BOND 556 A／E AS 1／1 BH SILYER FILLED EPOXY	GSC11531	1.54	． 08	3H	66	aln	－Und ADHESIVE
A3EMCO－BOND 556 A／E AS 1／1 Bhi SILVER EILLED EPOXY	GSC11533	． 73	． 05	3 ii	66	dik	Uund ademsfye
ARMAFLEX TUBULAE IASULATION SLEEVE BLACK	GSC10194	8.57	2.41				ansulation
A3MALON EILK TGO35C BLACK TEE ON GLASS FABBIC	GSFCJ567	． 09	.01				HEAT BABSIEH
ARMALON FILA TG4O3C NEUTEAL TEFLON ON GLASS FABRIC	GSPCS509	． 05	－ 01				पLAT EARAIBR
ARMORED FQLYTHERMAIEZE 2OU MAGNET MIEE BROWN	GSFE4408	－ 85	－11				$\triangle I R E$ COAT ${ }^{\text {NG }}$
ARMORED XECON SIIVER FILLED SILICONE	GSPC9080	－-12	－17				GASKET
ARASTRONG A－12 A／B AS AR ASTRONG A－12 A／B AS A	GSPCO739	$1-11$ $1-25$.01	24 H	25 5	H14	adicsive
	GSFC64410	1．25	－04	20 m	93	a 4	aUHESIVE
AR ASTHONG A－12 A／B AS $2 / 3$ By browi epaly	GSPCO764	1.95	． 06	24 H	25	A 1 cis	a u HESIV
ARMSTBONG A－12 A／E AS $2 / 3$ EN BROUN EROXY	GSFC6766	1.94	． 07	3H	71	A14	a ${ }^{\text {DHESIVE }}$
	GSFCS 712	1.87	－00	$\stackrel{84}{ } 8$	25		ADHESIVE
ARGSTEONG $A-12$ A／E AS $3 / 2$ EM BROWN EPOXY	GSPC6730	． 65	－00	8 ll	54	ain	a ${ }^{\text {a }}$ HESIVE
	GSFC3439	1.46	－06	24 H	25	atic	autiesive
ARMSTRCNG A－271 A／E AS $7 / 3 \mathrm{BW}$ EPOXY	GSPC4918	－73	－ 02	140	25	A 1 a	AUHESIVE
	GSECL151	－49	－ 01	1304	93	dik	ADHESIVE
ARUSTECNG A－31 A／E AS $6 / 3.4$ BW TAN EPQXY	GSC11397	． 72	－22	7 D	25	A1K	a OHESIVS $^{\text {d }}$
	GSECY930	－57	－04	78	25	ath	AUHESIVE
	GSC1 1401	－． 55	－． 36	70	25	A 14	a AHESIVE

Material	$\begin{aligned} & \text { DATA } \\ & \text { GEERENCE } \end{aligned}$	\%TML	SCVEs	$\begin{aligned} & \text { CORE } \\ & \text { TIR } \end{aligned}$	CURE	al mus	APFLICATIUN
AR MSTEGCNG A-31 A/B AS 6/4 BW EPOXY	GSFC 1117		03	2 H	60		A UHESIVE
AZMSTRONG ${ }_{\text {AR }}$	GSFC4288	- 71	01	7 D	25	A)	a D HSSIVE
AAMSTECNG A-31 A/E AS $6 / 4$ BW TAN EPOXY ${ }^{\text {a }}$ (${ }^{\text {a }}$ (COMP)	GSFC8768	1.51	.06	7 7	25		\triangle UHESIVE
ARMSTEONG $\begin{aligned} & \text { AR } \\ & \text { ARSTACNG } \\ & \text { A }\end{aligned}$	GSC12799	-44	. 01	7 D	25	${ }_{\text {a }}^{4} \mathrm{i}$	AUHESIVE
ABMSTBCNG C-1/ACI A AS $25 / 2 \mathrm{BH}$ EPOXY	GSFC4944	2.44 1.97	-00	${ }_{24}^{4}$	65	${ }^{\text {A }}$ L ${ }^{\text {a }}$	DHESIVE
ARMSTRCNG C-1/ACI A AS $25 / 2 \mathrm{Bm}$ EPOXY	GSPC8492	1.23	-01	2 H	65	${ }_{\text {A }}^{\text {A }}$ H	ADHESIVE
	GSC12802 $G S F C 8840$	1.33	04	7 7	25	AIM	ADHESSIE
ARUSTGCNG C-4/ACI AS $1 / 2 \mathrm{~B}$ EPOXY	GSFC8843	2:89	-28	7 D	25	ALE	ADHESIVE
ABMSTRCNG $C-7 / A C T$ has $1 / 1 \mathrm{BH}$ EPOXY	GSPC 3001	-35	. 02	210	25	A 1 H	Dj ESSIVE
ARMSTRCNG	GSFC 331 GSFC4	1.81	-09	7 D 3 H	25	A1采	ADHESIVE
AEMSTRONG C-7/ACT $\mathrm{h} / \mathrm{CABOSS}$ S/LAR-CAE ERE ENAMEL	GSFC 482	2.13	. 01	3 H	66	A K	UATING
ARMSTBCNG ${ }_{\text {araster }}$	GSC12859	2.79	-05	24 H	25	AIH	ADHESIVE
	GSFC 0095	1:50	-13	2 H	74	$\underset{\text { aisk }}{\text { din }}$	UNF COAT
	GSFC6934	8.21	- 01	5D	25	Aix	A UHESIVE
	GSPC4536	-68	$: 27$	304	44	1 k	AMPREG ADHESIVE
ASTEEL 360 POLYAEYI SULFUNE,	GSFC 1924	1.94	. 02				aucd Cend
	GSC10230	1.60 .24	-00				UULD CEND
AVEEY MOUNAT NG TAES - SEM GLA P	GSC12913	13:32	6.21				TAANSFER FILA
	GSFC6269	-61	. 05	3H	65	A15	Q DHESIVE
A9-601 EPOAY HONEYCCME ADH	GSFC 2641		-03	1 H	121	${ }^{4151}$	UN FILM
B 123 P P PENGLIC CCII VARNISH	GSFC4960	2.23	0.37	${ }_{8}^{84}$	135	AM	\checkmark AREISH
B-0 10 UNBCNDED B EIBEA	GSFC6784	-21	0.01				VAEBISH
	GSPC6786 GSFC4624	-07	-00	1 H	482	AIR	AnSulation
baker polyukernane system 65				$8{ }_{8}$	100	Aik	butiong
	GSFC4720	-28	. 03	${ }_{16}{ }^{\text {H }}$	25	A1k	UNP COAT-POT
BALSAM RESNG BAKEK EOLYURETHANE SYSTEM G5	GSPC4722 GSC1 1603	- 26 2.85 20.36	. 01	16H	60	AiAK	CUNF COAT-POT pructubal
BAR LCK CABLE TIE AYLOX 66	GSPC6040	20.36 2.6	4.15				USIN TIE
	GSFE 3986	1.20	-05	304	66	A15	
	GSPCO GSCl	2.54	-00	30 M			CENS
BC 340 VAZALSH PCLYESTER/XYLENE				${ }_{1}^{2 H}$	1135	${ }_{\text {A A }}^{\text {A }}$ K	
BE S46-3 PHENOLIC VALNISH	GSPC8060	3.31 .05	1.02	6H	135	AIn	VAANISH
BELDEN BLJE ISCMID $36 T-1$ MAGNET ARE BLUE/GEEEN	GSFC4442	-95	. 75				Lisue coating
	GSPC 2803	-02	. 0.00				MRE COATING
BELDEN SML MIEE VALUES INCLUDE WT OF WIhe	GSFC 3181	15.49	10.03				OUE TOR INSLING
BELDEN $8524-1000$ YINYL INSULATION	GSPC 0659	24.03	8.72				CBLE INSUL
	GSPC4446	$2-24$	-12				Like Coating
	GSC10931	2.08	. 02	24B	300	A1K	Licinging


```
logoman=3gmmonms
```

 -
 วi
 \(?\)
 GSFC
$G 5 F C 458$
$G S F C 4530$解亿ुप
 3クु勺す

$$
\begin{aligned}
& \text { BL } \\
& \text { BI } \\
& \text { E } / E \\
& \text { D }
\end{aligned}
$$ 8495 GSFC7529 $G S F C 4672$

$G S F C 34+1$ GSPCO 155

.02

 2.62른 2.50 ni $\stackrel{N}{\text { N }}$ シivin

IKE CABLE
IRECAULE
ETi CABLE INSUL
KACKET
TE JACKET COHEL SILICONE INSUL

$$
\begin{aligned}
& \text { EAKT } \\
& \text { KARA } \\
& \text { CABL }
\end{aligned}
$$

SFC 1390

 GSEC 3959 GSFC 3961 3 bi epoxy ONDMASTER M777 A／E aS $1 / 1$ bu EPOXY

PAIMEK
ADHESIVE adHESIVE ajhesive a M HESIVE
AUHESIVE YATMER
AUHESIVE
ADESIVE

 9kTidinत 2
4
304
3
4 $\triangle A B E L$

4

$\stackrel{4}{\square}$
$\xrightarrow{7}$
$\stackrel{1}{1}$
武
i
i
$\stackrel{x}{4}$
80
150
200
25
25
25
25
135
25
25

nouncininooina is is
$\stackrel{i}{9}$
$\stackrel{3}{2}$
$\stackrel{\sim}{\sim}$

$\underset{\sim}{\boldsymbol{m}}$
~
ロロック
8
.00

-ㅋmojogian
.12
7.05
4.67
1.75
4.29
.34

QERERANCE WTML
GSPC3936

-TMo
.27
\bigcirc
CURE CUB
n
$\stackrel{\sim}{\sim}$
?
4.29
.65
- 34
GSFC8036
GSFC 3700
$\operatorname{GStc} 3702$

GSC12358
GSC12361
GSC12727
GSC12268
GSC10164
GSFC7988
GSFC7991

BR 34 EPCXI ADHESID

E
material.
$\stackrel{A D H / g}{\mathrm{E} / \mathrm{F}}$
Dh/F
Dh/F
PE/AFLYL
DA
 2
$3 \rightarrow 2$
$2 \rightarrow 2$
2 1
3
3
3
3 мё

这

$\begin{aligned} & x \\ & -4 \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \\ & -4 \end{aligned}$		
8	$\stackrel{\rightharpoonup}{0}$	Niry	nom NonNom
?	丐	붕웅	

1.46

 -nvm
 $-\infty 00$

GSEC1144 GSFC 8726 GSFC 1132
 GSPC5034 GSFC 2788

 MATERIAL
BSL 208 EPOXY 308 BLACK EPOXY UNSUPPORTED ADHESIVE FLLM BSL 312 GRAY EPOXY UNSUPPORTED ADHLSIVE FLLM
BTE IL SILICONE GKCMMET CBB $1077-40$ BAOMN bTR RUEBER HD22-3

[^0]
\[

$$
\begin{aligned}
& \text { EPCXY A/B AS } 3 / 1 \text { BV } \\
& \text { EPCXY A/B AS } 3 / 1 \text { B }
\end{aligned}
$$
\]

（
$!$
1
1

$$
\text { EDryyacoac, } 2,1
$$ －AINT HAINT

PAINT paint PAINT haInt composite RAINT
SAINT
AINT galnt艺 © 路

 4.50
1.18 $\stackrel{n}{!}$ －シ MN
$\mathrm{M}-\mathrm{r}$ 4.05
3.42
2.91 GSFC4144

bont
\square

EPOXYH EPOXI
6 EL$\xrightarrow{\text { Lin }}$INGWiTEGSPC8921GSFC1147GSFC1150GSFC 1165GSFC 1168GSPC8156（SC10937PAINACK$\stackrel{3}{0}$ヘiv

$$
\text { EPCXY A/B AS } 3 / 1 \text { BV }
$$ GSEC2527

 SILICONE
SILICONEMEASQL／E
OXY OXXEI－STRENGCAT－A－LAC 463－3－a fLat BLaCK EPOXY PaINT

$$
\begin{aligned}
& \text { GSFCKO8 } \\
& \text { GSFCO } 797 \\
& \text { GSFC8 } 918
\end{aligned}
$$

$\operatorname{GSFC} 2104$
$\operatorname{GSFC} 4240$GSFC 4198
GSC12622$\begin{array}{llll}C A T-A-L A C & 463-3-8 / C A-118 & \text { aS } 3 / 1 \text { By BLACK EPOAY PAINT } \\ \text { CAT－A－LAC } 463-3-8 / C A-118 & \text { AS } 3 / 1 \text { EM ELAT BLACK EPOIY }\end{array}$
CAT－A－LAC 463－3－8 ELACK OVER PRIMER 403－12－1a CAT－A－IAC 403－3－E ELACK OVER PRIAEK 463－12－1ACAT－A－LAC 463－3－8 ELACK OVER PEIHEAZ 463－12－1ACAT－A－LAC 463－3－a ELACK OVER PRIMEK 463－6－2 GBEEN／FCAS－A－LAC $463-3-8$ FLAT BLACK EPOXY PAINTCAT－A－LAC 463－3－100／CA－118 AS 3／1 $\mathrm{CV} / \mathrm{PRIMEE} 463-6-5$CAT－A－LAC 463－3－E ELACK OVER PRIMEK 463－12－1A

$$
\begin{aligned}
& \text { GSFC } 2038 \\
& \text { GSFCO } 767
\end{aligned}
$$

mateeial	$\begin{gathered} \text { DATA } \\ \text { GEFEKENCE } \end{gathered}$	WTaL	guvem	CUh TIME	$\begin{gathered} \operatorname{CUHE} \\ \text { TEME } \end{gathered}$	$\triangle T \Delta$	applicathun
CAT-A-IAC 463-6-14/CA-97 as 3/1 טV BATCH - Thw	GSPC9485	3.96	. 17	${ }_{6}^{2 H}$	${ }_{104} 1$	A 4 A	-UND PAINT
CAT-A-LAC $403-6-14 / C h-97$ AS $3 / 1$ EV CUND BLK PAINT/F	$\begin{array}{r}\text { USFC8 } \\ \hline \text { GSC9 } \\ \hline 176\end{array}$	8.16 6.98	:35	140 24 14	25 25		E日NDPAINT
CaI-a-LaC 463-6-14/CA-97 as 3/1 ov Cund blk palnt/f	GSPC9 179	2.17	. 35	24 ${ }^{\text {2 }}$	60 25 104		Lund paint
CaI-A-LAC 403-6-14/CA-97 as 3/1 BV Cund blk paint fr	Gstcy 275	1.47	. 34	244 164	25 104	A 1 h a a	lund paint
Cat-a-LaC 473-3-1 a/e as j/t of Clean epuzi	GSEC7178	9.02	. 43	${ }_{1}^{16}$	25	A1M	ating
CAT-A-LAC 473-3-1/X-304 AS 3/1 Bat Cleat epoxy	GSC12625 GSFC 358	4.36 2.35	-24	$\begin{gathered} 1 \mathrm{H} \\ 10 \mathrm{H} \end{gathered}$	75 75 45		$\begin{gathered} \operatorname{silNT} \\ \operatorname{SAIN} \end{gathered}$
CAUUK GRIP CEMENT EETUYL METHACKYLATE FILLED	GSPC5571	$1: 06$ $1: 01$	-02	5 S	25		aDHESIVE ADHESIVE
CEBCA 60 POLYORETHENE	GSFC 2083	1.08	-24				PuTTiNG
CEBCA 70 PCLIUREIGANE COPGUMMER INJECTICN MOLDED	GSPC2068 GSPC9224	1.07 .64	-36				YUTTING
CELCON M-90-04 ACETAL COPOLYMER MNEGCSICN PELIETS	GSPE9227	-57	-03				auld CPND
	GSFCy494 GSFC6080	10.95	- 01 1.19				FILH
CELLULOSE SEIACETATE 200 HICHON FILM BLUE	GSEC9497	1.28	.00				HLLM
CERTANIUM C1 SULDEF- OXIDIZLD SN/PB/15\% CD	GSFC4772	-00	-00				SULDEE
CESIUM IODIDE COUEIING COMPOUND ELEND 10/1	GSFC8039	8.50	5.51				$\cup{ }^{\text {PT }}$ ADHESIVE
CESTUM IODIDE CGUFIING CUMEOUND LLENU 12%	GSFC8003	9.06 .10	5.30 .01				GETED ADHESIVE
OF 3003 EPOXY FF HUGHES CONAECTOR 130 C 320 HO1	GSFC7385	-43	-04				Y TTING
CFB 4412 FLUUEOSILICONE COATED DACROM EAERIC	GSC13054	7.45	. 095				GASKET
CHEM-PCL $30-1961 / 2 \mathrm{C} 23$ AS $1 / 1$ BH PULYURETHANE FUAM	GSFC8 ${ }^{\text {GSPC498 }}$	7.07	-00	54 ${ }^{72 \mathrm{a}}$	60 325 25	${ }_{\text {A }}^{\text {A }}+\mathrm{A}$	midin m tublag
	GSFC8831 GSFC9542	1.67 2.25	. 15	14 D	25 25 85		SAINT
	GSFCC9984	2.37	-10	7140	25 25 25		PAINT
CHEMGLAZE A276 HIGE GLOSS Hilte polyuderthanelf	GSC12244	$\begin{array}{r}1.87 \\ \hline .99\end{array}$	-14 ${ }^{14}$	16 H 2150 150	85 25 25 95		EAINT
CHEMGLAZE H322 BLACK CONDUCTIVE PAINA POLYURETHANE	GSFC8066 GSFC 069	1.92 8.96	. 07	208 30 H 1	121 121	俍	UUND PAINT
Cd EMGLAZE L30J BLACK CONDUCTIVE PAINT POLYORETHANE	GSEC9 467	1.57	-0. 0	14 D	25	Ais	Gond paint
	GSSC1 1890	1.18	-01	148	25 25		SAINT
	GSFE 725	8.57	-10	14 D	25	${ }_{\text {a }}^{\text {a }}$	SAINT
CHEMGLAZE TS 2881-7 UV EESISI WHITE PQIYURETHANE	GSFC7320	4.50	. 22	30 M	12	A18	edint
CHEMGLAZE TS 3107-13 Flat elack polyubethane lot Shd	GSFC9008	1.30	. 022	140 140	25 25		YAINT
CHEMGLAZE TS 3 107-13 FLAT BLACK POLYURETHANE LOT SKA	GSFC9086	1.35	.02	140	25	A $1 \times$	FAINI
COEETGLAEE TS 369 EES FLAT BLACK POLYURETHANE	GSCiO994	2.15 1.23	-26	14 d	25		SAIAT
CGEMGLAZE 200 G GLOSSY WALTE POLY URETGANE PAI MT	GSSCl 058	2.73	:17	14 D	25	$\underset{\text { dia }}{\text { a }}$	FAINT
ChEmglaze v $200 / 9924$ gloss white polyurethane paintr	GSC12286	1.52	. 07	30 D	25	A 1 E	falat systed

- גatriai	Hepretich	\%ris			civer	ax 40	azeitcariou
	6sici 288	72	. 03	${ }^{1721}$	${ }_{20}^{25}$	A14	
		-6:93	: ${ }_{\text {: }}^{\text {\% }}$	${ }_{\substack{140 \\ 300}}^{\substack{140}}$	-	\pm	
	${ }_{\text {cscli47e }}$	${ }_{1}^{1.07}$. 04	${ }_{\text {cha }}^{\substack{\text { cha }}}$	¢	-	
cambilaze v700/9995 as $25 / 1$ by buer ratima	6Sc1 1526	5.48	. 23		${ }^{1200}$	-	raint
cill		1:72	:01	cis	${ }^{25}$		
	\%5ictize	1:30	: 04				cuidi paiut
		1:56	:01	dide	-		
			3: 20	-	. ${ }^{25}$	-	
		-	:04		-	-	cump patat
		2. $2.2{ }^{\text {a }}$: ${ }_{\text {a }}$		-	ctity	char
		1:129	: 05		${ }_{\text {2 }}^{2}$	-	
chingazaze 2306 batcal 211247	6SC1 1318	-49				-	${ }_{\text {caint }}$
	¢sfe 3827	. 47	. 04	cos	-		${ }_{\text {caini }}^{\text {cint }}$
			: ${ }_{\text {\% }}^{\text {2 }}$	+14.4.	-		
		1:30	:	14	${ }_{2}^{25}$	4	
chatictut	${ }_{\text {cex }}^{\text {cici }}$	1:37	: ${ }^{0}$			3	
		1:0940	: ${ }_{\text {a }}$	${ }^{140}$	(Eatam
		: ${ }^{18}$: 3	14	${ }^{2}$	-	遃
		1:08	: 3^{3}	4	${ }_{25}^{25}$	-	

matebial	REPARALESCE	kTML	xCvCr	CURE	CURE	4	applicithen
Chenglaze $2306 / 5 \mathrm{bClite}$ Prime all Primer	Gspc 7037	1.8	. 01	${ }^{24}$	25	ALE	aint composite
	$\operatorname{GSPC} 2801$ $G S T C H 54$	$1: 88$	-03	- 5	25 20 20	$\underset{\substack{\text { a } \\ A \\ A \\ \text { a }}}{ }$	Painit coupusite
chemglaze z306/cat 99b6 as 100/1 two coais	GS8C3582	1.81	. 36	($\begin{array}{r}25 \\ \\ \hline 1\end{array}$	${ }_{\substack{\text { a }}}^{\text {AL }}$	raint
Chemgiaze 2306/Cherglaze 9924 Primer composite	GSC1 1429	1.18	. 05		71	${ }_{\text {A }}^{\text {AL }}$	daint cumposite
CHEMGLAEE 2306/CEEVGLAZE 9924 PRIMER COMPOSITE/P	6SEC4124	1:85	-0\%	34, $\substack{30 \\ 20 \\ \hline}$	25		EAINT COMPOSITE
camglaze 2300/ceerlok ap131 paimer/t 	$655 C$ GSFC 3779 109		$\begin{array}{r}\text {-05 } \\ \hline 089 \\ \hline 09\end{array}$	300 300 420 420 24 24	25 25 25 25 25 12		
cabmglaze z306/peitek desuto 513-102/f	GSC10002	1.75	. 12	$1{ }^{14}$	25	${ }_{\text {A }}^{4}$	maint conpojite
da mglaze z306/bantolph epoxy/polyamide primek/f	GSPC9056	1.67	. 08	${ }_{1}^{24}$	25 25	A ${ }_{\text {A }}$	eaint coaposite
chemglaze 2306/Supin koroton pbimer/a	GSFC9680	2.80	. 03	$7{ }^{70}$	25 24	di ${ }_{\text {d }}$	daint composize
CIEAGLALE 2402 ALUE PILLED POLYUEETHANE LOI MEE CaEbGLAZE 2652 THLF GiAEEN GLOSS PELYURETHANE			:07		25 2 25 25	Ait	PADNT áabking Ink
		2:57	-00	${ }_{14}^{14}$	25	${ }_{\text {din }}$	
	(${ }_{\text {GSFC }}$	$\begin{array}{r}1: 58 \\ 6.58 \\ \hline 0\end{array}$	-13	${ }_{70}{ }^{14}$	60 25	${ }_{\text {a }}^{\text {ATH }}$	
CGEHLUK 205 ADHESIVE PRIMEE GREY	$6 S$ CC4836	$\bigcirc \cdot 34$	-00	300	25	${ }_{\text {A }}{ }_{\text {d }}$	AuAMerimer
caemlok 205/chemiok 220 as $1 / 1$ bv as prie film	GSFCC7040	5.95	. 03	$\underset{\substack{304 \\ 308}}{\substack{\text { 3 }}}$	25 20	AL	potting phimen
chealor 205/chemick 220 as 1/1 bv on foil	GSFC7043	0.89	. 01	$3{ }^{309}$	250	${ }^{\text {d } 1 . ~}$	cuting phimeh
		$\begin{array}{r}15.72 \\ \hline .39\end{array}$	-49	244 304 04	25	${ }_{\text {di }}{ }_{\text {di }}$	
caemlok 234	GSFC 3061	15.54	. 10	308	16	$\stackrel{\text { a }}{\text { a }}$ A	aubesive
	GSFC 6673 $65 C 1350$	31. 3 30.19	8.88		25		- DHESIVE
	- ${ }_{\text {GSCli }}$	27\% ${ }^{3}$	-	${ }^{3}$	9 25	${ }_{\text {a }}^{\text {A }}$	
		-	-18		177 177 17	${ }_{\text {a }}^{\text {AL }}$	dUHDSIVE
CHO-BOND 1024 CO	6S5CC 438	-38	-10	${ }_{18}^{48 \mathrm{H}}$		$\stackrel{\text { aj }}{\text { a }}$	CUND ADEESIVE
	SSPC4776	1-31	-11	78	25	${ }_{41}{ }^{\text {a }}$	CuND
	GSFC 7288 $65 P 5210$	$1: 66$	- 35				CUAD ADBES
	- 6 GSFC9 903.	-	-190		113 25 100	$\underset{\sim}{\text { at }}$	CuAD ADPESNE

UÁ CUAE ALAUJ APPLICATION
A1 1 i
 $\xrightarrow{4}$

4．404

4.

4.4
4 －
Cothex $=051$
-104

 Exivxiven
0
UM
GL!
175
175
 OgN
0 －
고국
$3 \quad 3$
xcven
CUN

TML

คロロッシ
－3NORN
armorminn
－onvín

ぶぎき タッロは		
2	g버ㅇㅓㅓㅇ	Mu잉ㅇㅇ
）	OI	
〕กロ	－	
0 H		
\rightarrow	204	
M2		
	2	＋
	匂꿍	
zzexら｜y		
戒z HHy		
，		
333503000330333030008		

EbIAL	DATA HEFERENCE	\% ${ }_{\text {KL }}$	WCvCM	$\begin{aligned} & \text { CUGE } \\ & \text { TIME } \end{aligned}$	Com	\pm	APFIICATION
	GSFC 8519	4.19 1.84	-88				CuILFORA
CONAPLEX EA-50 PCLYURETHANE FOAM ALCUHOL WASH	GSFEC5996	-84	. 01	${ }_{8}^{16 \mathrm{H}}$	100 100	${ }_{\text {AI }}$	POTTiNG
CONAFLEX EA-50 PCLYOKETHANE FOAM	GSFC 5951	8.36	3.17				ansolatige
Conap K-20 a/b AS $20 / 9$ Bw Gray Epoxy	GSFC3934	$\begin{array}{r}1.93 \\ \hline 85\end{array}$	- 34	2 H	50		iajulation aDHESIVE
CJNAP K-26 Hilte efoxy equal lengths from tubes				${ }_{3}^{30 \mathrm{M}}$	85	A	
Conathane ce 1153 OUX RQUAL Lenco Conathane CE 1155 a/E as 10/7 Bw	GSC12910 GStC 3889	11:73	112 -104 -04	2 H	65	A.	AUHESIVE cunf coat
conathane ce 1155 a/b/CEllosolve acetate as 10^1/3	GSFC 3891	1.30	-	3 ${ }^{\text {a }}$	66	di	Lunf Coait
Conathane Ce 1155/CEllosolve aceiate multicuae	GSFC389	1.30	. 08	3 31	65	Ai	Lunf Cuat
	6SFC2681	. 81	. 05	104 15 m	25 49	${ }_{\text {A }}{ }_{\text {A }}$	cuif coat
	GSPC7082	7.26	. 09	34 24 34	60 25	${ }_{\text {d }}{ }^{1} 1$	-uNe coat
				14 D	25	Al	
CONATHANE CE 1171 - FLUORESCENT	$\begin{array}{r}\mathrm{GSC1} \\ \mathrm{GSC1} \\ \hline\end{array}$	9.60	.01				SaEnm ADHESIVE
	GSCil ${ }^{\text {GSC }} 112$	-93	.01	140	25	AL	ADHESIVE
	GSCiliss	-82	.01	300 H	25	AI	avazsive
Conathane en-il a/E AS 100/55 bu polyuetihane	GSC11303	-27	. 01	${ }^{240 \mathrm{H}}$	60	${ }_{\text {A1 }}$	EUTTING
Conathane en 111 a/f as $100 / 55$ bi poiyurethane	GSFC7571	-43		248	60 55	$\stackrel{-}{4}$	
	GSFC ${ }^{\text {GSPC }} 97$	-38	. 01	248	50	al	YUTTING
Conathane en -i2 A/E AS 71.3/75 Bu buiadiene uketiane	GSPC 7904	-43	-01	+48 ${ }^{4}$	50 38 3	${ }_{4}$	2UTTAN
Conathane en-2 a/e as 100/116 bi polyuethane				148	55	${ }_{\text {a }}$	
CJNATHANE $\mathrm{ZN}-21 /$ DPG $761 /$ DP9 802 POLYUAETUANE BLEND	GSC 1407	. 72	.02	300	25	${ }_{\text {A }}$	ADHESIVE
	GSC GSC 10838	-57	-04	$7 D$ 24	- 60	${ }_{\text {A }}$	A DHESIVE
	GSFCS 322	1.15	-49	${ }_{2}{ }^{4} \mathrm{H}$	80	A 1	CUTTING
Conathane ent ajb as 100\%17:5 Bu PQLYURETHANE	GSFCC 7844	. 78	. 021	7 D 20 H	25	${ }_{\text {A }}$	pOTIING suTTING
conathane en-9 pclyurethane	GSFC8729	. 39	. 00	240	60	${ }_{\text {a }}^{\text {A }}$ +	putiing
	GSPC1729	1.09	-10	8 H 20 M 1	93 149 145	${ }_{\text {A }}$	
CONDULON ANTISTATIC FILM 2 Mil black	GSC 1938	-88	. 03	16 H	155	AI	cuat
	GSC11941	-.76	- 02				${ }_{515}$
	GSCl1944	1.33	-. 02				FiLM
	GSFC5793	-76	$\bigcirc 30$				EuNs InSul
	GSC1 1535	4.87	1.04	24H	175	ala	Cunectur Inisj
	$\mathrm{GSC1}$ GSC 1627	-23	:07	248	175	AIE	CUNANECTOK INSUL
CJ M NECTOE MIL C 6999 RED INSERT	GSC10445	-20	11				GUNECTOG INSUL
CJANECTOR TUBING ECLYPEOPYLENE 20% glass filled	GSC10961 GSEC6083	-52	.01				CONHECTOK

OAd

autheive
A u ESSIVE

 यaterb यampla aalifek
義 ruad CUEE AIVAUS

 $x=1$
-4
4
 4．

SEE

NOS
2.07
2.74
1.20
5.34
$\stackrel{N}{\sim}$

응
哥

$\stackrel{3}{3}$
1.01
3.08
1.15ต． 2iom 3.81
GSFC5683

$1 \times{ }^{\circ}$
\cdots
1
Ninc
3.77
3.06
3.41
2.07
5.34
4.20
-87
-r
--

$\operatorname{GSC} 11509$
GSC1 1407
GSC1 1511
GSC1 1409
GSC11513
GSC11465
GSC11471

GSFC4808
GSFC4810
GSFC4868
matebial

GSFC3
GSFC
GSF 3710
GSFC
GS5
COTRONICS 918 CEBAKIC ADHESIVE

condits pabic 55-61811-xx aypalon coated hyion

GSFC 4812
GSFC4870
GSEC 3401

CPR 9002－3 polyugethane foan blue／green

CP 6007 SILICONE FUBBER
CP 6007 SIllCOXE EUBEER
GSFC 3951
GSFC 3954
GSFC 4053
GSFC 4096
GSF 4120
GSF 4122
GFC 2025

品

yuvuua

axisuras

MATEEIAL	DATA MEFERENCE	\％＇TML	WCVCM	CURE TIME	CuRE TEME	al Mus	APPLICATION
CL 4091 A／B AS 17／1 BA SILVER FILLED EPOAY	GSC12198	1.55	． 14	304	93	A15	UUND ADHESIVE
	GSC 13564	1.55	14	2 H	80	A14	UUND ADHESIVE
CT $5047-2$ A／B AS 100% Bh SILVER FILLED EPUXI	GSci2172	． 39	． 40	24 H	25	4，ix	CUND ADHESIVE
				2 H	65	AIR	
				1 H	100	A 1.1	
	GSFC6790 GSFC2649	3.93 5.36	.03 .00	2 H	05 25	A 14 A	RAINT
CTL－15 BLACK EPCXY PaINT BATCH 1541 hughes acfu	GSFC2649	1．36	． 00	15 M 15 M	25 60		$\mathscr{Y I N T}$
				4 H	66	Hik	
CLL－15 GLOSSY BLACK EAINT	GSC10940	2.16	． 00	304 154	25 66	Ai K	caINT
				2 H	121	A18	
CTL－15 GLOSSY BLACK PALNT ONE COAT	GSC11285	1.80	． 04	2411	125	${ }^{\text {A A A }}$	HANT
CIL－15 GLOSSY BLACK EAIN＇THEEE COATS	GSC11288	1.81	.00	1\％	103 100	A1品	LAINT
				24 H	125	A 14	
	GSFC2631	3.85	.00	151	25	A1 ix	LAINT
				15 M	66	${ }^{4}+1{ }^{\text {a }}$	
	GSPC9104	2.00	． 10	12H	125	c－2	¢aINT
CJSTCM LOAD $4101-190$ EPOLX	GSFC5 352	． 11	．${ }^{1} 1$				$\triangle 4$ a ${ }^{\text {a }}$ SUBBER
CJVERTIN 300 BLACK POEYURETHANE CUATLNG	GSFC4782	． 69	－02	140	25	ALa	KAINT
CYANOPEENE 1857 BLUE THERMOPLASTIC PGLIUEETHANE	GSr＇co 194	1．16	－ 18				$\checkmark \triangle$ SKET
CYANOREENE 1880 CLEAL THERMOPLASTIL EOLYUKETAANE	GSEC 6197	1－38	－ 34				UASKET
	GSPC4576 GSFC 558	1.48 3.31	． 72	210		AIA	A UHESIVE
CYCLEMELD 55－9	GSEC3558	3．31	． 43	3 M 30 M	713		ADHESIVE
CYCCM MCO FIBER－AICNEL LOATED GRAPHITE	GSC12871	－02	.01				rI OEES
CYCOK 950－S2 EPUXY／GLinS	GSC12222	． 49	． 01	1 H	66	E－2	Sinuctukal
CYCCM ¢85－T300 GKAFHITL／EPOXY	GSC12224	－ 57	． 01	${ }^{1} \mathrm{H}^{\circ}$	121	E－2	STRUCTUKAL
CY $209 / \mathrm{HT972}$ CLEAK AMSER EPOXY	GSFC 8327	－ 78	． 01	2 H 40 H	177	OSI	¢ั̈HESIVE
				5H	80	A 1 k	
C15－057 A／is as 100／120 BW	GSFCO539	1.94	－01	4H	130	A14	COATING
C2－4259／3401	GSEC 3515	． 55	－01			」メ」	EOT＇SNG
CJ－ 1102 SILICONE GEEASE	GSFC 1981	． 05	． 02				LHERMAL GEEASE
CJ－1103 SiLICONE GEEASE	GSPC 1996	－ 17	－00				GEEASE
	GSFC4488	－16	－00	24H	25	A1．	COTTIAG
C $3-4190 / \mathrm{HB}-3503 \mathrm{AS} \mathrm{10/13} \mathrm{BVRED} \mathrm{FLEXGBLE} \mathrm{EPOXY}$	GSE12406	$\bigcirc 43$	． 03	3 ${ }^{\text {H }}$	125	ALK	RUTTING
C7－4198／H2－356］AS 100／15 B4 EPOXY	GSPC4980	－ 38	． 09	8 C	125 60	A A	EUTTING
C）－4215／H2－3561 AS 20／3 Bw BLACK EPOXY	GSC1 1672	－68	.00	2． 5 H	105	A 1 E	HULD CPND
C尹－4215／日2－3561 AS 20／3 BW BLACK EPOXY	GSFC 4558	． 46	－ 00	d^{d}	25	Aith	PUTTING
C3－5340／3420 AS 100／8．3 BH EPOXY	GSFC 1732	－60	－ 05	8 BH	25		PUTTING
D－241－F3 SILICUNE	GSPC5U10	1－02	－ 21	140	25	41世	gAINT BASE
D－8150 PCiYAMIDE－IEIDE／ADH／COPPEE	GSFC 2206	－ 15	－ 02				Hemusy Core
D－8970 EPCXY FILM ADH／COPPER	GSFC 2167	－-42	． 00				AEMUKI COKB
DABURN TARE ST $275-3 / 4$ CHOL	GSPC8696	5.77 .05	2． 73				CAPE
	GSFC2521	－45	－09				CHEEAD
DA 2 ECN MESH 32 A	GSFC5591	－19	－ 03				ASSH
DACEON MESH E2A FCIYESTEA NETTING	GSC10652 GSFC2501	115 -19	－ 06				TEEEMANGAERET

		MATEEIAL	DATA EEFEABNCE	d THL	RCVCM	CUA E TIME	$\begin{aligned} & \text { CUHE } \\ & \text { TEAE } \end{aligned}$	a 2 avis	APELICATIUN
D	6－1104	LUT FM010380	GSC10820	－ 16	． 05	7 D	25	A1\％	AUHESIVE
D°	6－1104	LOT EMC95313	GSC10529	－ 20	.03	70	25	A14	－ciALANT
D^{2}	－－1104	LOT FM10¢321	GSC 10769	－26	． 05	7 D	25	Ala	$\triangle \pm A E S L Y$
D^{2}	6－1104	LOT FM109329	GSC10697	－ 21	． 03	14 D	25	A 18	a UHESIVE
D＝	6－1104	LOT EM129370	GSC10823	－13	． 03	7 D	25	Al ${ }_{\text {a }}$	ADUESIVE
D＝	6－1104	LOT GAC83347	GSC13365	－ 16	． 03	7 D	25	a ${ }^{4}$	－CALANT
D ${ }_{\text {D }}^{\sim}$	6－1104	LOT GACB 3.348	GSci3368	15 -14	.03 .02 .02	7 7	25	dit	SCALANT
D	6－1104	SadPLE A LOT FM 108－046	GSC10 103	－70	－39	40 D	25	4ik	SCALANT
D＝	6－1104	SAMPLE B LOT PM 1U8－0し1	GSC10 105	.70	.43	40 D	25	Aくあ	SEALANT
D	6－1104	SaMPLE C LOT FM118－087	GSE10115	－42	－24	405	25	aix	\rightarrow SALANT
${ }_{0}$	－ 1104	SAMELE D LOT FM118－088	GSC10 113	.43	－ 24	400	25	A 46	SEALANT
D	6－1104	SAMPLE 1 LOT FM128－102	GSC10101	． 49	－ 27	20 D	25	ALa	StALANT
${ }_{D}$	6－1104	SAMPLE 16 LOT FM128－103	GSC1009\％	． 47	－ 26	280	25	$\triangle 1 \mathrm{k}$	\rightarrow SALAN＇
$\mathrm{D}^{\text {² }}$	6－1104	SAMPLE 12 LUT FM128－104	GSC10039	． 46	－ 26	280	25	A1 ${ }^{\text {a }}$	¢EALANT
D_{D}	6－1104	SAMPLE 2 LOT EM128－103	GSC10099	－49	－ 27	260	25	$A \perp A$	SLALANT
DE	6－1104	SAMPLE 3 LCT FM128－104	GSC10097	． 47	－ 27	260	25	A 1	－calant
D	6－1104	SAMPLE 4 LOT FM128－102	GSC10095	－48	－ 24	800	25	AL K	$\checkmark \mathrm{SCALANT}$
D^{D}	6－1104	SAMPLE 8 LOT FM 128－102 174	GSC10093	－ 44	－ 26	28 D	25	${ }_{\text {A }}+\mathrm{B}$	LUALPANT
DE	6－1104		GSPCSO12	$\begin{array}{r}\text {－} \\ -3 \\ .3 \\ \hline\end{array}$	． 03	24 H	25		SUALANT
D＝	6－1104	$W / 1 \%$ V－1930 YELLOW FERBO DYE	GSiCgol2	－29	． 01	$24 d$	25	d 1 is	－EALANT
D－	c－1104	W／1\％V－1¢36 YELLUH FERhO DYE	GSECY290	－ 21	． 03	24 H	25	A16	SEALANT
D	6－1104	W／10\％V－1747 BLACK FEKFO DYE	GSFC8255	． 42	． 07	24H	25	41 k	SLALANT
D	6－1104	／MEK／$\triangle X I E N E$	GSEC4650	－ 28	－04	70	25	A 10	LUNP COAT
${ }_{\text {D }}{ }_{\text {D }}$	¢ $6=1104$	A／LOAS 10／1 B S Sllicone	GSFC3732	． 0.09	－02	70	25	${ }_{\text {A }} 14$	SLALANT
D＝	6－1109	－UNFILIED SILICONE	GSICC 4676	－19	.01	7 D	25	A14	CUNK COAT
D	63－488	A／b AS $1 C / 1$ bu uptical Silicune resin	GSPC 1624	1.42	． 74	48	60	A 14	SLLICONE KESIN
D	63－488	A／B AS $10 \% 1$ Bin SIlicone	GSPC 1780	． 99	． 43	$\begin{aligned} & 16 \mathrm{H} \\ & 4 \mathrm{H} \end{aligned}$	25 65		ADHESIVE
						24 H	110	4－3	
D	63－489	A／B AS 10／1 BM OPTICAL SILICONE RESIN	GSPC 1642	1.42	． 57	4 H	60	A1if	SLLICONE RESLN
D	63－489	a／b AS 10／1 Bu SILICONE	GSEC 1789	－89	－44	4 H	65	dita	AUHESIVE
D＝	63－489	SILICONE	GSPC3762	． 23	－ 15	4 H	65	A18	AUHESIVE
						69 H	130	S－0	
D ${ }_{\text {D }}$	$\begin{aligned} & 63-489 \\ & 806 A S I \end{aligned}$	SILICONE XISUENE／TULUENE／F	$\begin{gathered} \text { GSFC } 3843 \\ \text { GSC } 10197 \end{gathered}$.36 .90	$\square 17$	${ }^{69} 1{ }^{\text {\％}}$	170 85		$\begin{aligned} & \text { ADHESIVE } \\ & \text { CUATING } \end{aligned}$
$\mathrm{D}^{\text {\％}}$	806 A S	ILICONE IN XYLENE／TULUENE／F	GSC10212	2.14	－ 14	7 D	25	ALK	－UATING
D＝	90－006	A B AS $1 \mathrm{C} / 7 \mathrm{BW}$ HT SILICONE SEALANT	GSEC 1063	1－23	－ 32	24 H	71	S－3	Scalanc
${ }^{\text {DC }}$	90－031	A／B AS 10\％Bn ambaitue Silicone sealant	GSFC 1050	1.09	－ 27	24 H	70	Aim	\rightarrow SLAMT
D	90－031	SILICUNE SEALANT	GSFC 1072	－98	－ 18	24 H	70	¢－5	GALANS
D	$90-031$ $90-092$	SILICOAE SEALANT	GSFCCO194	2.03	． 27	3 l	25	¢－3	SEALANSALANT
D＝	92－007	WHITE SIIICUNE INK／F	GSPC8228	． 45	． 14	1H	25	A1s	1ヵK
						2 H	93	A -4	
						${ }^{4} \mathrm{H}$	149	AL－	
$\mathrm{D}_{\mathrm{D}}{ }^{-}$	92－007	WHITE SIIICONE PAINT	GSFC4678	． 63	－． 20	24 H	25	A14	KANT
	92－018	Silicone Sealant	GSFC 2741	2.00	－ 82	8 H 5 D	60	A $1 \times \mathrm{k}$	دEALANT
Dこ	92－019	SILICCAE ERIMEK	GSFC2945	4.12	－ 07	2 H	25		¢ \triangle MER
D	92－024	SILICOLIE OVEE PRIMEK DC 1200	GSFC 1177	2.07	－ 84	5 D	25	4． H_{6}	CUNF COAT
DJ	93－006	A／B AS 1C／1 BY DARK GRAY SILICONE	GSKC8258	1．95	． 28	72 H	25	${ }_{4} 16$	Stalant
D	93－072	A／B AS 1C／1 Bix SILICONE SEALANT	GSFCu 347	1.67	． 60	24 H	25	$\mathrm{AI}^{\text {in }}$	SmALANT

material	REFEREATCE	*THL	civcm	CURE	$\begin{gathered} \text { CURE } \\ \text { TEM } \end{gathered}$	ainu	Applicatica
d¢ 93-076-2 A/E AS 10/1 BHA ARROSPACE SILICONE	GSPC4922	2.12	-46	7 7	25	41.	SEALABT-POTTIEG
D= $93-500$ A/B AS $1 C / 1$ BU SILICONE	GSC10158	-16	. 02	7 7	25	${ }_{\text {AI }}^{\text {AI }}$	POTTING-EACAPS
	GSFCO 400	-29	. 00	24 H	25	Ais	SUTTIMGENCAPS
	GSFC5421	-129	-00	$7 \mathrm{7D}$	25		CUTTING-ENCAPS
D= 93-500 A/B AS 1C/ B B SILCONE LOT EAU20392	GS 10844	-10	-02	7 D	25	${ }_{\text {ALa }}$	AUHESIVE
D= 93-500 A/D AS 101 BHILLCONE LOT FMO476116/77	GSFC8639	-19	-04	7 D	25	Ai h	\triangle UHESIVE
	GSC10793	-10	. 01	7 7	25	${ }_{\text {ALA }}^{\text {A }}$	ADBESSIVE
$\mathrm{D}^{\circ}=93-500 \mathrm{~A} / \mathrm{B}$ AS $11 / 1$ Bh SILICONE	GSFCJ136		-01 -00	${ }^{78}$	25		ADHESIVE
	GSPC 7181	. 04	. 00	248	40	${ }_{\text {A }}{ }^{\text {a }}$	adamive
	GSC10398	-17	.02	5D	74	E- 5	YUTTIAG
Dニ 93-500 FM 059240 MAY 79	GSC10401	-39	-18	SD	74	L-5	¢UTTIAG
D= 93-500 FM 068G4C JUN 78	GSCij 404	$\begin{array}{r}28 \\ -24 \\ \hline 2\end{array}$	-12				YUTTING
	GSFC 7952	. 06	. 02				YAGPER FiUuIN
DE 93076-1/2 GEAY	GSFC8 207	3.15	- 88	16H	23	ALb	adamsive
				4 H	60 9		
D: 93076-1/2 GRAX SILICONE	GSFC8 210	3.30	. 96	16 H	25	ALa	a u HESIVE
				4 H	149	A1A	
	GSFC1288	5.37 .76	-18	24 H 15 H	25		LOATING blastoarer
					177	A 1 a	
d: 95' SIlicone flastomer feroxide cat di cuf 40 C	GSFC5719	. 15	. 00	${ }_{6} 15 \mathrm{H}$	160		ciAStomek
				24 H	175	ex ${ }_{\text {- }}$	
	GSFC GSPC G	$\begin{array}{r}-76 \\ -48 \\ \hline\end{array}$	-11	$7{ }^{70}$	85 25 25	Aik	$A D H=S E A L A T T$
D= 991 VARNIS - CIEAK SILICONE/F	-6SFC7847	$\begin{array}{r}2.47 \\ \hline .88\end{array}$	-93	20 ${ }^{24}$	125	${ }_{\text {Aisa }}^{\text {a }}$	LUNF COAT
de 100 SILICONE LUEBEA SE SE SbS BASE	GSPC 3945	. 05	. 02	4 ${ }^{\text {b }}$	177	A ${ }_{\text {H }}$	aldiconé
				${ }_{30}$	232	$\underset{A 1 E}{\text { a }}$	
deca-dry cecal CaEhier sheet	GSiC 1035	8. 39	1.51				hecal Carriek
DECA-DEX LETTEEKLECALS	GSPC 1032	11.26	1.68				UCCAL
DELGIN S So iod	GSFC6953	.839 1.73	- 1				AOLD CEAD
	GSFC2921	1.73	.	40	25	A1k	-UND adatesive
delta bond 152-6-B4 a/b as 100/3.5 Ea dulue epaxy	GSFC8 375	. 49	. 00	1 H	25	ala	adamsive
delta bond 152-1-a mpoxy kit pre-aix blue	GSFC9853	1.14	. 02	10 H	25	ala	adhesive
delta bond 152-1-E eroxy kit phe-mix blue	GSPC9856	1.14	.01	16 H	25	A A A	adhesive
DELTA BOND 152/ETA AS 100/7.5 BW	GSPC 3205	1.59	. 05	$8{ }^{24}$	25	$\underset{\Delta+4}{\text { A }}$	adHESIVE
delta cast 153-K-a epuxy kit 153/rta 2 as $20 / 1.5$ bu	GSFC 2923	1.62	.01	888	25 25	AiR	PutiIng

matehial	DATA aERERENCE	*IHL	Revea	$\begin{aligned} & \text { COUE } \\ & \text { TIML } \end{aligned}$	$\begin{aligned} & \text { CURE } \\ & \text { TEM } \end{aligned}$	Aldus	APslicaticn
DEin $438 / \mathrm{MDA}$ AS $100 / 27$ Bí Erody - AmbEk	GSFC7211	60	. 01	21	90		Dllesi
DENFLEX 1162 A/B AS 1/1 bu YELLOw FLEXIDLEE EPOXY DENNIS 1162 a/b AS $1 / 1$ BK LACQUEA W/4600 THiNNER	$\begin{aligned} & \mathrm{GSFC} 8719 \\ & \text { GSPC } 1384 \end{aligned}$	4.13 4.29	- 10	105 M $24 . \mathrm{C}$	10 06 25		NAF COAT
DENNIS 1169 d/EAS $1 / 1 \mathrm{BW}$ EPUXY	GSFC32PN	5.00	- 35	1 H 70	25	Ala	DUESIVE
DENNIS 1169 Letill	GSFC 272 N	8.00 2.78	- 71	3H	93	A 1 h	DHESIVE FILM
DENSIL 2403 SILICCNE ADDESSIVE TRANSFERK FILK/F	GSC11914		. 66				CHANSFEE FILM
DEK 344/DEL-20/DEK-732 AS 10 / 12/12 w	GSC12220	2.30	- 10	4 D	25	d 1 k	ADHESIVE
	GSC 12268	3.02	. 41	4 D	25	A1品	a HeSive
der 33-1dads/lithateaz as 10/3/40 un eeoxy - Cheam	GSFC7202	. 24	. 00	8H	120	A 1 a	DDEESIVE
DEE 332 MDH /LITHAFEAX/P-200 MODIFIED GKAY	USC12082	- 50	. 00	${ }_{1}^{48} 18$	15 65		UTTING
	GSCl ${ }_{\text {GSFC }} 4242$	-48	-00			S'S	UTTING
	GSFC7 205	-39	- 00	1 H	105	Aia	UHESIVE
	GSFC7208 GSFC 883	-29	-01	${ }_{2}^{1 \mathrm{H}_{5 H}}$	105		DUESIVE
DEE $332 / 732 /$ AEE $/ S E-824$ AS $60 / 40 / 15 / 4$ Dhues SK-82	GSFC 3714	1.34	-08	$2 \mathrm{i}^{\text {SH }}$	60	A ${ }_{\text {A }}$	ctiting
DEA $332 / 732 /$ AEP/SK-82 AS bu/40/10/4 DRURS SK-82	GSFC 3787	1.32	. 07	${ }_{2}^{12 \mathrm{H}}$	35 60	dia	- TTiNG
				$4{ }^{\text {H }}$	85	d 4 -	
	GSFC9416	1.78	. 17	60 H	25	${ }^{\text {A }}$	\triangle Diiesi ve
DER $332 \mathrm{LC} / \mathrm{hV}$ as $100 / 18 \mathrm{Bm}$ EPUXI	GSFC 2853	-33	. $\checkmark 1$	24 1 12 H	60 25 90		utting
DEf 332LC/VEasamid 140 as boh 30 en Eroiy cuating	SSrC2809	-91	. 05	${ }_{3}{ }^{4} \mathrm{H}$	40	${ }_{\text {A }}^{\text {a }}$ (${ }_{\text {a }}$	Lunf coat
DEE 332 LC VERSAHIC 140 AS $6 / 7$ BW EPOAY	GSFC5 721	-94	0.3	${ }_{2}^{121}$	40	${ }_{4} 1 \times$	UBESIVE
	GSC11006	-72	. 93	2 H		ALix	CuEM
DeUTSCR CGNNECTOK	GSFC7503	-31	-10				UNAEC2OK
	GSPM 773	2.21	. 00				CUNECTOK
DEUTSCH CONJECTCE ETKU6-10-61S GREEN HOLD IDSELT	GSC1 1195	1.50	- 00				UNN INSUL
DEUTSCH CCNNECTU STIICONE KUBEEK	GSFCO223	1.09	-06				CUNAECTOH
DEUTSCH CONNECTCE $41-010350$ HED SILICONE	GSFC 7187	-20	-05				CUNECTOE
DEUTSCH CONAECROE U825 RMU4-442S	GSFC 1240	1.25	-00				CUNAECTOK
DEUTSCH COwNECTLK 7221 UH8O4-212 SILICONE INSERT	GSFC4484	-22	-01				UUNECTOR
	GSC10706	-16	.05				GUNAECTOR
DEUTSCH CTJ SEEIES TEEMINAL SLOC K BED SLLICONE ONLY	GSFC8654	. 24	-03				TEGMINAL BLUCK
	GSFS2695	.19 1.61	-01				LERMIAAL BLOCK
	GSC10982	. 53					ADHESIVE
DEVCCN MIX TUBE FECXY	GSFC 1879	1.57	-09	$2{ }^{24 H}$	$\frac{25}{25}$	d 1 E	ADEESIVE
DEXSIL 201 - Binh incsilica	GSPC5180 GSPCO625	. 07	-08	240		a 1 ¢	ALJEESCPED
	GSFCU945 GSFS5	.14 -48	-00				SULD CEAD

CUEX CURE AiMUS APPLICATION

$\begin{array}{ll}\infty \\ \underset{\sim}{m} & \text { 子ै } \\ \text { N }\end{array}$
I Donininn
N bonnN

M..
\div
ㅇ.
$\stackrel{\infty}{\circ}$
9
3No
xCyCM
-•

-72
1n000
Noon
-
3.32
4.56
1.25

*Mi

- - - - - - - - -

138
30
aK K KivTING-COATLNG
$\triangle 1$ AL COKD
UNAETOK

matencal	data BEREKENCE	ETML	xCvCh	$\begin{aligned} & \text { CURE } \\ & - \text { TIME } \end{aligned}$	$\begin{aligned} & \text { CURE } \\ & \text { TEME } \end{aligned}$	achus	APPLICATION
ECCGFOAM EFP-14FR SYMTACTIC FOAM - OLANGE EPOXY	GSPC7364 GSFC	1.73 1.05	- 23	2H	125 100		CUAM DAMFER
ezcufuam zff-14Fh syntactic foam - Obange lot 521	GSFC7460	1.04	. 52	114 2	100		mut roam
	GSPC4414 GSFC4436	3.54 3.45	-05	244 H 24 4.8	40 40		ruay
	GSEC4410	2.10 1.93	-03	24 24.	40 40 40		ruAM
ECCofoam Fsil/12-2H PCLYUdethane roam	GSPC5900	. 99	. 07	${ }^{88}$	60	S	ruat
ECCCFOAA FPh/12-2H PCaturethane roam	GSPC5912	1.08	- 10	8 B	$\bigcirc 0$	¢	fuam
ECCOFUAM FPH/12-4H POLYURETHANE RUAM	GSPC3654	-61	. 12	723	\bigcirc	¢	tuat
ECSCFOAM FPG/12-4H PULYURETHANE HUAM	GSPC4786	$4: 88$	-. 79	48 H	100	A.an	FUAM
	GSC10 493	- 72	-19	$1{ }^{14}$	100	ais	cuay
EECOFUAM FS PULYUAETHANE FOAM ETOH WASH X 2	GSC1 ${ }^{\text {GSC1 }} 1378$	2.81 2.44	- 78	24H	100	A 4	cituctuial fuam
EECOFOAM PP- ${ }^{\text {E }}$	GSCil 144	2.77	-39				ruAM
	GSC12757	1.04	.02				cuaid
	GSFC5897	-78 1.33	-00				çar
	GSFC2396	-18	-01	84 H	127	Aik	CULD CEND
ECCCMOLD L28/24LV ES 100/20.4 ow	GSCi2262	-73	. 05	${ }^{4} 4 \mathrm{D}$	25	${ }_{\text {A }}^{4} 12$	ADIESIVE
ECCOMULD L28/4 as 100/12 Bd	GSC1 1390	. 59	. 03	30M	25	A A M	auid CPad
eeccmuld gua croxy - muld at 135 C and 420 ps 1 EECCMOED 77A EPOXY - HOLD $10 M$ AT 163 C H/PSI 	$\begin{aligned} & \operatorname{GSFC}+392 \\ & G S F C 451 \\ & G S F C 45 \end{aligned}$	$\begin{array}{r}-49 \\ 7.32 \\ \hline .38\end{array}$.06 .07 .34	1H 16 H	118 77 27	A14	دLEUCIURAL aULD CPND zOTTING
	GSC12214	$4: 17$. 08	$\stackrel{+1}{24 \mathrm{H}}$	25	dia a	
excuseal w-19/Cai g as 100/12 bw epoay	GSC 12234	2.68	.03	40 24 H	25		ADHESIVE
eccuseal 1207/cat 20 as 1u0/1.5 Ew black epoxy	GSFC 2278	. 27	. 01	${ }^{4} \mathrm{H}$	717 171		quiting
 EECOSHIELD CO GEAPHITE PILLED SILYCGNEGREASEELIC ADH	$\begin{aligned} & G S F C 2248 \\ & G S F C 4788 \end{aligned}$ $\text { GSFC2 } 221$	2.04 36.88 .26	$\begin{array}{r}\text { 22 } \\ 22 \\ .35 \\ .09 \\ \hline 0\end{array}$	12H	125	$\underset{A+A}{ }$	puTTING Cund grease fape
	GSFCP 849 GSFC4075	$\begin{array}{r}\text { \% } 26 \\ \hline 2.06\end{array}$	8.	70	25	ask	YUND ADHESIVE
ECCOSHIELD SV-H SILVEH PILLED SILICOUE	GSFC 3875	-16	. 06				3 OLELD
EECOSHIELD SV-E SIIVEK FILLED SILICONE	GSEC 3877	- 03	-01	24H	177	A 1 E	SHELELD
E COSHIELD SX SIIVE世 FILLED SILICUNE PASTE	GSC10077	1.05	- 26				KF SHIELD
EVCOSHIELD VY CONDLCTIVE SEALER CLEAK SILICONE	GSFC 1942	- 58	- 04		100		ADHESIVE
	GSCiO913	1.07	- 33		25	${ }^{A+R}$	CLAAANT
ECCOSIL 4040 CAT 25 AS $0.3 \times$ CAT SYNTACTIC	GSFC4652	1.81 -91	-24	8 H	66	AIK	cuting
Eecosil 48j0/Cat 25 aS 100/0.j Bur Simicona	GSFC 1006	1.28	. 35	16 H	25	-14	putting

MATERIAL	Data hEFERENCE	勾TML	8CVじ	cuRe TIME	$\begin{aligned} & \text { CUGE } \\ & \text { TEME } \end{aligned}$	A ${ }^{\text {a }}$	APELICATION
EKKCEL C－1000 AKCMATIC COPOLYESTEE BLIOWN HIGA TEAP	GSFC9242	－ 26	． 00				WULD CRND
EKKCEL I－2000 AECMATIL COPOLYESTEA TAN HIGH TEMP	GSPC 9245	－00	－ 0				HULD CPND
	GSPCy ${ }^{\text {GSCJ }} 3$	－01	－00	36 H	160	E－J	Luils inidee
ELECTROBOND 1700 A，B AS $100 \% 5.3$ Eu	GSFC 3185	3.19	1.31	24 H	25	A ${ }^{\text {S }}$	
ELECTBOBCND 2015 A／B AS 10／1 SW SILVER FILLED EPOXY	GSFC 2967	． 44	． 02	2 H	65	A 6 K	LOND ADHESIVE
ELECTROLUMINSSCENT LAAP－GRIMES－YELLOW	GSC13299	－41	－ 1				－adP
ELTEN FOLYETHEKIMILE	GSC10889	－ 05	－ 01	30 d	310	Asin	UULD CPND
EM 7302 GLass fillid EPOXY	GSC12175	－48	－ 00	154	135	2SI	EULD CEND
EHA 7037 IKON	GSFC5741	－ 34	.01				－ELECTAIC
EMA 7085 IFON	GSFC5743	－ 23	.00				DIELECTEIC
EMA 8190 LiON	GSrCS 545	－21	－ 00				UELECTKIC
EMC 115－B－1 GLASS／EPOXY	GSFC2260	－ 29	－ 01				nU1D CEND
EMI SILVER FILLEL SILICONE ME 51－U8－0201	GSPRC 3005	1.06	． 35	54	150	A14	GUSKET
	GSC11770	1.37	－ 14	484	25	514	a DiiESIVe
ENAMEL FLAT ELACK AEROSOL BROD－DUGAN 100	GSC 10374	． 85	－14	72 id	100	ALK	＇aINT
ENAMEL 453－4－5／CA－212 AS 1／1 BY BLUE EPOXX／F	GSC11992	3.95	． 09	7 D	25	A1 K	－aiat
END CAP D 300－18 SHEINKABLE IRRAD BLACK POLYOLEFIN	GSFC8578	－．92	－3v	1 H	260	A1K	CHD CAP
ENVEX ENVEX 1000 1000	GSC10709 GSC10892	1.94	． 01	24H	204	414	DEARING MATL
ENVEX 1000\％	GSE10895	1.87	－01	24 H	204	A＋品	OEARING MAIL
ENVEX 1000X POLYIMIDE	GSC1U712	1.83	－ 0				DEARING MATL
ENVEX 1115	GSC10724	1.67	． 01				UEARENG MATA
ENVEX 1115	GSC10910	1.29	－ 03	24H	204	A14	DEAKIMG MATL
ENVEX 1228	GSC10727	1.25	． 02	24 H	204	A14	DEARING GATL
ENVEX 1315	GSC10730	2.03	－00	24.	204	A14	DEAKING MaIL
ENVEX 1315	GSC10922	1.36	． 02	24H	204	414	UGANINGMATL
EPC－011 KAPTON FILBATHERMOSET ADH	SSFC8402	1－26	－ 25	75M	171	Aid	LaMINATE FLLM
E？DM SIL Eh STHIE CLOSED CELL FOAM／ADH FILM／rOIL	GSC13442	13.63	3.73				casulatiua
EPIALL 1914 EPOXY／GLASS－BLACK	GSFC 3450	－47	． 00	7 D	25	414	HULD CPND
ERIBOND 1210／CAT G615 AS 100／65 BW EPOXY	GSFC 3065	－65	． 01	3 H	60	aik	AUGESIVE
EPIBOND $1210 / 9861$ AS $5 / 1$ Bh EPOXY	GSFC6798	$\begin{array}{r}-17 \\ \hline .17\end{array}$	－01	${ }_{1}^{70}$	25	${ }_{\text {H14 }}$	ADAESIVE
EPIBOND 122／CAT S52	GSFC 3632	4.37	． 00	$7{ }^{160}$	26	A1 A	ADHESIVE
EPIBOND 123／CAT S52 AS 20／3 but EPOXY	GSPC 1621	．63	． 03	24 E	25	4.1	A LHESIVE
EPIBCND 123／CAT $9615-10$ ，	GSFC 3034	－85	－03	${ }^{70}$	25	A1苑	ADHESIVE
EPIBOND 8510 A／E AS $10 / 3$ B W	GSFC 1312	． 05	． 00	50	25	A1R	ADHESIVE
EPIPHEN 825A／MOD T／FILLER／CONVERTER－EPOXY	GSFC 4150	－83	． 01	16H	65	ALE $\lambda 14$	aUHESIVE
EPO－TEK H11 A／B AS 15／2．6 BU SILVEE FILLED EPOXY	GSFC4930		． 02	93M	80	A14	
EPO－TEK H2OE A／D AS $1 / 1$ Bu SILVEK FILIED EPOXX	GSFC9 101	1.18 8.16	－0 02	2H	100 150	A18	CUND ADHESIDE ALHESIVE
EPPOTTEK H2OS A／B AS $1 / 1$ Bu SILYEAFILLED EPOXY	GSFC9 107	1.54	－01	2 H	100	Ast	UND ADHESIVE
EPO－TEK H21D A／B AS 10\％B S SLLVER FILLED EPOXY	GSFCSO18	1.19	－ 00	30 M	100	A1a	CUND ADHESIVE
EPJ－TEK H22 A／B AS 20\％0．9 BU SIL VER FILLED EPQXY	GSFC9446	1.00	－ 01	3.511	50	${ }_{4} 1{ }^{\text {a }}$	ADHESIVE
EPJ－TEK H22 A／E AS 20\％．9 BL SILVEK FILLED EPOXY	GSFC9449	－99	.01	2 HH	100	AIR	ADHESIVE
	GSCPC5 32	-52 -59	－09		150	－ 418	COND ADHESTVE
EPO－TEK HJIDLV SILVEE HILLED EPOXY SINGLE COMPONENT	GSFCC7112	－47	． 02	1 H	125		UUND ADHESIVE
EPO－TEK E4O GOLD EILEED EPOXY SINGLE COAPONENT	GSFCO416	－19	－0	1 H	120	A1E	LUND ADHESIVE
EPO－TEK H41 GOLD EILLED EPOXY	GSPC5234	－ 14	． 00	1 H	150	A 1.4	UND ADHESIVE
EPO－TEK H43 GOLD FILLED EPOXY	GStCJ236	－ 20	00	$1{ }^{1 H}$	150	A 16	CUND ADELSIVE
EPO－TEK H44 GOLD FILLED EPOXY	GSFC3238	－ 21	，	1 H	150	A15	－UND ADHESIVE

 UND ADHESIVO
UOND ADHESIVE
URT CEHENT
UAT CEKENT UET CEMSMT UST CEMENT

 ADHESIVE
ADHESIVE a DHBSIVE ADHESIVE しル

 AOAESIVE
QOTTING
POTTIEG
COTTING
UUATING
AULD CFAD
AOLD CEND
OOTTING FOAM $\triangle \nu H E S I V E$
$\triangle U H E S I V E$ nomunoungs
Non vonoNvi

 4 a DHBSIVE MOHESIVE iAERM COND A
LOTING
$\underset{\substack{n \\ \hdashline}}{\infty}$
1

9
0
-
1.17

∞
-
-
1.88
.43 vin： －
 $\underset{\sim}{0} \underset{\sim}{\sim}$
 －SC＝－11267
 No
Non
an
MV
go

 ∞
0
0
8
0 GSic 9981

 GSC1 2427 GSC12064 GSC 12070 GSC1 3389 No
Mo
0.
0
n
n
0

 5
N
3
3
0
0
0

 $\operatorname{GSFC} 3489$
$\operatorname{GSFC} 1633$

	AATEAIAL	DATA KEFEXENCE	\％TM	BUVCH	くURE T1ME	CURE TEME	aidus	APPLICATIUA
EPON	1001－ET－70／VERSAIID 115／はEK／TULUENE	こSF゙こ5220	9．U0	－ 0	15011	25	A14	ADHESIVE
EPON		GSFC4612	12.02	． 42	1 H	99	A1	A UHESIVE
ERON	3／CAT A／CYCLOLEXANOL AS 100．12．0／25 B\％	GSFCO 353	0.00	． 01	3 H	93	A 1 K	a $\mathrm{UH}^{\text {H－PQTTlNG }}$
EPON	8／CAT A／CYCLCEEXANOL AS 100／12．5／25 BW	6 6FCO 350	4.74	． 00	3 3 4	93	${ }_{8}^{4} 18$	aDi－HOTTING
EPON	315／DELa－2U／VEhSAMID 150 AS $100 / 12 / 12$ bid EPOXY	GSc12218	.81	． 43	4 D	25	$4 \perp$	A UHESIVE
					24 H	66 7	A1 A A	
EPOON		GSEC 2833	2．90	． 06	7 7	25	A dia	a $\cup H E S V E$
EPON	$815 / T A S 10,1-8$ B ELGOXY	GSC12130	2－41	－03	70	25	A 14	ADHESIVE
EPON	－15／TETA AS 1C／1 日W CURE 2	GSic2543	1.83	.03	$6{ }^{6}$	25	Ais	AUHESIVE
EPON	$815 /$ RETA AS 10／1 EW CURE 4	GSFC 2567 GSKC8423	.76 1.14	．01	16 H 4 H	63 66	${ }_{4}^{4} 18$	MDHESIVE
EPON		GSKC8423 GSPC9936	1．14	．01	${ }^{4} \mathbf{H}$	66 25	AI ${ }_{\text {A }}$	SUTHESIVE
EPON	$815 / \mathrm{V} 140$ AS EU／50 Bw EPUXY	GSPC 3810	.70	.06	30	25	A＋${ }^{\text {a }}$	¢UTTING
EPON	$815 / \mathrm{V} 140$ AS EO／50 3－EFUXY	GSFC9 152	1.07	－ 10	16 H	25	A1k	cunf coat
EPON	$815 / \mathrm{V} 140$ AS 65／3）5W EpOXY	GSEC3812	． 40	． 02	30	25	418	cUSTING
ERON		GSC1 1630	． 60	． 06	$7 \mathrm{7H}$	25		ᄂUND ADHESIVE
EPON	¢15\％ $140 /$ DIA AS $100 / 15 / 6$ Bw EPUXY	GSC12136	2.42	． 08	7 D	25	A1k	AUHESIVE
ERON	$815 / \mathrm{V} 140 / \mathrm{CTA}$ AS 100／6／6 B W EPOXX	GSC12139	4.68	． 41	70	25	A 14	\triangle HESS $V E$
EPON	815／V 140／PHS 17ら－ED AS 50／50／5 هW White LPOXY	GSFCTbu2	． 64	.07	3 H	65	A 15	AARKINGINK
EPON		GSEC8540	． 65	－03	7 l	25	ALK	CUND PUTEING
EPON		GSC1 2595	1.84	． 08	16H	25	A A ${ }_{\text {A }}$	LUNP COAT
EPON	$815 / V E K S A H I L E ~ 150 ~ A S ~ 60 / 40 ~ 3 W ~ E Y C X I ~$	GSPC 300%	1.29	． 06	24 H	＜ 5	AL	LONF COAT
CPON	$820 /$ TETA AS 10／1 BHi CURE 1	GSFC2541	－43	． 05	3 D	25	A14	ADEESIVE
ERON	820／TET＇A AS 10／1 BW CURE 6	GSEC 2534	． 36	.04	1 l	63	${ }^{\Delta A K}$	AUHESIVE
$\triangle \mathrm{APON}$	$825 / \mathrm{V} 140 \mathrm{AS} 7 / 0 \mathrm{BH}$ EPOXX	GSFC5 254	． 32	． 02	2 Li	75	AI	
EPON		GSC10302	.41	.00	2 H	93	Aik	AUHESIVE
SPON	$826 / 871 / 2$ is $100 / 60 / 25.4$ Bu LPQ	gSciu535	． 64	． 01	2 H	80	ALE	ruTTING
					${ }^{4 .} \mathrm{H}$	130 60	Aik	
EPON	828－ALUSINA／V $125 / \mathrm{METHANEDIAMINE/ALUMINA}$	GSEC4206	－2 ${ }^{9}$	－01	$3{ }^{3}$	71	A ${ }^{\text {A }}$	ADHESIVE
EPON	828／CAT 951 AS 10／1 B＇̆ EPOXY	GSC10 215	2.31	1.27	2.4 H	25	dik	－OATING
EPON	828／LER 732／AFP／CARBUN BLACK EPUXY ADEESIVE	GSFC 1387	1.56	． 06	2 H	66		¢ U HESIVE
EPON	828／DER 732／CAB－O－SIL／AEP	GSFC2855	1.46	． 06	$2{ }^{24}$	74	A 1 R	EuTTING
EPON	82d／DTA AS 10／1 Din EPOXX	GSEC6002	． 15	． 04	3 D	25	a ${ }^{\text {a }}$	\triangle UHESIVE
EPON	$828 / \mathrm{EM} 308$ AS $2 / 1 \mathrm{BW}$ EPUXY	GSPCO 383	． 77	－ 06	48 H	25	ALK	PUTTING
EPON	828／EM 30 U／SIIICA YLOUR AS 10／5／1 B A EPUXY	GSEC 4630	－29	． 00	1.5 H	65	AL	ADHESIVE
EPON	828／LINDKIDE E／DAP 30 AS $100 / 90 / 1 \mathrm{BW}$ EPOXY	GSFC4872	－ 34	． 00	$1 H$ 48	70	AIK	rutting
EPON	823／LINDEIDE 8／DMP 30 AS $100 / 90 / 1$ B EPOXY／SAND	GSFC 4902	． 04	． 00	1 H	100	$4 \pm$	YUTTING
EPUN	328／TETA AS 1C／1 DW CUKE 1	GSFC2595	－ 50	． 01	3 D	25	A 1 E	4DHESIVE
EPON	828，TETA AS 1C／1 EW CURE 8	GSFC2597	． 38	． 00	16 C	63	dia	AUCESIVE
EPON			1.03 .46	． 26	${ }^{2} \mathbf{7}$	55 25	A 4 A	GOTTING

 CVCM

 Material

MATERIAL	DATA R土がER心NC	＊TML	XCVCM	CURE TIME	$\begin{aligned} & \text { CUKE } \\ & \text { TEMP } \end{aligned}$	A4dus	APPLICATLUN
EPON 828／871／AEP AS 35／65／15．5 BW	GSFC 1014	1.01	． 05	$\begin{aligned} & 2 \mathrm{H} \\ & 72 \mathrm{H} \end{aligned}$	42 3	$\begin{aligned} & A \angle d \\ & d \perp B \end{aligned}$	kUTIING
				4 D	25	A 14	
EPON 828／871／AEP AS $40 / 60 / 15.5 \mathrm{~B}$	GSFC0 251	． 46	． 02	16 H	65	A 2 k	cuTTiNu
EPON O28／871／AEP AS $40 / 0 \cup / 15.5$ Bm	GSPCO284	1.16 1.24	． 08	70 80 80	25 54	$4 \perp 4$ A	KUITESIVE
	GStC5725	1.35	.03	4 H	64	A 24	AUHESIVE
EPON 8280／VEGSAMID 140 AS $50 / 50$ EW EROXY	GSC11393	－92	． 02	7 D	25	A 4 H	A UHESIVE
EPON 929 EKOXY	GSFC 1717	－60	－00	1 H	149	Ais	\triangle DHESIVE
EPON Y 34 A／B AS 10C／33 BW EPOXY	GSC10395	－95	－ 00	7 D	25		ADGESIVE
	GSFE 2440	2.88	． 02	7 D 2 H	25	A A	ADHESIVE
EPON $934 \mathrm{~A} / 3$ AS $10 \mathrm{C} / 33 \mathrm{BH}$ EPOXY W／MEK	GSEL 1417	2．87	－ 02	2H	25 82	A A A 4.8	a h HeSIVE
ERON 934 A／B AS 100／33 BW W／MEK／ 10 S 2	GSFE 1255	2－93	． 03	2 H	25	${ }^{\text {AH }}$	ADHESLVE
E2ON 934 A／B AS 10C／33 BW W／Mck／MOS2	GSFC 1447	2.01	． 11	$1{ }^{16 \mathrm{H}}$	80	A ALK	ADHESIVE
EPON 956 A／B AS $10 \mathrm{C} / 58 \mathrm{BW}$ EPUXY	GSFC 1741	－19	.01	70	25	A $1 \times$	A UHESIVE
EPON 956 A／B AS $100 / 58$ BH／CAaBOLAC／CABUSIL	GSFE1774	－ 81	－ 00	7 D	25	A1K	ALIIESIVE
EPON 956 A／B AS $100 / 58$ BW／CARBOLAC／NUVACATE 1250	GSEC 1810	1－90	－ 12	7 7	25	A A K	EANT
EPON 956 A／B AS 10C／53 Bn／CAROULAC／SYLOLD 620	GSFC 1817	1.02 .88	－ 31	7 D	25	A 1 k 41	－ADETIVE
	GSFC 1750	.88 .13	.11	70 20	35	A $~+~$ $A+\alpha$ 4	aUñing
EPCikERM				4 ti	175	Aik	
EPOXI－PATCH KIT OIS CLEAG EUUAL LENGTAS FG TUEES	GSfCO209	1.51	－ 11	24 H	25		aUHESIVE
EPOXI－PATCH KIT 0151 EOUAL LENGTBS FR＇TUBES	GSC12385	1.36	． 02	$2{ }_{2}$	60	Ait	ADAESIVE
EPUXI－PATCH KIT $1 C$ HHITL EXUAL LENGIHS FK TUBES	GSECS 797	4.87	－ 2	$2{ }^{2} \mathrm{H}$	25	－${ }_{\text {a }}$	and－Scalant
	GSCA ${ }^{\text {GSFC }} \mathbf{}$	4.37	． 20	$6 \mathrm{6H}$	25	A1閏	AUHTTING
EPOXI－PATCH KIT 60¢ CLEAR EQUAL LENGTHS FK TUBES	GSFC5799	3.07	－ 15	24 H	25	ala	a LH－SEALANT $^{\text {a }}$
EPOXY ADHESIVE FCR REPLACA GKATI WGS－YEOERIETARY	GSC13009	5.99	－ 12				aUHLSIVE
EPUXY ADHESIVE YCR BEPLICA GHATINGS－PHUPBLETARY	GSC13108	5.53	－ 12	24 m	80	ain	A DGESIVE
EPOXY ANTI－T\＆ACK CCATING	GSC12715	2.01	． 61	30 M 16 H	100 150	$\begin{aligned} & A 1 K \\ & 4 \perp \alpha \end{aligned}$	LUATING
EPOXI FIBERGLASS ECOM CXLINDER	GSFC8681	－ 20	． 05				－AMINATE
EPOXX 14	GSC1 1039	1.60	－31	30 M	115	A $1 \times$	ADGESIVE
EPOXP 220 A／B AS EGUAL PAETS FROM TUUES	GSPC4976	10.89	． 07	24 H	25		AUHESIVE
EPJXY 330 A／B AS ÉUUALPARTS EROA TUUES	GSFC4978	10.42 .97	． 07	24 H 30 H	825	A 1×4	GUTESIVE
EPOXY 907 A／B AS ESUAL LENGTHS FROH TUBES	GSFC4362	2.25	－66	7 D	25	A 2	4 UVESIVE
				24 H	45	aIk	
				8 H	60	A 14	
	GSFC2987	3.57 5.84	.03 .02	24 H	25 50	$A \perp G$ $C=0$	A UHESIVE
EPOXYLITE 6203 a／e AS $2 / 1$ BW EPOAY	GSFC5006	－ 45	－03	4 H	121	A1	HuTING
EPOXYLITE 8712 VAENISA	GSFC4680	8.41	－ 03	24 A	52	A $1 \times$	1 APREGNalT
EPOAYLITE 9653 PCLYURETHANE E－160 8 COATS	GSFC 3169	9.15	.01	1H	71	${ }_{4}{ }^{\text {H }}$	Cunf coat
EPOXYLITE 9653 PCLYUAETHANE E－194 8 COATS	GSFC3167	4.87	． 00	2H	71 90	C－3 4	UUNA CCUAT
EPOXYLTE 9653 TYPE 3 （ ${ }^{\text {T }}$	GSFC 2008	15.48	． 01	2if	70	Aik	ANHESIVE
EPPLEY PARSUNS BLACK	GSFC 1960	13.33	3.05				raINT
EPY 150 PRE PACK EEOXY ADH LOT L 101	GSFC5581	－ 99	． 03	10 H	25	A ${ }_{\text {d }}$	a ¢ iESIVE
ERL $2795 / \mathrm{HN} 951$ ¢ YATACTIC FOAM	GSPC 2800	$=50$	－ 013	$\frac{2}{4} 4$	25	$\triangle 1 \mathrm{~K}$	¢OAM
ESP 108 GRAY ONE PART EPOXY	GSC 12922	－ 53	－ 13	45 M	150	A 16	a DrESIVE
	GSC12925	－50	－13	45 H	15	$\underset{H 18}{4}$	AUGESIVE
ESTAR PHOTOGRAPHIC FILM	GSPC9799	1.26	.00				FILM

 caINT Y甘ESS SENS FLLM CASULATION E

 xax

29

52
$\underset{\sim}{~}$
R゙ざN $\stackrel{n}{N}$
monc

VCH

ค
 ？ 53 n す゚Nーづ゚ -7 ONनアゴ $\stackrel{7}{\circ}$ $?$
- 7.21

-67 －29 $9 m o r$
$-9 g$
9 ○？ 8ำ च゙N ロö
,

－onnolomin $\rightarrow \infty 0_{0} \infty$ － $=$DATA
KEEEBENC：
GSFC8O42
KELFC8042

$G S C 13205$
$G S C 10505$
$G S C 10200$
GSC10 203
GSC10
GSPC 486

nATEBIAL

FLUOROCLAD WHITE G79WP37

Fir	15u－1 SUPPOKTED EZOKY		
FM	150－2 SUPPJETED EPOXY		
$\underline{\square}$	150－20 UNSUPPOETED EPO	OXY EILM ADH	
FH	24 LPOXY ADH EIIM ORAN	N GE	
FM	34－18U aDHESIVE FİM		
F	3 SU UNSUPPOETED EPUXY	ADHESIVE FILM	BLUE
FI	36 FILM AdHESIVE POLY	IMIDE／GLASS	

Material	data HEFEKENCE	枵ML	\%CVCA	$\begin{aligned} & \text { CUKE } \\ & \text { TIHE } \end{aligned}$	$\begin{aligned} & \text { CURE } \\ & \text { TEME } \end{aligned}$	A \perp MUJ	APFLICATICN
G 406400 TAPE AU CCATED KAPTUN/ACEYLIC ADH/F	GSC12343	. 75	-				1 APE
G $406405-0201 A P L$ KAPION/AU KETALILED/Y 960 ADH/F	- SFEC734	1.06	. 02				$1 A^{4} \mathrm{E}$
G 407710 TAPE ALUEINLZED KAPTUN/SILICYNE ADH/F	GSC11033	1.98	- 38				14 FE
G 410310 TAPE ALUM KAr TON/2 SIDE SLLICONE ADH/F	GSC12346	1.45	- 57				2 Slded tape
G 410310 TAPE ALUIINILED KAPTUN/SILICONE ADH/F	GSC10239	2.44	. 53				TaPE
G-1897 HT AL UMINUG COATING	GSiC 338	. 09	. 04	1 H	232	A14	raind
G-3230 ALKYD WHITE PALNI	GSEC 335	3.13	1.07	24 H	25	A 14	-A $\mathrm{N}^{\text {c }}$
G-400/100 TAPE/S	GSEC 2179	. 94	. 00				1 APE
G-640 INSULGREASE LEAT TKANSFER	GSPCU413.	.71	- 12				GacASE
G-641 INSULGREASE	GSFC8453	- 16	. 07				LHEHHAD GREASE
G-642 THEUMAL GLEASE	GSFC8699	. 55	-38				IUGMMAL GREASE
	GSCi2100	.05	. 01				LuEMAALEGEASE
GA-2 A/B AS 1/1 EW EPUXY CEMENT	GSficuy39	2.48	. 18	$\downarrow 8 \mathrm{nf}$	25	A1K	a \sim HEjIVE
gagekote 1 STKAI AGEGE ADH AND COATING	GSFC3009	8.12	1.40	120	25	A 1 H	adil-cuatinu
GA E-DUR CLEAR.	GSC11060	.07	. 01				NULD CEND
GAB-DUK YELLCW	GSC11663	-10	. 02				nuid Ceni
GABLOCK 201 A/B AS 1/1 BW EPOXY	GSFC 1301	4.76	. 00	24i	25	ALH	ALUESIVE
GASKET AMP RF-SMA CCNNECTOR KED SILICONE	GSECS915	. 14	. 022				¢ajact
GASKET AMP BF-SMA CONNECTOK WhLTE SILICONE	GSFC5918	4-04	. 22				¢ASKET
	GSFC2420	4.28 3.52	2.41			A1K	CILHESIVE
GE 4008 ALAESIVE CiEax				10 M	160	A1世	ADHESIVE
GE 45240 SILICONE	GSFC9957	. 52	- 18	${ }_{8}^{25}$	103		aULD CPND
				8 H	121	-	
GE 7031 INSULATIAG VARNISH - PHENOLIC				8 Hi	121	E-O	
GE 7031 INSULATIag varnish - Phenolic	GSFC8876	8.75	.	$1{ }^{4}$	120	A 12 A	VaxNISH
Ge 7031 INSULATING VALENSE - PHENULIC	GSFC8924	6.87	. 71	45 H	25	AIK	yainish
				$7 \mathrm{l}{ }^{14}$	80	${ }_{\text {d }}^{\substack{\text { L }}}$	
GELVA MP SOL ha $263 / A C E Y L I C ~ P E E S ~ S E N S ~ A D H ~$	GSFC 1867	.79	.08	7 D	25	ALb	ADHESIVR
GEIVA MP SOL Ed 26 / ACRYLIC PKES SENS ADH	GSFC 1921	-62	.03	24H	25	4.as	a UHESIVE
GELVA MP SOL Ra 657/ACKYLIC PGES SENS ADi				7 D	- 25	A A	
GELVA MP SOL EA 6S7/ACRYLIC PRES SENS ADH	GSFC 1918	1.12	. 04	24 H	25	A1 ${ }^{\text {a }}$	aUHESIVE
GELVA MP SOL EA 784/ACRYLIC PFĖS SENS ADH	GStc 1861	1.55	. 19	70	25	A 18	ADHESIVE
GELVA MP SOL ha $784 /$ ACRYLIC PRES SENS ADH	GSEC 1897	1.00	- 0	24 d	25	\cdots	aUHESIVE
GEIVA MP SOL RA 858/ACRYLIC PRES SENS ADH	GSFC 1858	1-25	- 38	7 D	25	$4 \perp$	a DHESIVE
GELVA MP SCL EA 858/ACEYLIC PRES SENS ADH	GSFC 1894	1.02	- 02	24 H	25	4.4	ADHESIVE
$\text { GEMCN } 3010 \text { THEEMCSETROLYIMIDE }$ GENEFUXY $185 / \mathrm{V}$ EKSAIID 115 AS $1 / 1$ BW EPGXY	$\begin{aligned} & \text { GSFC } 1927 \\ & \text { GSHC } \end{aligned}$	-34 -35	. 02	16 H	25	416	GULD CPND a JHESIVE
GEAEPOXY 190/VEESAEID 140 aS $3 / 2$ BW AMBEa EPUXY	GSFC7262	. 24	. 01	12H	25	A+k	tUTTING
				2if	6	ALC	
GENOTHERM HT JNKIASTICIZED PVC FILM CLEAK	GSPC5097	$\square 23$	0.1				5
GENOTHERM NTLS UNEIASTICI	GSFCS699	. 63	. 05				ciic
GENOTHERM GTLS UNPIASTICIZED PVC FILM MHITE	GSFC5701	- 38	. 05				$\boldsymbol{C 1}$ L
GENOTHERA US 1002 DNPLASTICİED PVC FILK CLEAR	GSFCS703	- 21	-02				5tic
GEVACHERM US SEALANT 1	GSFCO765	12.08	1.41	24 H	65	A $1 \times$	SEALANT

matenlal	DATA REPERENCE	\％TML		$\underset{\sim}{\text { cure }}$ TIME	$\begin{aligned} & \text { CUSE } \\ & \text { TEUE } \end{aligned}$	athus	application
HEATING TAPE CLAYECKA LABS H－10－2X DC 282 SILICONE	GSPC7859	． 073	． 03	48 H	155	c－4	GEAT TAPE
	GSFC4290	－73	－19				GATED HEAT TAPE
HEATING TAPE－CLAYECRN LABS DC 28UA A	GSFC3586	5.85 3.51	：37	100ㅂ	45	a $1 \times$	即AT TAPE
既		3.31 3.35 1.40	－76	${ }^{15} 5$	821		ALG ADHESLVE
hexabund 3 EPJXY Fila adhesive unSuphakted		1.23		1 iH	127		
HEXCET F153 CEOXY GLASS PAEPREG	GSFC 2711	.18	－00	7 H	171	¢51	Lacinate
	GSFC 5425	－40	－00				LAUINATE
Hir－Vac diense	GSFC0656	1.52	． 34				LUJELCANI／GHEASE
HI－VACC SEEASE 970 V SILICUNE	GSFC9829	－73	－22				LuBRICANT／GuEASE
HIGGA TEMP 221 dagner whee coati	GSFC2845	． 53	． 15				－ibe Cuating
HiL $155-55-1 / 2$ AS $4 \mathrm{k} / 1$ BW ACHYLIC COATING	GSFC4057	6.32	． 00	7D	25	418	－unf COAT
	GSictu ${ }^{\text {GSFCO393 }}$	6.79 2.90	－06	7 D	25	A＋ H	LGMINATE
	GSFC 9302	1.62	－03				Sckuctukai
HONEYCCMB STECIAL COMPUSITE EPON OLO／ELBERGLAS／PLUS	6Sirc5 885	1.27	． 01				HUNEYCOMb
	GSC100．5	3.14	． 02				UULD CPND
Hati－ 0 NY LON／PIEEACLIC	GStC 7979	2.74	－ 00				HUNEYCOME
HS 101 BLACK EOLYCIEFINSSEINK TUBING HEATGUN SHMINK	GSFC9 999	2． 99	－ 0^{4}				SURI K INSULIAG
		$\bigcirc 12$	-90 .01	${ }_{4}{ }^{\text {H }}$－${ }^{\text {H }}$	254	ALK	CUNA INSUL
	GSFC6491	1.88 .72	： 112	8.518 1400 100	260 25 174 17		CuHESIVEESLVE
	GSFCB642	1.27 29.66	：U0	3 H 1 H 2 H 1 H 1 H	143 25 71 25 25	A A A AB A A H	AUGESIVET
HJMISEAL 1 A ${ }^{\text {H2 }}$ OIS PCLYLRETHANE	GSFC^{6855}	2.58	－02				LOnf coat
HOMISEAL A33 ECLYUELTHANE	GSFC2821	8.54	－24	190	25		Cunf coat
HJMISEAL 1 A3 P POIYURETHANE	$\operatorname{GSFC} 2991$ GSFC 2473	4.98 1.78	1.00	$2{ }^{24} 2$	65		－UNF COAT
HOMISEAL	GSrC 2155	1.78 6.89	． 18	24 H 30 OH	87		Cuif COAT
HJMISEAL 1815 AChYIIC		9.38 14.04	． 020	24 H 44 H 24	25 71 25	A A M	CuNP COAT
				${ }_{10 \mathrm{H}}^{2}$	66	A1去	CONP CGAT
HJMISEAL 1 BJ 1 ACEYIIC UN．FCIL	GSFC 5727	9.74	． 07	30 C	77 80	${ }^{1 / 2}$	COHF COAT
	GSPCLi011	11.81 3.27	－14	3004	80	A $1{ }_{\text {a }}^{\text {a }}$	CONF COAT
humiseal 2 A53 a／e es 1／1 bV mod epoxy coating	GSFC2907	1.94	． 03	240	93 85	A12	conf coat

$\mathcal{U} \operatorname{HINGG}$
Ytion
rabis
WIELECTEIC
1 AES
4 CHLATION
H AERMAL CONTKUC
iUulatiun
ARCL
APE
WLAE INSUL
WLRE INSUL
caEntal CONTHO
LGERMAL CONHEUL
aERMAL CON＇SLUL
TaEFM CUnTEUL
ERA CUMRUL

aLRMACB BiaANKET UATIN 1AKE

420 18
14
14
-8
 a

$\stackrel{-4}{-4}$ $\begin{array}{lll}9 x 4 & 4 & 4 \\ -14 & -4 & 4\end{array}$
Nos
号

E
E
เกทูง
$?$
0
N
N
新票禀要

气
포N
き

2
\cdots

 MAMONOP？

 mis minn monn
 $\mathrm{GSF}_{\mathrm{G}} \mathrm{FS} 5104$

 3 ， GSc13251 GSC13254

kevlain 29 yellon pieebs KEVLAM 29 YELLOH PIEERS $\quad 49$ FAbKIC／CORLAB 3143 EES

 KJB CYCOLAC BLUE SEOO SER LSS E／FIRE AETAhDANT

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ial \& REFEREACE \& \%reL \& acrem \& Cure \& Cumb \& 4THus \& apflicaticn

\hline LABEL MABKING \& $\mathrm{GSC1}^{\text {ciol }}$ \& 36 \& 12 \& \& \& \& ${ }^{4} \mathrm{BEEL}$

\hline \& \& 3:34 \& - 78 \& \& \& \& LABEL ${ }_{\text {che }}$

\hline \& (${ }^{\text {GSFCL }}$ \& 88.47 \& 4:54 \& \& \& \& LaCNNG CORD

\hline \& \& 8.36 \& 3. 38 \& \& \& \& $\xrightarrow{L A C I A G G C O R D}$

\hline \& - ${ }_{\text {GSFC }} \mathrm{GSFC} 5737$ \& \& :42 \& \& \& \& MACIM

\hline LacI \& $\mathrm{GSFC}^{\text {G } 52218}$ \& -55 \& -28 \& \& \& \&

\hline \& ${ }_{\text {GS }}^{6} \mathrm{FC} 7217$ \& :31 \& :08 \& 24 B \& 125 \& - ${ }_{\text {¢ }}$ \&

\hline LACNGG TAPEE E 775 \& GSFC5 ${ }^{\text {G }}$ \& -197 \& -04 \& f \& 100 \& 11世 \& tacing tar

\hline \& (${ }^{\text {SSFC5555 }}$ \& :70 \& -25 \& Ja \& 100 \& Aİ \& CACANG TA

\hline Licing Tape e 77 Coso \& CSFC5779 \& $1: 46$ \& -57 \& \& \& \& HACNGG TA

\hline \& GSFC579 \& 10.60 \& - 26 \& \& \& \& -ACIMg

\hline LACING TAPL GE AYACN \& GSPCP 540 \& 13.27 \& 6.93 \& \& \& \& -ACing ${ }_{\text {TAP }}$

\hline \& GSFC1693
GSPC 845 \& 1:00 \& :07 \& \& \& \& LACING ${ }_{\text {TA }}$

\hline \& GSFC6 116
GSFC4

S \& $\begin{array}{r}2.25 \\ \hline .52\end{array}$ \& :19 \& \& \& \& Lacinc ita

\hline \& \& -55 \& -15 \& $2{ }^{248}$ \& 50 \& A \& LACTNG TA

\hline \& \& :24 \& -03 \& 248 \& 100 \& 414 \&

\hline \& GiSFC_{6119} \& -71 \& :17 \& \& \& \&

\hline \& \& 2.73 \& -15 \& \& \& \& LaCing Tape

\hline \& ${ }_{\text {GSFCL }}$ \& 1.39 \& :05 \& \& \& \& HiACING TAPE

\hline \& \& 3.19 \& . 72 \& \& \& \& ${ }_{L A C D}$

\hline LACING TAPE GUDEEACE IBNGO AYLOA \& \& 2.57 \& -07 \& \& \& \& LACINGG TAPE

\hline \& \& ${ }_{1}$ \& -23 \& \& \& \& -ACIMGG TAPE

\hline \& GSECBO18 \& 4:64 \& -06 \& \& \& \&

\hline \& ¢SSCC 1543 \& 6.60 \& 108 \& \& \& \&

\hline \& GSFCC871 \& $2: 23$ \& 202 \& 1 i \& 227 \& dax \& LACING TAPE

\hline \& GSFC8174 \& $\frac{2}{3} 943$ \& : 14 \& \& \& \&

\hline \& GSEC9 332 \& 9.61 \& -03 \& 1H \& 177 \& dia \& LACINGG TAPE

\hline \& \& -989 \& :06 \& \& \& \& LALCING TAPE

\hline LACCNG TAPE SK PCLYESTER \& \& 1.21 \& -18 \& \& \& \& ${ }_{\text {LACLING }}$

\hline \& GSFCO 932 \& - 28 \& -18 \& 154 \& 149 \& ana \&

\hline \& \& 2:37 \& 1:017 \& \& \& \& LACLNG TAPE

\hline
\end{tabular}

MATERIAL
LAMINATE \qquad

我 $\underset{5}{8}$

 7

4
2
2

-4
20
3
420
-14
-14
4是
ロットゥ 0
0
-

$\underset{\sim}{\nabla}$ 183
$\underset{\sim}{\mathcal{N}}$
135
录 Э゚

咅
嗐
28
오요
母in
濖

 ． 29 앙 －OMmago
 -5
-6
-3
1.8 m－N さMッロックジM

\qquad
 \qquad

	 HONEYCOMB KEVLAR／EPOXY／FM 123－2
laminate	HY1534／934 GRapeite epo xy
Laminate	K 6098 TEELON／PIBERGLASS／3m
Laminate	K－6098 $\mathrm{E} / \mathrm{AF} 46 \mathrm{FILM}$ ADH ESIVE
Latinate	KAPLOA ENCAPSULATED COPPER
laminate	KEVLAR $/$ EFCXY
LAMINATE	REVLAR／EECXY
laminate	KEVLAR／EPCXY STYLE 181
labinate	LX6501 FLEXIBLE M／COPPER
Laminate	HCAAPLY PG 802
Laminate	MICAPLY PG 418 BT PCLYIMIDE／PI
Laminate	hicaply 102－11 EPOXY／GL ASS PaE－Preg 8 layer
LAMINATE	GICAPLY $12-11 / \mathrm{G}-1$.
daminate	MICAPLY $102-69{ }^{\text {a }}$－STAGE PRE PEEG PREPA
LAMINATE	MICAPLY 818 T \％ 0 COPPER GREEN
LAMINATE	EULTI－LAYEPER MIL P55617 P55636 P13949
LABISATE	HULTIWIEE PC BOARD
HIMATE	N－105 EFCXY／GLASS FL
Latinate	
Laginate	N－4135 EPCXY／GLASS PLEXIBLE $1 / 0$ COPPER
ladinate	narmco
LAAINATE	NARMCO 3203－1581 EPOXY／GLASS
Laminate	NEM A PK－45 BY GE M Copper
caminate	NEMA G－10 GEC 500 E EPOXY／PID
Laminate	NEEA G10 LESTINGHOUSE 6 bmen－
Laminate	NEM
Laginate	NEHA G7 Giass fabrichsilico
LAEIAATE	NEHAPEE4 H／SR1003 SOLDER RESIST／IR
LAMINATE	NYF FLAME BETARDANT EEL MARKING
taminate	NVF G－10 GEEEN MAR
LaMinate	MYLON FAEHIC／PBENOLIC RESIN
Laminate	PC BJAED IRGADIATED POL Y dLEFIN
Laminate	PHENO
aninate	PMR－15／EAG EPOXY／GRAPHITE
LAMINATE	
LA Hinate	SHIM ALUHINUM
Laminate	SUN SHALE AL－KAPTON／7306 TAPE／AG－TEFLON－CTR
MI NA	TLGI HOLTI－LAYER

haterial		*TML	kver	cuse	CUE	aTA	afeicatiou
		${ }^{2.13}$:00				La-1jame
		-58	-00				Cami ${ }_{\text {ate }}$
	GSC1435 GSE 2797	-45	:01				ACDAMD
laminate wbc 320 ic on 112 glass cloth epoxy uesin		. 17	. 01	18	177	$\underset{\substack{\text { A }}}{\substack{\text { ¢ }}}$	
Labinate mesting house epoxy/fibergiass	GSFE 3829	-25	-02				LJ Himate
	- ${ }^{\text {GSCCI }}$	1:69	:468				Leatek jubstate
	- 6 GFCCOP38	-61	: 11	${ }_{10}^{304}$	135	202	
Latex SURGICAL TUBING ${ }_{\text {L }}$	GSPC680	6:16	1.44	488	56	${ }_{\text {ala }}$	cusining
$\mathrm{LEA} 4 / \mathrm{ACT}$ EA5 AS $100 / 4.5$ Bh EPOXY LD	GSEC5115 GSFC8 GSFC4 GSF9 9		$\begin{array}{r}\text {-00 } \\ 603 \\ 6035 \\ \hline 35\end{array}$		100 93 95		
	GSFC 9158	- 16.74	3:84	$7{ }_{70}^{70}$	25 25 25		
		4.84 8.48 $1-45$: 87	, 70.	25 25 25 15		
				${ }_{80}$	25 104		autesive
 	GSC12883 GSFC8 60.	13.31 $1: 17$ $1: 03$ 0.05	$\begin{array}{r}8: 63 \\ : 05 \\ \hline 02\end{array}$	${ }_{50}^{24}$	$\begin{array}{r}25 \\ 25 \\ \hline\end{array}$	${ }_{\text {A }}^{1 / \mathrm{L}}{ }^{\text {a }}$	
lefkoweld 109/La-5z as 100/74 bW ligit gray groxy	GSFC8738	2.65	. 03	${ }_{24}^{44}$	25	A1bid	adhesive
LE NS BCND C-59 A	GSFC7 292 GSFC 8436 GSFC 3171	1.04 2.040 2.94 4.93 4	-088		66 65 25 25 25		ADHESIVE UKT CEUENT
LeNS BOND F-65 A A AS		4:83	-16		75	${ }_{\text {A1 }}^{\text {ata }}$	ORT CRAEAT
LE SS BOND GV699 EOTAESTER SUN LAMP CURE	- ${ }^{\text {G5 }}$	3:65	- 20				UPT CEAENT
		3 3.68	-44				Upt cement
	$\mathrm{GSFC}^{\text {GSFC476 }}$	5. 82	-03				Helit cend
LLEXAN $9034-112$.	GSPCO410	-19	-91				bincil piape
LEXCOTE G-3183/G3174 aS 100/5.7 bil Clear coating	GSPC3399	17.65	- 39	${ }^{10 \mathrm{M}}$	25 60	${ }_{\text {ALA }}^{\text {AL }}$	Cunf coat
	GSC13281 GSFCitio	5.688	-97				OAGGINS
LOCTITE A Red ADEESTVE PEOM BULTS	GSFC9 215	50.54	-03	${ }_{7}^{24 \mathrm{H}}$	25	esti	Mhatad seal
LOCTITE A AED ADHESIVE PROM EOLTS	GSECT9796	5.86	-01	${ }_{\text {l }}^{\text {7 }}$	25	${ }_{\text {Ps }}^{51}$	
	GSFC 3445	1:64	:00	${ }^{72 \mathrm{H}}$	25	E_{5}	chatad seai
	GSPC919 GSFC GS	14.30 12.63	7:020	${ }_{40}{ }^{48 \mathrm{H}}$	25 2 25	251	

THBEAD SEAL

 UPTICAL CEHENT
 7
0
0
0
0
0
0
3
3

$\left\{\begin{array}{l} -N+x \times \infty \\ 1 \operatorname{non}+1 \end{array}\right.$! यमयक्या	－nenengencongenisot 	$\begin{aligned} & x \\ & 1 \\ & -1 \end{aligned}$	$\begin{gathered} \text { v } \\ \mathbf{y} \end{gathered}$	$\begin{aligned} & -1 \pm .904 \\ & n_{1}+\frac{1}{4}=1 \end{aligned}$			！
inninininan	inunginuminominnino git amineveninciveninche	$\underset{\sim}{\sim}$	0	$\begin{aligned} & \text { ningô } \\ & \text { NNo } \end{aligned}$	Ininno －NND	$\begin{aligned} & \text { Rryinnin } \\ & \text { givin } \end{aligned}$	$\stackrel{\sim}{2}$
	 	$\underset{\sim}{\Omega}$	Tic	思声卫포		玉xixirir	파자N

CVCM －－－－－－－ 7.68
 Nิํ． 근

 nanons －OON join GSFC9 137 GSFG
GSFCY 721
GSC1 $-6 S C 114$ GSC1 1493 GSC1 1493 $\mathrm{GSC1} 1495$
GSCl 1497
$\mathrm{GSC1} 1499$
GSFC 517
3.45
4.86
8.33

GSC 1493	3.24
GSC 14495	33.80
$\mathrm{GSC1} 1497$	3.97
GSSC 1499	3.93

 rimin
 !........................
 き

material	DATA HEPERENCE	\%TML	xcver	$\begin{aligned} & \text { CUFE } \\ & \text { TIME } \end{aligned}$	CUR	ATH	apfiication
MAGNET HIRE CUATING TPE TEFLUN/DURAD	GSFC5411	. 29	.01				WIRE COATING
MAGNET MIAE GEAYY AEMUKPOLYTHEKMALELE (COATINU ONLY)	GSFC8411	. 89	\bigcirc				WaE COATANG
	GSPC 3540	1.78	- 11				- 1 RE COATING
	GSFCCB532	.73	.84	16 H	100	A 1 B	auld Cend
MARKEM 7224 BLack	GSEC7343	3.12	. 08	24 H	25	d 1 A	
MARKEM 7224 GAEEN INK 497-F	GSEC5397	-.45	-02	4 4	121	A1品	$1{ }^{1} \times \mathrm{NK}$
MARKEA 7224 WUITPE INK SLOW SULVENT	GSFC5385	1.88	. 01	${ }_{4}^{4} \mathrm{H}$	121		A AK
MA KKEM 7251 GEEEN INK $497-\overline{\text { S }}$	WSEC5399	9.64 9.34	-64	$\stackrel{24 \mathrm{H}}{2}$		A ${ }_{\text {di }}$	Lak
MARKEM 7251 MEITE INK SLOW SOLVENT	GSEC5399	4.34	-00	2H	167	A 4	tak
MA RXEM 7254 BLACK INK - PAENULIC	GSFC6389	4.27	-0 0	48 Cb	125	ALh	iNK
MARKEM 7905 MHITE INK A/B AS $2 / 1$ Bü	GSPCS325	8.51	.02	2 H	88	A $1 . \mathrm{H}$	1 AK
MA RKEM 7900 WHITK	GSFC 5401	. 48	-01	$2{ }^{21}$	121	AIR	4 AK
	$\mathrm{GSFC5} 403$ 6 SFC 383	11.33	-83	72i	25	A14	makKers
mazpGiy $95-163$ SINGLE COMPONENT Cu filled epuxy	GSC13072	. 28	.01	2 H	149	${ }_{4}+\mathrm{i}$	daESIVE
marfuxy 95-160 a/e as 19/1 but Cu fillibd eroxy	GSC12817	. 45	. 04	$1{ }^{16 \mathrm{H}}$	25	A1 ${ }_{\text {a }}$	cund adhesive
Makpoxy 95-202 Single componcint cu filled eqoxy	GSC13075	. 27	. 00	2 H	149	A1\%	authesive
marpoxy 95-4 a/ij as 19/1 bu cu flliel epoxy	6sc12568	1.45	. 10	24 ii	25	ais	- Und adiesive
matpoxy 95-7 a/b as 19/1 bin Cu filled eruxy	6SC12571	1.18	. 03	24 H	25	${ }_{4 \pm 4}^{4.4}$	-und adhesive
marroxy 95-9 une compunent cu filled epuxy	Gsc12574	. 63	. 00	$1{ }^{1}$	160 204	Ais	~UND adhesive
MASTER BCND GP6 PCIYESTER COPOLTMER	GSFC 8000	14.73	. 01	24 H	25	251	GEEAD SEAL
MAXOEB SOLAR KOIL ELACK NICKEL M/ADHESIVE	GSC10884	. 024	. 23				CHEEAM CONTRUL
	GSEC9 257	4:72	-03	7 7	25		ADHESIVE
		14.01 9.81	-04	$7 D$ 30 M	25 25		WASHESEIMER
	GSC1310	y. 33	- 15	2H	80	Ais	LUATING
MELAMINE G-5 ėEL MIL P-15033B FUSE INSULATOE	GSFC8531	3.29	.00				A ASUATROE
MERECO 4501 A/b AS $1 / 1$ Bid CLEAK FLEXIBLE EPOAX	GSFC9164	6.59	4.06	24 H	85	AL	CUTTING
		11.99	. 23	1H	25 25	ALE	KGMEEA
METALASTIC SILICCNE FILLED ALUM MESH	GSC12349		- 16				SaIELDING
METALASTIC SILICCNE FILLED ALCM MESH	GSC12373 GSFC	¢ 4.38	. 49	${ }_{3 \mathrm{H}}^{24}$	177 149	${ }^{\text {A }} 1 \times \mathrm{h}$	PMPELDING
METHYLPENTENE PGIYEER	GSFC 321.	-67	-10				WAYBGOIDE
METLEOND 1113 EPOXY SUPPORTED FILM	GSFC4962	1.03	-04	25M	127	A1E	$\triangle \pm H$ FILH
	GSFC 560	1.27	-01	1 B	177	${ }_{L}=1$	AUH FILM
METEE-GEIP $34+0 / 19$ AS in CaT inim	GSFCS549	. 49	. 00	2 C	93 204	A1耎	ajhesive
	$\begin{aligned} & \text { GSEC2911 } \\ & \text { GSPC8927 } \end{aligned}$. 01	34	149	A 1 A	GUID CRUD AULD CPAD

mateeial	$\begin{aligned} & \text { DATA } \\ & \text { REFERENCE } \end{aligned}$	\%TML	zaver	$\begin{aligned} & \text { CURE } \\ & \text { TIME } \end{aligned}$	CUEM	Aİ	APELICATAUN
MPSTTK TAPE 7367 KAPTON/ACRYLIC ADH	GSFC 2915	-63	. 04				14 PE
	GSC10308	-69	-02	24H	93	A1*	TAPE
AYSTTIK TAFE 7370 TEDLAE/ACEYLIC ADH/E GEAY	GSFC3473	1.40	- 36	24n	93	A1k	TAPE
MYSTIK TAPE 7375 TEDLAR/ACEYLIC ADH/h Hilte	GSEC3471	1.34	-00				TAPE
HTSTIK TAPE 7402 L ALUM POIL/SILICONE ADH/POIL COMP	GSFC4544	$\begin{array}{r}1.69 \\ .33 \\ \hline\end{array}$	-20	1H	121	D-4	${ }^{\text {I }} \triangle$ Pe PE composite
MISTIK TAPE 7420 CCPPEE POIL/ACE YLIC ADH/E	GSFC2507	. 21	. 01				lape
MYSTIK TAPE 7430 R-5 HLL LEAD FOCLL/RBBEL	GSFC5923	$\begin{array}{r}5.60 \\ .24 \\ \hline\end{array}$	1.49				1 CPPE
MYSTIK TAFE 7432 AIUM FOIL ACKYLIC ADH/R	GSFC 1714	-25	03				TAPE
	${ }^{\text {GSFC4 }}$ GSC1 1297	-09	-00				Tape
MYSTIK RAPE 7505 TLFLON/SILICONE ADEK	GSFC6339	-21	-08				${ }^{2} \triangle$ PPE
	GSFC6818	-63	-00				inamepla ${ }^{\text {a }}$
WA MEFLATE PGOTOS ENSITIVE ALUM/ANODIZEDJSEALED	GSC1 1929	-10	:00				NaMEELATE
MAMEELATE PHOTOSENSITIVE ALUM/ANODIZED/SEALED BLACK	GSC1 1950	-11	-00				AACEEEATE
	GSFCO479	2.65 .59	-38				NadEPIATE
NAEMCO 328 SHEET ALHESIVE	GSFC10PN	1.00	-11	909	165	$\underset{\Delta \rightarrow a}{ }$	ALIE FILM
NAZMCO 329 SHEET ALHESIVE PEE-PAEG	GSFCO9PN	1.21	-03	904	165	${ }^{\text {A }} 14 \mathrm{~B}$	A u Filis
HARMCO 550/1581 EPCXY PRE-PREG	6 GSF 4704	-60	.02	90.4	120		LAMINATE
	GSPC5595	2.26	. 03			R	r'ASTENEL
NE S81 A/B AS $4 / 1$ EW OPTICAL CEEENT - EPUXY	$\begin{array}{r}\text { GSPC } \\ \text { GSFC9 } \\ \\ \hline\end{array}$	10.96	-03	210	25	A 1 k	
NELCO 11-4205-2 E-GLASS FR4 FABRIC/EPOUY COATED	GSFC6392	10.06 .29	-00	85a	177		URIPREGEMT PAEIC
	GSFC6667	9.04					
	GSC13407 GSPCO939	2.21	-37	7 D	25	Af ${ }^{\text {a }}$	COLD CFED
NICKEL BLACK/ELECTEOLESS PLATED aluminum	GSFC 1060	. 32	. 04				UUATING
MICKEL DOLL PLACT ELE ALUMINUM	GSFC 1603	-15	. 03				とuating
NICKLE BLACK	GSFC 166	-12	.05				GATING
	GSC12874	1.01	-04	75H	163	P31	CDit laminate
NJA 60 OPTICAL ALHISIVE/F 5 MIN UV EXP	GSC11477 $\mathrm{GSC1} 1539$	2.22	. 02				URT CEMENT
NJA 61 OPTICAL ADEFSIVE/F 5 MIN OV EAP	GSC1 1479	-24	-01	H	125	ALE	UPT CEMENT
MOA 61 OPTICAL ALEISIVE/F 5 SIN UV EXP	GSC GSC 11489	1.25	-81	1 H	100	aim	UPT CEAEnT
NOA 65 OPTICAL ALHESIVE/F 5 MIN UV EXP	GSC11491	2.89	-14				URT CEMENT
node bond bxb-10176 Li-125 thermuset adh/f	ÓSFC9521	. 69	. 00	30M		A 18	ADHESIVE
NODE BCND GG-288-8 BATCH 108	GSC13454	. 57	. 04	304	25	${ }_{\text {A }}^{\text {A }}$ (${ }_{\text {a }}$	a Dilicisive
Nomex n-44 hilte thread natubal 59776	GSC13257				177		
NOPCC ${ }_{\text {NO }}$	GSFC00 ${ }^{\text {GSF }}$	2.00	-90				FUAM
nopco giod poiyokethane foam - white	GSFC 4670	$1: 19$	-01	25M	25		çam
				${ }^{48}$	65	A 14	
NOPCO HT402N MITEOUT PVA COVER	GSPCi3PN	23:20	1.93	148	92	AIE	y uay

Mateeial．	DATA REPERENCE	敞＇4L	呺V心M	CULに TIME	$\begin{aligned} & \text { CUEE } \\ & \text { TESE } \end{aligned}$	4．M	APELICATIUN
NJPCO J106 PULYUEETHANE	GSPC0054	1． 19	． 02	4 H	32		ruAy
NJRFLEX N221 POLYCLEFIN SHEINK TUBLNG PRE－SHRUNK	GSPC6071	． 78	． 11	16 H	－ 0	C	SHRINK TUBING
NOETONEAB YLBEATICN DAMPING KOAM	GSPC 2342	15.49	9．35				TUAM
NORYL EN 265	GSPC 9338	． 17	． 00				Muld Cend
NORYL GFN－3－dO 1 MOE PRO	GSFC 357	－ 03	． 02				LMSULATIUN
NORYL N300 BLACK	GSFC9353	－ 25	． 00				Guld cend
NS 4 3C HHITE PAINT K2SIO3／ZNO／AL203／TIU2	GSE12481	3． 40	－ 00				MOUNT
	GStCC 815	2.16	－00	14 D	25	Ain	$\mathrm{tan}^{\mathrm{A}} \mathrm{NT}$
NF 114 POLYMERIC CCATING	GSPC6 81	3.6	－ 0^{1}	248	70	A1k	CUNPT COAT
NYE 183 SPECIAL CIL FOR BEARING LUBRICATION	GSPC 2505	17.07	11.46	48	7	als	CiL Coat
NYLAFIL F3／15 NYLOX FOAM／15\％GLaSS PIBER	GSFC4019	1.76	1.03				
NYLAFIL GLASS EILLED NYLON	GSFC 3742	1.47	.02				LASULATOK
NYLAFLOW 413 HOSE ELACK UUTER SHEATH GNLY	GSC1U244	－ 52	． 13				nuSe
	GSFC9524	$\begin{array}{r}-73 \\ \hline-43\end{array}$	． 02				U1L RESEhyOLK
NYLEZE MAGNET WIEE LNSULATIOND HEC USE	GSFC GSFC 4298	1.43 1.34	－00				WIRE COATING
NYLEZE MAGNET MIAE INSULATION－GREEN（COATING ONLY）	GSEC4296	1.34	－21				WhaE COALSNG
NYLON CARL GULDE RED FLAME EETARCANT	GSC12649	2.43	． 03				QULD CPND
NYLON FILM－ANIISTATIC DF	GSFC 4226	2.40	－ 06				$r \perp L M$
	GSPC6840	2.02	． 00				دTEUCTUEAL
NYLCN NETTING	GSFC 2611	2.41	.83				AULD CPND
WYLON ORANGE MIL－C－7020F TYPE I SUNSHADE MATL	GSFCS 139	1.02	.01				
NYLON ROD PER MIL E－17091	GSFC2569	1． 13	：00	72H	51	ALH	HUD
NYLON 6 BLACK CAELE CLAMP－WECKESSEn	GSFC 357	－84	－ 00	24 H	125	A 1 H	VABLE CLAMP
NYLCN 6 FASTENEB CHWHTE ACK	GSFC 7190	2.71	． 05				¢ ASTENEH
NYLON G／6 PC BD CHANNELOBLACK GLASS FILLED FLAME RET	GSC 12652 GSPC GSP	1.09 .91	－03				AULD CPND
ORING－SILICONE	GSFC5655	1.12	－ 23				GUNNECTOR
O RING VITONA	GSFC 5057	－ 21	－03				\checkmark ¢ inins
O RING FLEXCO 4069 RED SILICUNE	GSC12097	1.16	． 33				\checkmark KING
0 KING 1109 BLACK AITRILE RUBBER	GSFC8123	8.35	3.31				\checkmark SING
OL 100 GLASS RESIN 40% BL IN ETHANOL／E	GSPC ${ }^{\text {GSPC }} 880$	5.78	1.61				\checkmark SING
OI 050 GLASS QESIN 40\％BW IN ETHANOL／F	GSFC7805	.15	－03	${ }_{1}^{1 H}$	175	A 18	¢ AF COAT
OL 650 RESIN EEGULAB	GSFC5 841	2.59	－ 32	${ }_{1} \mathrm{H}$	121		GAINT BASE
OL 650 RESIN WHITE PAINT GSPC SHAL	GSFC 2230	． 51	． 02	16H	100	418	
OI 650 RESIN HEITE PAINT／ZRO GSPC TRLOLQ	GSFC 2242	.77	－00	16	1	A14	SANT
OI 650G－GIURI MOD－SIIICONE		． 87	． 51	1H	163	din	
OPTICAL COUPLING CEND－SILICONE（PRUPRIETAR	GSFC7856	2.08	1.12				AUHESIVE
ORCOFILA KN－10 KAPION／NOMEX THREAD／POLYESTEE UINDER	GSC10562	． 92	． 02	48 H	125	E－b	CHEEMAL BLANKET
ORCOFILA KN－10 KAPTON／NOMEX THKEAD／POLYESTEE BINDER	GSPC90U5	1－19	－08				LaEFMAL SLANKET
	GSFCS 167	12．26	7．39				1HEKMAL ELAOKLT
ORTEC EPOXY ALUMINLM COVER		12．06	－ 30				－${ }^{\text {PPE }}$
ORTEC EPOXY GOLD CCVEA	GSFC 311	8.87	－05				ULTECTOK
P $400 / C A T 515$ AS $1 / 1$ BW EPOXY	GSPC6497	－ 30	.01	14 D	25	A 12	a DHESIVE
	GSPC 2328	2．66	－00	72 H	25	A1盛	CKIMEE
	GSPC7140	－ 59	－03	7 D	25	a 16	pald
$\mathrm{P}-17 \mathrm{POLYURETGADE}$ FOAM 0.002 THICK WITTE	GSEC4304	－． 77	－ 08				COAM DABED
P－17 POLYURETHANE FOAH U．062 THICK wilte	GSFC4300	． 49	． 08	Jor	100	A 14	cuAM DAMPEA
P－17 POLYURETHANE FOAM O． 186 THICK WidTE	GSC13159	1－11	－ 11				NAHPLK
P－22 POLYURETHANE FOAK OPEN CELL	GSFCOO17	1.28	.07				evan

FUAN
MUSTING
BAINTATION
eaint

AACUUER

$\frac{k}{4}$
3
 x xixtax

4 484
nơoun 88300n 02
 :
퐄쿸․

PAINT WHITE EPOXX EER MIL C $22750 \mathrm{CH} / \mathrm{P}$ PAINT 2019

PA INT 2019 UVEA ERIMEK 2012
paladin elack satia lacqueg
$T 甘$
N
N

号

3 \qquad LUNOS ROSLICN
FLUO ROSILICONE
 ICCNE
ICGNE 빙 ${ }^{\mathbf{A}}$ SILICONE PALADIN ELACK SATIN LACQUER

N -TY CADT

 GSPC6 176

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline maiebial \& \begin{tabular}{l}
DATA \\
EEKERENCL
\end{tabular} \& \%TML \& SCVCA \& \[
\begin{aligned}
\& \text { CURE } \\
\& \text { TIME }
\end{aligned}
\] \& \begin{tabular}{l}
CORE \\
TEME \\
\hline
\end{tabular} \& almus \& aFELICATION \\
\hline PBI EOAM 4\#/CU ET SAMELE \(925-30\) POLYBENZIUIDAZOLE \& GSFC6296
GSFC

S \& 30
10
0
073 \& . 09 \& 30 M \& 496 \& d $1 \times$ \& GEATSEDLE

\hline \& GSFCS222 \& $0 \cdot 17$ \& :01 \& $1{ }^{\text {¢ }} \mathrm{H}$ \& 80 \& ALh \& tuITING

\hline P= 12-007 $4 / 5$ as 514 B6 \& GSFC5 343 \& 4.97 \& -05 \& ${ }_{70}{ }^{24}$ \& 121 \& A ${ }_{\text {A }}$ \& GUTTIAS

\hline \& \& 13.83
12.21 \& .07 \& \& 25 \& ${ }_{\text {Al }}{ }^{\text {a }}$ \& Gunf coat

\hline p= $17 \mathrm{~A} / \mathrm{e}$ as $2 / 1$ bh fiexible epuay Cuatiag \& GSFC4988 \& 7.01 \& . 06 \& $5{ }^{\text {H }}$ \& 25 \& ${ }_{4}{ }_{\text {A }}$ \& Lunf coat

\hline \& GSFC3588 \& 4.51 \& -20 \& 1 H
24 H \& 71
75 \& ALH \& GUATIAGGAT

\hline \& GSFCl739
GSFC7832 \& 3.10 \& :05 \& 2 H
70
160 \& 60
25
50 \& \& cuaf Coat

\hline \& GSrC7835 \& . 38 \& . 03 \& $\underline{10 H}$ \& 50 \& ${ }^{\text {A }}$ A ${ }^{\text {a }}$ \& undr coat

\hline $\mathrm{p}=20 \mathrm{mone} \mathrm{pant} \mathrm{achylic} \mathrm{cuatinge}$ \& GSC11300 \& 4.00 \& . 05 \& $2{ }^{24}$ \& 85
25 \& \& CUnF coat

\hline \& GSPCOU36
GSFC 1008 \& 7.75 \& :09 \& ${ }^{88}$ \& \% 60 \& A ${ }_{\text {A }}+\mathrm{B}$ \& YUTHPCGAT

\hline \& GSC115S3 \& 1.59 \& -18 \& \& 160
160 \& ala \& Guating mask

\hline \& GSC11636 \& 4:72 \& -01 \& ${ }^{3}{ }^{3} 5 \mathrm{H} \mathrm{H}$ \& 160 \& ${ }_{\text {a }}^{\text {a }}$ \& GAATING MASK

\hline \& GSFES022 \& -. 11 \& -00 \& | 10 H |
| :--- |
| 10 H | \& 93

177
177 \& A1E \& Cuating

\hline P) 200-16 FOAMED RIV 360 \& GSFC4990 \& 1.12 \& . 49 \& 10 id \& 93 \& A1E \& cuttina

\hline 4D 200-16 fuamed eiv 560 \& GSFC4992 \& . 03 \& . 02 \& 10 H
10 CH
2 \& 93
177
177 \& \& sotting

\hline PENATUBE II S3 3-7164ax/C TEFLON TUBING \& GSFCO074 \& . 01 \& . 00 \& \& \& \& IUBING TUEING

\hline PENNTUBE V POLYOLEFIN SHEINK TUBLCCLEAK \& GSEC4638 \& .45
8.42 \& 4:135 \& 5 Sm \& 88 \& AIE
A
der \& SHAINK TUBIAG

\hline PENNTUBE VIİ NECPRENE SHRETNK TUEING DLACK \& GSFC 4040 \& 8.42 \& 4.33 \& 5月 \& \& \& SULD CPND

\hline PGEMA-LOK HIL 120 FGCM SHIMS \& GSC12961 \& 3.29
3.76 \& -37 \& 48 B
48 H \& 25 \& 201 \& ADH-SEALAN't

\hline PERMA-LOK HL 138 FFCM SHIMS \& GSC12967 \& 4.16 \& -03 \& 48 H \& 25 \& ESt \& A \triangle Li-SEALAAT

\hline PERMA-LOK HMO6 FEEM SHLMS \& GSC12973 \& 4.11
4.57 \& -04 \& 488
48
48 \& 25 \& 5S \& ADH-SEALABT

\hline PEFMA-LOK LMOI2 FhCM SHIMS \& GSC12937 \& 28.57 \& 6.10 \& 48H \& 25 \& PSi \& A UH-SEALANT

\hline PERMA-LOK LM113 Fincm Shims \& GSC12940 \& 10.64 \& 4.23 \& 48 H \& 25 \& PSI \& ADH-SEALEAT

\hline PERMACELT TAPE EEG6j99 KAPTON H/SILICUNE ADH \& GSFCO 217 \& 2.31 \& -89 \& \& \& \& MAPE

\hline \& GSEC 14 CSF \& 8.50
2.74 \& 3.90
1.39 \& \& \& \& LAPE

\hline PJRMACEL TAPE SE-6 Sol Kap iun \& GSFC 3757 \& 1.94 \& .77
.03 \& \& \& \& CSIDED TAPE

\hline \& GSFCC 055 \& -71 \& -02 \& \& \& \& A APE

\hline PEFMACEL TAPE E-051 2 SIDEACRYLIC ADH/ \& GSCPC 2089 \& 2.36 \& 1:83 \& \& \& \& - Sived tape

\hline \& GSFC 4400 \& 1.35 \& $\bigcirc .34$ \& 16 \& 149 \& A. ${ }^{\text {K }}$ \& ${ }_{4 a P E}$

\hline \& GSEP464 \& 1.75 \& . 70 \& \& \& \& TAPE

\hline PERMACEL TAPE 213 GLASSCLOTH/ACHYLIC ADH/F \& GSFCO 332 \& 1.27 \& -02 \& \& \& \& CAPE

\hline \& GSFCS 314 \& 1.30 \& . 03 \& 483 \& 150 \& E-5 \& 1ape

\hline
\end{tabular}

material	DATA BEFERENCE	*TML	XCVCA	$\begin{aligned} & \text { CURE } \\ & \text { TIME } \end{aligned}$	$\begin{gathered} \text { CUK } \\ \text { TEM } \end{gathered}$	Ais	afplication
POLASHEET GRAY SILICCNE SHEESEMBEDDED MONEL WIRE	GSC $65 C 1$ 1291	1.56	- 11				
PJLYCAST EL EPCXY LOT $173-4416-4$ ded monel wric	GSFC6431	. 20	. 27	${ }_{3}^{24}$	177	${ }_{\text {aid }}^{\text {AL }}$	$24 I E L D$ duilisive
PJLY-FLO TUBING 66E POLYETHYLENE	GSPCB933	-46	. 15		0		\&UBING
	GSPCO963 GSFC	. 12	. 00				AUCDCRND
PJLYCHROME FILM 8 EIL	GSPC5619	-04	. 01				cily
POLYCOHR 630 TAPE ECLYOLEFIN FLL M/RULBER ADH/F	GSEC5939	4.56	1.87				HAEE
PJLYETHYLENE FILM ANTISTATIC DF	GSFC0844 GSFC4908	1.04	-10				MULD CPNL
	GSEC4 910	. 20	. 06				c) ${ }^{\text {La }}$
POLYETHYLENE FILA Ming Mis alathun besan-bianched	GSFC7574	1.14	-. 32				miditing
POLYETHYLENE ULTEA HIGE MOLECULAR WELGHT	GStC4546	. 02	-00				Sihuctueal
PJL Y ${ }_{\text {POLHE }}$	GSC10928	.37	-10				r1LM
POLYGONSG-101 CCMEOSITE GLASS/SH 319 SILICONE	GSFC5 144 GSC10619	1.06	-02	10 M 24. 4,	454	${ }_{4}^{4}$	chsulatlca
PDLYMERCAST V - 35 E-EEF	GSC13341	2.80	$\therefore 10$	30.4	82	$\Delta+\mathrm{b}$	UuAF Codi
	GSPCO GSCiO	.09	.00			a ${ }_{\text {a }}$	athuctuani
				20 m	165	A 4	
POLYSET 521 BLACK	GSFC8813	. 30	. 00		9		
POLYSTYRENE CO-EXTEUDED ELUE SOX	GSC11878	-50	-09				HULD CEND
POLYSULFCNE	GSFC5395	.33	-00				CuLD CEND
POLYUEETHANE COATING 22H ONE COMEONBNT/FUIL	GSC13404	-91	.01	7 D	25	A 1 k	cuating
POLYUEETHANE COATING 22 CONE COM PONENT/ROLL	GSEC 7631 GSFC 118	1.98	-43	7 D	25	nix	guating
POLYUKEFHANE FOAA EY STOCKWELL RUBBES	$6 \mathrm{SFFC}^{\text {d }} 174$. .53	-15				EVAM
POLYURETHANE TUEING MP 1485 PLASIICILED	GSPC843	- 77	-22				d JbiNG
POLYURETHANE 9250 EROWN	GSC12805	1.83	-20				$\triangle \cup D D C P N D$
POLYVINYL BUTYAAI PILA	GSFC9793	30.31	5.07 .25				SILMELDIN
	GSC12376	-09	-05	24H	177	a ${ }^{\text {b }}$	SuSELDI ${ }^{\text {S }}$
	GSC13 ${ }^{\text {GSC120 }}$	1.19	.01	20H	82		OAAPEK PLEE WICK
PכRCN UAETHANE FOAE 4701-01-20125-1633	GSC12541	1.35	-01	20a	82	E-2	SAMPEE
	GSC 13344 $\mathrm{GSC1}$	4.73	1.05	8H	100	h	SAMPER
P) TASSIUM TITANATE White paiat ijo GSFC SHAI	GSEC2227	. 84	-00	18H	122	dis	Laint
PPT 87 TGG CUP POLYPEOFYLENE FILMSSY LATEX ADH/F	GSFCB489 GSFC 441	2.62	. 01	48	135	4LE	LAMLMATE
	GSFC 3092	30.32	2.78	72H	25	dis	auid cend
	GSFCS503	57.39	2.89 .05	${ }^{4} 8 \mathrm{H}$	25 25		dasket Seal
PR 1524 a/b as $26 / 100$ bu polyubethane	GSPC 3151	. 82		10 H	82	AIA	
	GSFC3215 GSFC2565	-84	-11	16 H	82	dit	とOT'TNG
	GSP. 265			72H	51	${ }_{\text {¢ }}^{\text {- }}$	EUTTING

MATEAIAL	DATA FEFERENCE	XTML		CUR E TIME	CUnE TEMP	A 1 dus	APPLICATION
PR 420 ORANGE PEIMER	GSFC7310	5.41	1． 30	2 L	25	A18	¢GIMEK
PR 420 PRIMEK／ACETCNE	GSFC2547	12.49	． 01	7 D	25	A 14 H	HMIMER
PREFAKAKOTE	GSFC 1393	3.43	－ 37	24 H	25	ALH	SAIAER
PRIMER DESOTO 513－102／E	GSCIUU14	2.50	－09	14 D	25	A 14	CHIMEE
PRIMEA RANDOLPU GAEEN LINC CHfindate	GSFC 2254	3－23	－ 23	24 H	25	A 14	¢ \triangle MER
grimer kandoliti gheen zinc cirualate	GSFC 2255	2.32	－ 28	24H	107	A $12 k$ $E-6$	¢KIAEA
PRIMEK ZINC CHECMATE	GSFC227	3－23	－ 22	24 H	25	ala	YKIAER
	GSC11884	7.36	－ 33	7 D 16 H	25	A $1{ }^{\text {d }}$	KHIMER
	GSECS ${ }^{\text {GSECS }}$	3.24	－19	116 H	25	$\stackrel{\text { A }}{\text { A }}$	LUNFER COAT
PRI T－KOTE GC 14－2 OM FOIL	GSPC5621	1.47	． 98	$24 i$	100	A1世	－UNF COAT
PROFIL F60／20 POLYEROEYLENE KOAM／20\％GLASS FLBER	GSEC4040	－16	－ 04			山世	LUAM
PROLITE P－127－66／E－863－66 AS 1／1 BA YELIOUW EPQXY／F	GSFC6697	4.01	． 02	24H	25	AIR	$\square \mathrm{AIMER}$
PROUF EUAKD CLOSED CELL POLYUEETHANE FOAM	GSCiUO17 GSCiU03	1.14 1.36	－00	48H	100	418	I SUSULATION
PROSEAL $790-80$－	GSFCO500	1.41	． 02	24H	82	d 1 H	UaETHANE
	GSPCO450	1.21	－02	10 H	80	A1b	Unethane
PROSEAL 799 A／L AS 100／41 Bill PUGPLE PQLYUEETAANE	GSC12778	9.97	6.71	12H	82		KUTTING
	GSFCU425	－ 30 9.24	． 04	24H			U－RING COMPOS12E
PajFcoat uou black EkOXY PAINT／b4j MED PGAMER	GSFCJ346			24 H	25	Ais	SALN1 COMPOSNE
PS 18，ACRYLIC CEMEAS Y	GSFC2753	.73	． 00	72 H	25	A1K	ADHESIVE
2T 201 THEAMOSETTING YELLUN GULD EPOEY CUATING／F	GSC12355	． 96	－ 07	1 H	163	418	LUATING
PT 207 POLYVINYILEIUOİIDE	GSECO557 GSCiO946	5.88 3.40	1．210	48H	25	${ }_{\text {AIS }}$	LUATING
				30M	66	AIE	calk
				904	121	Als	
PT 401／d－11 AS 16／1 BV WHITE PAINT	US FC 2783	1.87	.07	$\begin{aligned} & 15 M \\ & 15 M \end{aligned}$	25 66	$\begin{aligned} & 4 \perp \bar{x} \\ & A \perp B \end{aligned}$	SAINT
PT 401／A19 AS 16／1 BV GLOSSY WHITE EPQXY．	GSC11366	1.05	.10	$1{ }^{15 \mathrm{H}}$	121		KAINT
				15M	66		
pr 4121 A ／${ }^{\text {a }}$ AS 1／1 Bim EPUXY	GSPC 1648		． 20	904	121 66	AIK	
PT 4121 A／S AS 100／73 BMEPUXY	GSPC 4994	8.31	.03	5 H	54	AN	CONP COAT
				24 d	52 25	AIf	
PT 420 A／E AS $1 / 1$ EV TUF／FELM GLOSSY WHITE EPOXY	GSC 1339	1．88	$=15$	7 D 2	66	Aik	$\begin{aligned} \mathrm{AAIN} \end{aligned}$
Pr 750 A／E AS 3／1 EV MAROCN	GSC11437	1.74	.13	$1 H$ 40 O	25	A1 ${ }_{\text {A }}$	LUATING
				24 H	100	AI ${ }^{\text {a }}$	
PT 750 A／E AS 3／1EV FOLYUGETHANE	GSFC2993	10.95	－ 01	24d	25	dith	OUnF COAT
PUTTY VACUUM SEALIAG	GSFC1966	1.87	－48				SEALANT
PY 100 SILICONZ ${ }^{\text {PYALITE PAINT }}$	GSFC 2332 GSFC 1183	2.86 .52	． 060	30M	177		AAINT COMPOSITE
		－	－	2 H	260	PSI	
PY RALIN 3 POLYIMIDI PGEPKEG	GSFC 1174	2.37	． 07	2 H	177	Pbi	нAMIAATE
PY RALUX COPR ER CLAL 2 SIDES S 5 － 5 MILS THICK	GSFC 7484	1 -34 -34	－00	${ }_{1}^{1 H}$	177	A1B	LAMINATE
	GSFC7484	-34 -20	－01	${ }_{1}{ }^{H}$	204	Ai $\frac{1}{4}$	\％if ADHESIVE
PYEALUX $3249-87$ CLOTA 30 PPOETED FIIM ADHESIVE	GSFC8777	－31	． 02	2 L	154	ALK	rİM ADAESIVE
PYEE－MI EK̆ ó92 POLYIMLDE 15 MINFLaSiocuat	GSFC5097	－96	－ 00	$\begin{aligned} & 154 \\ & 304 \end{aligned}$	149 204	ALE	－UATING

MATEBIAL \triangle APLICATIOM RE ALHU心
VUATING
KAINT
4) 4xas $x=1$KAINT BASELUATINGTGARMAL BLABKET9\% 2005

XCVCM

Nos
Nor
N.
bomanno

Nuninar
Ning.
nem

rat
zazz
CPind
ING

VT
WT
वT
प甘
iT
LOILLANTATING
40:
न्धा नी

4
9
4

aUHESIVE
APPLICAT1OM
URE ALUUS \quad APPLICATIOM
KAINT
KAIATER
GARKER
+ \rightarrow सुन
-141
10
O

.
H

Nñon in apino oun
$+$
$\stackrel{n}{n}$
\cdots
$\stackrel{9}{9 \rightarrow ? ~}$
- $\quad \cdots$

mategial	data REFERENCE	\%TML	meven	$\begin{gathered} \text { cure } \\ \text { TIME } \end{gathered}$	CUB	AIM	APPLICATION
RADITE 75	GSFC5431	1. 38	. 00				aucd CPND
	GSC10713	29.02 1.13	2.98 .908	16H	110		IGUULATOR
RAYCHEH COAX $5026 \mathrm{~A}-121$ 1-9 OBANGE INALE INSUL	GSFCS 307	$\bigcirc 72$	-16	16H	170	- 2	EAICEINSUPAD
	GSrCS 364	-12	-04				LEE INSSUL
RAYCGEM KYNAK REE-SHAUNK	GSFCO239	-28	-13				SHEINK TMEBANG
RAYCCEE POLYALKEAE HIEE INSULATICN YELION	GScC 2701	1.73	. 01				WIREINSUL
RAYCHEM POLYALKENL ILE EADIATIOE CBUSSLINKER 44	GSFCo ${ }^{\text {GSECi802 }}$	-75	.07				- 1 LEE INSUL
	GSFC5190	-15	-01				-1 HE INSUL
RAYCHEM POLYOLEFIA MT 13-4 SHEINK TUDING PGESHEUNK	GSFC 2493	-82	-21	160	71		
RAYCEEA SPEC 44 WIEE 1 NSUL LOT J 020197902	GSC11014	-40	-03	10a	71	A+A	CLKE INSUL
	$\bigcirc \mathrm{GSC1} 1020$	-71	-05				WHEE INSUL
RAYCHEX SPEC 44 WIEE INSUL LOT J0604077905 INAER	GSC1 1032	-64	:03				H 1 RE INS INSUL
RAYCBEM SPEC 44 YIGE INSUL LOT J O604U77905 OUTER	GSC1 1034	. 17	. 02				- 1 KE INSUL
BAYCEEM SPEC 44 WIbe INSOL LOT J 1102067911 INEER	GSCJ 1024	-06	-04				MIGE INSUL
QAYCEEMSPEC 44 GIEE INSUL LOT J 105187913 INNEA	GSC1 1028	-68	-03				Whe INSUL
	GSC11030	. 227	-04				WIRE INSUL
凹AYCHEM SEEC 44 HIFE INSUL LOT PJUSi1107814	GSC1 1016	. 65	-05				- EE INSUL
	$\mathrm{GSC}_{\mathrm{GSC} 10898}$	-26	.04				Wi RE INSUL
RAYCHEG SPEC 44 WIEE INSULATIOA WHITE	GSFC2 703	-52	. 07				- LaE INSUL
RAYCHEM SPEC $44 /$ AO 111 GEA PUEP GBADE MIEEINS WHITE	GSFC 825	1.89	-08				-IRE INSUL
RAYCGEM SPEC 44/0411-2JSPACE GR OUTEAT INS WHITE	GSFC7034	. 17	-05				* $\angle \mathrm{EE}$ INSUL
	GSC10 143	-26	.02				-iaE insui
	GSC10949	-65	-05				-LAE INSUL
RAYCHEH SPEC 44/2431-22-0/1/9-9 CLEAE 1 NSUL	GSC10955	$\bigcirc 70$	-05				- 4 RE INSUL
RAYCBEA SPEC $44 / 2431-22-0 / 1 / 9-9$ COLOK CQDE INSUL	GSC10952	-46	-05				H1RE INSUL
RAYCBEA SPEC 55 IREADIATED ETFE HHITE WIRE I ASUL	GSFC8885	-22	-0, 04				- 1 REL INSUL
RAYCEEM SPEC 55A0811-24-9 PJO403 $268202 \mathrm{BLUE/WHITE}$	GSC1 487	-08	-01				- 1 RE INSDI
RATCGEM 102 PEE SGRUUK	GSEC ${ }^{\text {GSCC }} 704$	-89	-17				
BAYOLIN F CABLE 4126 E 1332 INSULATION GRAY	GSFC 3383	. 73	-17				LREINSUL
	GSFC GSPC 1604	1:978	-38	? 8 4 H 2	25 25 52	A1 A A A	LUTTIAG
RB 3-1338 A/b as 100/65 but polyubethane	GSFC 1672	-b1	. 04	${ }^{84}$	52	-	suiting
R8 8-1338 A/BAS $50<34$ B6 POLYURETHAME	GSPC 1516	. 75	-00	70	25	4, ${ }^{\text {a }}$	cotting
Q $=$ AS-1200FA ANTISTATIC POLYETHYLENB FIL	GSPC4706	. 29	-04				$\begin{gathered} 61 \mathrm{~L} \\ \hline \end{gathered}$
	GSPC6482	6.34 6.75	-24				¢ 14
RSC-150 TV POLYMER	GSC11501		-20				Sunt coat
	GSC1 GSFC1027	2.48 1.60	-. 03	24H	25	ALII	CuNF CUAT

Matebial	DATA NEFEEENCE	\％THL	TCVCM	$\begin{aligned} & \text { CURE } \\ & \text { TIME } \end{aligned}$	$\begin{aligned} & \text { CUEE } \\ & \text { TEME } \end{aligned}$	AiduS	APELICATION
RD 1875－3 PULYUKETGANE	GSFC1630	1.35	－ 18	24 H	25	A－${ }^{\text {E }}$	LOATING
KD 3327－6／ACCEL 4／F	GSFC9760	7.63	－ 37	24 H	25	$\mathrm{A}_{1} \mathrm{H}$	AUHESIVE
REDAR SI SO3 REINFCRCED SILICON HOSE	GSFC 2513	18.96	－ 31			－	TUSE
REDIMAHK FELT MAEREK BLACK／F	GSC11779	18.40 25.35	6.62 10.39	7 7	25	A1R	MARKEE
KEDIMAEX 139－101 EFLT MAEKER ELOE／E	GSC11995	22.14	1．01	7 D	25	A18	MARKER
QEICHOLD POLYUKETHANE SOAM	GSFC 2378	5.80	－ 17	1．5H	25	A 18	ruam
QEIGAL PAPER MKCC11069 POLYLAIDE PILM	GSEC 3550	3． 35	． 14	1 H 304	174	${ }^{\text {A }}$ LR	\triangle OH FILM
GELIABCND 398 FILM ADHESIVE GEAY	GSFC9527	1.17	.01				cily ADHESIVE
QELIABONL 7115 CLUTH SUPPORT EPOXY FILM	GSFC6971	－96	． 06	1 H	121	231	\％ALH ADHESIVE
EELIEF CAP SILICCNE RUbBER	GSPC 4620	1.20	－ 28				lap
REMTEK GLO－135 WHITE POLYOLEFIN SHKINK TUBING	GSFC 9530	．49	． 01	0.5 M	135	A14	StiRINK TUBING
	GSFC1747	－67	.03 .03	10 H	160	A ${ }^{\text {A }}$	ALHESIVE
EESISTOR COATING I IPE 100 ELAT BLACK／E	GSC 13084	1.18	－． 75	20 H	25	AI	CuATING
				2 OH	65	AIB	
RESISTOR COATING TYPE 150 FLAT BLACK／E	GSC 12781	． 26	． 13	${ }^{3} \mathrm{H}$ H	150	A1晨	LUNF COAT
		． 26	－ 13	30 H	125	AI宊	cunr COAT
RESISTOR COATING TYPE 200 flat BLaCk／f	GSC12784	－32	． 08	30 l	200	A1k	
	GSC12784	－32	． 08	30 l	125	A1品	CONP COAT
HESISTCE COAILNG TYPE 250 flat BLACK／E	GSC13087	． 86	． 44	304	25	A 1 d	CUATING
				2 OH	65	AIM	UUATNG
KESImidid 7004 EPCXY ADH A／B AS $1 / 1 \mathrm{BV}$	GS PC0 978	1.67	． 12	24H	150	A $A 1$ A	AUHESIVE
EESIWELD 7200 A／E AS $2 / 1$ BV EPOXY COATING	GSFC 4300	4.03	.01	2 H	66	－ 1 石	CONFCOAT
KESIMELD 7200 A／E／SOLAS 2／1／2 BYE EPOXY COATIAG	GSFC4686	11.01	－00	16 d	25	Aj ${ }^{\text {a }}$	CUNE COAT
RESYN 30－1215 REESSURE SENSITIVE ACEXIIC ADHESIVE	GSFC 4336	－63	－ 01	16 H	60 25	A ${ }_{\text {A }}$	ALHESIVE
				2 H	66	AI宜	a
KEXOLITE 1422 STYEENE	GSFC2281	－16	． 024				1 MSULATION
$\begin{array}{ll}\mathrm{EF} \\ \mathrm{RF} & 1730 \text { A／B AS } 1 / 1 \text { Bin POLYURETHANE（NQ MCCA OR TDI）}\end{array}$	GSFCO912	．81	.04 .19				aULDCSND
ar			－	24H	65	AIH	EUTHEN
	GSFCS124	1.79 .53	． 22	488 488	66	AIR	CUAA
				24 H	100	A18	
HFi 4536 NYLON $6 / 6$／ 30% GLASS／15\％TFE／SILICONE	GSFCS529	1． 17	－ 17				SA huctural
ESOPLY／NCABLE	GSEC GSFC 5763	． .51	－00				ADBEESIVESUL
		．	－	1 H	70	Ain	adaesive
QLCOTAENE 3711 THEFUOSET THEGMOPLASTIC HYD	GSFC 4023	1.50	． 07				OUED CPND
RIGIDAMP SILIICONE LAMINATE ONLY	GSEC 4642	2.01 .57	． 04				AUHESIVE
RIGIDAMP 190 10－1 VISCOELASTIC FILM／3a TAPE 407	GSFC4912	.57 3.46	－． 50				ADHESIVE
UL 4540 NYLON $0 / 6$ \％ 20% TFE／SILICONE	GSFCS527	1.40	． 07				SMKUCTUAAE
KMBC 18 A／E AS $4 / 1 \mathrm{BW}$ CLEAR EPOXY	GSFC7220	0.85	． 01	1H	25 132	ALA	もUATING
RJGERS POLYURETHANE FOAM BJ GERS EX 611	GSFC2497	8.51 .53	． 51				
				30 M	149	A18	GULD CPND
				304	204	A16	

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \& Materiab \& DATA KEFERENCE \& \& rcved \& $$
\begin{aligned}
& \text { CURE } \\
& \text { TIBE }
\end{aligned}
$$ \& CURE \& AItu \& APELICATIOA

\hline RT 7 \& 560／9811 \& GSPC8958 \& 2.82 \& 46 \& 36H \& 25 \& \& \triangle DHESIVE

\hline RTV \& 5660.07% BW CAT SILICONE \& GSFC 6236 \& － 12 \& 00 \& 7 D \& 25 \& A1E \& AUBESI V

\hline RTV \& 5660.075% Bu CAT SILICONE \& GSPC6239 \& － 11 \& .01 \& 7 D \& 25 \& \& ADHESIVE

\hline RTV \& 5660.08% E6 CAT SILICONE \& GSPC6 242 \& －11 \& .01 \& 7 D \& 25 \& A 1 a \& a Uricsive

\hline QIV \& 5660.09% EW CAT SILICONE \& GSEC6245 \& － 10 \& －01 \& 7 D \& 25 \& A」 \& A DGESI VE

\hline R「V \& \& GSFE6230 \& － 10 \& ． 02 \& 7 D \& 25 \& A18 \& \triangle HESI VE

\hline $\frac{2 N}{R T V}$ \& \& GSC12835 \& －10 \& ． 02 \& 7 D \& 25 \& A 4 \& 4 D EESIVE

\hline Qry \& \& GSC10862 \& － 08 \& 0 \& 7 D \& 25 \& ${ }^{4} 1 \mathrm{~b}$ \& YUTTING

\hline RIV \& 5660.1 \％ 36 CAI SILICONE LOT KA 136 \& GSC10865 \& －13 \& ． 00 \& 7 D \& 25 \& A1\％ \& a

\hline Qry \& 5660.15 ES CAI SILICONE LOT Kh 137 \& GSC10868 \& －13 \& ． 00 \& 7 D \& 25 \& A1宕 \& AUUESIVE

\hline RTV \& 5660.1% BW CAI SILICONE／DC 1200 PRIMEK／SANDWICH \& GSEC5268 \& － 12 \& － 01 \& 4 i \& 80 \& A 1 d \& ADUESIVE

\hline RTV \& 5660.10 ESAI SILICONE／GE SS4155 PKIM／SANDWICH \& GSFCS270 \& － 13 \& .01 \& 4 H \& 30 \& Ain \& ADLESIVE

\hline Lir ${ }_{\text {V }}$ \& 5660.175% Eh CAT／CAB－O－SIL \& GSC12383 \& － 12 \& － 02 \& \& \& \& HUTTING

\hline Qry \& 566 0.30 BH CAI SILICONE \& GSFC 1681 \& －23 \& ． 03 \& 24H \& 25 \& A 1 F \& くuTTING－ADd

\hline Qry \& 566 0．5\％BH CAI SILICONE \& GSPC 1372 \& － 41 \& 1 \& 24 H \& 25 \& A1s \& ructing－ada

\hline QTV \& 5660.7% BH CAI SILICONE \& GSEC 1222 \& － 36 \& － 01 \& 24 n \& 25 \& A 1 ¢ \& CUTING－AD

\hline R「7 \& 5670.3% BW CAI SILICONE \& GSPC 3736 \& －18 \& .01 \& 12 D \& 25 \& \& YuTTAG－ADH

\hline RTV \& 567 0．5\％BH CAI SILICOAE \& GSFC 3720 \& -51 \& .02 \& 5 D \& 25 \& A．${ }^{\text {a }}$ \& YOTTING－ADH

\hline QTV \& 5680.13% BW CAT SILICCNE \& GSFC6632 \& － 10 \& .01 \& 7 D \& 25 \& ALE \& ADHESI YE

\hline B「V \& $577 / T-12$ SILICCNE \& GSPCO 281 \& 2.99 \& ． 57 \& 48 H \& 25 \& A1年 \& AUH－SEALANT

\hline ATV \& \& GSPC 1510 \& 3.43 \& 1.54 \& 2 H
16 H \& 40
25 \& A1a
H1k \& EUTTING

\hline \& 602 764－1A H LITE PAINT FA BATCH 9 \& \& \& \& 1 H \& 50 \& $A+\dot{d}$ \&

\hline RTV \& $602 / S R C 04$ AS $100 / 1$ BH \& GSFC2390 \& 2.44 \& .01 \& 24ir \& 6 \& A
A \& YALNT

\hline RIV \& 602 SRC 05 AS C．10 CAT LOT DK 263 VIAGIN RESIN \& GSYC7811 \& 1.96 \& －98 \& 16 H \& 60 \& AI ${ }^{\text {a }}$ \& YUTTING

\hline RTV \& $602 / \mathrm{SRC} 05$ AS C． 25 \％CAT DEVOL 3 ATCH 10 \& GSPC 2615 \& －．33 \& －01 \& 7 D \& 25 \& ${ }_{4}{ }_{4}$ \& YUTTING

\hline ETV \& $602 / \mathrm{SEC}$
$602 / \mathrm{SRC}$ AS
0 \& GSEC 2885 \& －39
-30
-30 \& ． 02 \& 7 7 \& 25 \& A E \& YuTTING

\hline QTV \& $602 /$ SAC 05 AS O． 25 \％CAT DEVOL BATCH 25 \& GSEC 3909 \& － 57 \& － 01 \& 7 7 \& 25 \& A

A \& KUTTING

\hline RTV \& $602 / \mathrm{SRC} 05 \mathrm{AS} \mathrm{C.25} \mathrm{\%} \mathrm{CAT} \mathrm{DEVOL} \mathrm{LOT} \mathrm{BM242} \mathrm{DATCH} 5$ \& GSECSSUY \& －46 \& －00 \& 7 D \& 25 \& A1E \& CAINT BASE

\hline 明V \& \& GSEC6032 \& －65 \& ． 05 \& 7 7 \& 25 \& A1K \& KAINT BASE

\hline REV \& $602 /$ SRC OS AS 0.25 \％CAT DEVOL LOT FA272 BATCH \& GSEC ${ }^{\text {GSF }} 838$ \& －41 \& － 03 \& 7 7 \& 25 \& A 1 ik \& EANI BASE

\hline QIV \& 602／SRC 05 AS C． 25% CAT LOT DK 263 VIRGIN RESIN \& GSPC7808 \& 2.07 \& －89 \& 5 D \& 25 \& A15 \& PUTTING

\hline $8{ }_{81} 8$ \& $602 / \mathrm{SRC} 05$ AS 0．4i CAT／CAUOSIL LOT BM242 BATCH 5 \& GSEC5781 \& －70 \& － 02 \& 7 D \& 25 \& A + a \& SUTTAN

\hline QTV \& \& GSFC 303 \& 1.19 \& －13 \& 78 \& 25 \& A 4 \& PaInt

\hline RIV \& $602 /$ SBC $05 / 2$ NO／TOLUENE DEVOL BATCH 4 \& GSPC2619 \& -03
-33 \& －180 \& 7 7 \& 25 \& ALA \& KAINT

\hline BIV \& 615 a／b AS 10／7 bw CLEAK SILICOXE \& GSYC 8969 \& －91 \& － 37 \& 4 H \& 65 \& A ${ }_{\text {a }}$ \& ruTTING

\hline ETV \& 615 A／E AS 10／1 BH DEVOL AT 125 C \& GSC10080 \& － 19 \& ． 07 \& 72 H \& 150 \& A1R \& －${ }^{\text {af }}$ COAT

\hline ETV \& 615 A／B AS 10／1 But Devol at 125 C LOT HU183 \& GSC 1563 \& －15 \& ． 07 \& 7 D \& 25 \& A1K \& EUTTING

\hline RIV RI \& 615 A／B AS 10／1 EA DEVOL AT 125C LOT KA210 \& GSC 12318 \& －13 \& － 01 \& 7 7 \& 25 \& di ${ }^{\text {a }}$ \& ENCAFSULANT

\hline ETV \& \& GSC12403 \& － 19 \& ． 07 \& 75 \& 25 \& A 4 \& cuTTiNu

\hline BIV \& 615 A／E AS 10／1 E．DEYOL AT 140C LOT BC226 BTCH2 \& GSC12769 \& －15 \& .02 \& 78 \& 25 \& ${ }_{4} \stackrel{1}{4}$ \& YUTTING

\hline RIV \& 615 A／E AS 10／1 BN DEVOL AT 140 C LOT BC226 BTCH3 \& GSC12772 \& －11 \& 0.1 \& 7 D \& 25 \& \& KUTANG

\hline ErV \& 615 A／B AS $10 / 1$ BA DEVOL AT 140C LOT KA210 BTCHS \& GSC12517 \& － 20 \& ． 05 \& 7 D \& 25 \& \& KUTTING

\hline RTV RT \& 615 A／B AS 10／1 BW DEVOL AT 140C LOT KA210 BTCH6 \& GSC12547 \& － 16 \& －04 \& 7 D \& 25 \& \& SUTTENG

\hline RIV \& \& GSC12748 \& － 20 \& ． 02 \& 7 D \& 25 \& A \& YUTING

\hline Qiv \& 615 A／B AS $10 / 1$ BW DEVOL LOT CB237 BATCH 1 \& | GSC13 |
| :---: |
| GSCi |
| 165 | \& －16 \& ． 08 \& 7 D \& 25 \& ${ }_{4}+\frac{8}{8}$ \& VULING

\hline RIV \& 615 A／B AS $10 / 1$ Ea DEVCL LOT CB237 BATCH 3 \& GSC 13180 \& ． 10 \& ． 04 \& 7 D \& 25 \& A1 ${ }^{\text {a }}$ \& RUTIESIVE

\hline
\end{tabular}

material	DATA GEFEHENCE	KT ${ }^{\text {a }}$	呺VCM	$\begin{gathered} \text { CURE } \\ \text { TIAE } \end{gathered}$	CURE	A 4 BUS	APtLICALLOX
SこOTCACAL 8005 EHUTOSEMS FILH／ALUA／ACEY	GSFC4176	－ 10	． 00				UbCil／MA ${ }^{\text {dKEK }}$
	GSPC4178	－19	－ 01				UECAL／HAKKEK
SJUTCHCAL OUUG EIUF ALUM LABEL UNCUALED 900	GSFCO 144	－ 08	.01				cuIl
SJOTCHCAL $90 \cup 9$ BIUE ALUM LABEL／CUATING39900	GSPC8147	－15	.01				GULL LABEL
SOUTCACAL 8011 EED PHOTO SENSE FLLA／ADH／FOHL	GSC13475	－ 36	.03				JuCAL／MAEKta
SEOTCHCAL BU1S PHOTOSENS FILH／MYLAE／GCEYLIC ADH	GSFC4 190	1．57	.05				UCCAL／LAFKEE
SJTCHCAL 8015 EHOHOSENS FILA／MYLAK／VINY LCOAT／ACRADH	GSFC4 102	2.14	． 06				ULLAL／MAbKEH
SCOTCECAST YRIMEI XR 5137 A／B AS 5／1 BW IHIN COAT	GSFC 3401	16.62	－ 19	24 H	25	d10	¢HIMER
SJUTCHCAST XK－5068 EPUXY FUAZ Em EPOAX	GSFC 3650	30.53	2.928	－ 27 H	85 25		SUAMING
SOOTCGCAST XA－5088 A／B AS 2／5 B E EPOAY	GSFC4888	37.00	3.40	3 H	65	$A \perp R$	cotting
S＝O ${ }^{\prime}$ CHCAST XK－5133 EPUXY LASTIMG POHDEK	GSFC 3385	－42	． 01	30 M	149	AIn	SUTTING
SOOTCHCAST X ¢ -5137 PADMEA FOh POLYURETKANE	GSFC7958	¢－5 5	． 02	24 H	25	Aik	צXIMEK
	GSFC9742 GSCiU 125	4.23 1.96	1.06 .52	3 HD	65 25	A ${ }_{\text {d }}^{4}$	SUTETASGE
S．OTCHCASL 10 （XK－E241）A／B AS 1／1 Bu kUST AzD EPUXY	GSCIV125	1.96	－ 52	24 c	125	A	ADHESIVE
	GSEC 9996 USC11309	3.09 .55	．81	246 H	25	ALK $A 1 K$	AUHESIVE
				241	60	－ 5	
SOOTCHCAST 221 A／B AS S／8 BU POLYURETHAXE	GSPC 7892	－25	． 02	24 H	50	418	¢ CTTING
SJOTCHCAST 221 A／E AS 5／8 BW POLYURETHANE	GSFC7919	． 71	.05	72 H	25	A1k	GUTTING
SOOTCHCAST 225 A／A AS S／8 Bu MARUON PGLYUAETHANE	GSCI 1060	1－5 03	－ 03				Muld cedu
SOOTCHCAST 250 A／B AS 1／1 BW SPOXY BKQ	GSFFC5020	1.05 .65	． 10	24H	75		CUPGENGANT
SこOTCHCAST 255 A／E AS $2 / 3$ Eh EPOXV	GSEC4882	－ 69	－ 12	20 H	82	A L ${ }_{\text {d }}$	KUTTING
S＝OTCHCAST 255 A／B AS $2 / 3$ BW EPUXY	GSEC4804	－52	－ 45	4 H	120	A 1 H	zuTiING
SOUTCHCAST 280 a／B AS $2 / 3$ Bw EPOXY	GSFC 2116	－48	． 14	21	121	A i ${ }^{\text {c }}$	EUTTING
SJOTCHCAST 281 A／B AS $2 / 3 \mathrm{BW}$ black EpGXy	GSPL9197	． 56	． 08	4 H	130	A A	EUTTING
SOOTCHCAST 281 a／Ẽ AS 273 Bd GKAY EEOKY	GSFC8972	.35	． 02	12 H	100	A1K	KUTTING
SこOICHCAST 281／282 EEOXY FCRMULATIUN	GSPC4518	－ 37	.05	4 H	120	$\stackrel{A}{A}+\frac{B}{B}$	vuating
S＝OTCHCASI 282 a／B AS $2 / 3$ BW SEAI KIGID SLACK EPOXY	GSFC7205	－49	． 10	16H	90	A15	cuTTING
SOTCHCAST 282 A （ B AS $2 / 3$ Bh SEM 1 figid bLack EPOXY	GSFC7268	－45	－U9	16 H	90	A 26	YUTTING
SOOICaCAST 8 A／B AS 1／1 BM EPOXY	GSFC7916	7.59	1.48	48 H	26	A A	ruTtIBg
S＝OTCHCAST 9 A／B AS 1／1 Bin	GSPC2287	3.60	． 04				YUTTIEG
SOTCUFLEA SOC゙KEI CONUECTOK GLASS REINF POLYESTER	GSC10853	－19	． 04				LUNAECTOR
SCOTCAGRIP EC 1357 LONTACT CEMENT LUBBEA BASE	GSFC 2749	3－48	－ 90	24 H	25	A1H	ADHESIVE
SOTCGGEIP 2353 BLUE FKOM BOLTS	GSFC9670	47．19	－ 19	48 H	25	2SI	A JHESIVE
S＝OTCHGRIP $245 Y$ Change FROA BOLTS	GSECC 2735	4.88 .39	－ 30	48 H	25	SSI	ADHESEAER
SCUTCHMATE SJ3401 AYLGNSHOCK AND PILEE	GSPC 2655	1.41	．01				castener
SCOTCHMATE SJ3402 AYLON HOOK AND LOOF	GSFC 2653	1．71	－00				rASTEAEF
SCOTCHMATE SJ340	GSPC9901	1.76	－06				CASTENER
SOOTCHIATE SJ3526／SJ3527 ADH BACKED HUOK \％LOQP	GSC12439	5.60	2.22				¢ ASTENEA
SEOTCHiELD 1751 E／A AS $2 / 1$ B\％W／PHENYL GLYCIDYD ETH	GSEC 2487	． 75	－ 00	24 H	25	ALk	A MH－EOTTING
SOOTCHWELD 1838 E／A AS $1 / 1 \mathrm{BH}$ EPUXY	GSFC2669	－65	． 03	24 C	25	ALH	ADHESIVE
SCOTCHELCD 2214 ED ALUMFILLED ELOXY 2214 EICHEMP ALUM PILIEN EPOXY	GSPC 350	－48	． 05	4 H	${ }_{1}^{121}$	A 4 ¢ ${ }^{\text {a }}$	GUND ADHESIVE
SOOTCHWELD 2214 AMF UNPILLED ERGXY	GSPC 3835	－77	－02	$1{ }^{1}$	121	AIH	a u HESIVE
S＝OTCHWELD $2210 \mathrm{~B} / \mathrm{A}$ AS $5 / 7 \mathrm{BW}$ EPOXY $/ 11.5 \%$ PMS4640ED	GSFC7142	1.25	． 08	48 d	40	A16	A U ESIVE
S OTCHGELD $2216 \mathrm{E} / \mathrm{A}^{\text {a }}$ AS $5 / 7 \mathrm{EA}$ FLEXIBLE GRAY EPGXY	GSFC6859	1.21	． 03	24 H	25	$\mathrm{H}_{1} \mathrm{H}$	ADHESIVE
SOOTCHWELD $2210 \mathrm{E} / \mathrm{A}$ AS $5 / 7 \mathrm{Bm}$ FLEXIBLE GRAY EPUXY	GSEC6862	1.16	． 01	2 H	65	Hisin	a UHESIVE

GEC0317

 Non

＇nveng लusum aycian

 Anax समयम
सम UOU
0000
NNMNN
 H14
an
an氠要要 UYEHE cherses
oncion zo：

HED

SADDHICHE E／A AS 1／ －0rN

由1： त्र

他11： त

 H్O

 se 45240 clear siliconejncoorionクñx－nhopin．．．．．．．
10

5
5
5

matekial	DACA GEFERENCE	\％TML	acvey	$\begin{aligned} & \text { COKE } \\ & \text { IIME } \end{aligned}$	$\begin{aligned} & \text { CURE } \\ & \text { TEME } \end{aligned}$	As Mu．	APELICATLU＊
SE 55540 SILICUNE FOOD GRALE Gg	GSC10 182	． 25	． 00	30 M	163	せらI	aULD CPED
SE 557／VARUX AS 100／0．3 Bu GaAy SImICONE	GSFCB＜19	．09	． 02	15 H 4	121 173		SEAL．
				$\frac{24}{16}$	177 249	A A	
SE 565／VAROX AS 100／0．6 bW EXTEEHE LOU TERE SILICQNE	GSFC 3925	． 25	． 12	2 H	177	AL	MULD CPND
SE 565／VAROX AS 100\％0．0 BW EXTEEME LOU TEMP SILICQNE	GSPC 3927	． 12	－03	50 2 in	177 177		AULD CPIV
				48 H 3 H	177 204	－－－	
SE 9025 SILICONE IRE INSULATION	GSFC 3744 GSFC 793	1.38 3.16	－ 58	24H	125	414	W1RE INESUL
SE 9045 SILICONE WISE INSULATION RLRUNGSEC3744	GSEC 3793 GSFC2119	.16 1.37	．03	24H	125	L－7	A HE INSUL $\rightarrow \triangle$ INSUL
SE GO90 SILICOUE IRE INSULATION	GSPC4520	4.12	1.01				－AKE INSUL
SEMKIT SF653K82 SAS EPUXY FSN 8040－00－916－9847	GSFCS 853	2.88 4.86	－01	b			¢ADLE TIE
SENTRY SEAL RED MAEKIMG INK	GSPC4 302	0.33	－79	7 D	25	A1M	
SF 1006 NYLOX 12／GIASS AS 70／30	GSFC2891	． 65	－01				AULD CPND
SFR 60－60 H HITTE SILICONE	GSC13413	1.43	－ 11	6H	204		¢ USHIUN
	GSC13416	3.94	－85	6n	204	A14	GUSHION
SEE 60－694 Widite silicune	GSE13419	． 0.64	－13	611	204	A 4 K	CUSAIUN
SH $3 \times 4 \times 5$ HEATEK－EED SILICUNE	GSFC6676 GSFCo GS8	．08	． 03				aEATER
SHRINK TUBING BLACK FROM CABI．E BRAND REX	GSC12742	2.62	1．22				
SHRINK TUEING GEEEA MAX SHBINK－HEAT GUN	GSFC 531	． 66	－． 29				SuAINK TUBLMG
SHJB－LOK SLE 3007 EPUXY－GRAY PLEELIL	GSC1 GSPC 422	1.70 .32	． 54	12 d	25	a 14	JHKINK TUBING rutiring
				8 H	65	A 1	
SAUH－LOK SLE 3009 froxy－GREEN	GSFC4424	1.20	． 18	${ }_{12 \mathrm{H}}^{8}$	251		EUTPIN：
				81 80 80	85	dih	
SHUR SHURTLK SLE SLE 3010				81 724	121	A1血	
SEUR－LCK SLE 3010 SYATACTIC FOAM BLUEGGREEN	GSFC4450	． .77	． 03	10 HH 8 H	25 65 65		
SHUR－LUK SLE 3015 SYATACTIC FOAM GKEEN	GSPC4452	1.13	． 19	$8{ }_{3}$	121	A 1 K	
				$8{ }^{\text {d }}$	65		tuam
SIC $9030 / \mathrm{GHEEN}$ BINIER／C－240 GaIT				8H	121		
SLCON BLACK 7×9055 SILICONE	GSEC 1102	6．04	－．36	24 H	25	A」	LIEECTELC
SICON BLACK 7×9055 SILICONE 18 CV	GSFC 1105	－．98	． 04	304	177	$A \perp G$	KAINT
	GSFC2995	1.39	－82	30M	304	A A	YAI日T
SICON 3x258 LEAFING ALUMINUM	GSC11396	4.02	1.15	3 H	71	A A	FAINT
	GSC11543	． 72	． 17	$48 H$ $48 H$	25 99		¢ $\triangle I N T$
SLCON 3×258 LeAFIAG LLUMINUM	GSC11545	.70	． 11	48 H	25	A 1	S $\triangle I N T$
SICON 3X258 LiEAEING ALUMINUM	GSC11639	． 73	.09	480	25	ci－	$\triangle A \perp N \mathrm{~L}$
SIL－PADS 400 SILICCNE／PIBERGLASS SHEET GRAY	GSFC9 892		－ 11	8 D	71	SH	
	GSC10604	2.08	.71	70	25	415	YUTTING
	GSC10667	1.22 .35	.39 .13	7 D 1 H	25	A 18	YUTTING

yatehial	DEEATA	${ }^{\text {cta }}$	xercm	CUH	CuMb	A Idu.	$a \mathrm{prlichtan}$
		1.25 2.53 2.34	-28				
				${ }^{24 \mathrm{H}}$	(25		
		11.18 2.48	-. 60				IUERUCONTROL
	${ }_{6 S 5 C 5152}$.781 .86	- 25				
	$655 C 5357$ $65 F 3079$	-86 -31 -42	-52				cexa
		-4, 4	-01				fuam
	${ }^{6} 55 \mathrm{FC8} 27{ }^{\text {che }}$	- 3.49	-04	${ }^{10}$	27 27	esit	Stainaic
	GSFC464.	7.69 16.25	4.27	${ }^{104}$	$\begin{array}{r}25 \\ 25 \\ \hline\end{array}$		ADiESIVE
Ste 62/63 as 1/1 Ey epoxy	GSFC4428	1.40	. 14		25 $\begin{array}{l}25 \\ 65 \\ 121\end{array}$ 105		talm dielectial
	$\begin{array}{r}\text { GSPCo } \\ \hline 65 C 10085\end{array}$	1.11 $2: 46$: 13			A14	LaMPER
		1.52	- 12	${ }_{16 \mathrm{H}}^{10 \mathrm{H}}$	133	ciek	
Stad		1:56	- 22	${ }_{24}{ }_{2}$			LAMPE
	GSFCl 196	2.28	-27	${ }_{9}^{248}$	23 130	$\stackrel{1}{1}=0$	MAMPER
S4id ${ }_{\text {Sl }}$	${ }^{65 C 11003}$	1:00	:11	${ }_{9681} 168$	130		
		1. 39	-17	- 8 811	105	-	何
SyRD 43290 A WIITE	GSFCCy 317	1:94	:17	48 H	100	:-2	KUTTING
	SSEC+426	- ${ }^{-79}$	- 14				hilei cuating
		4.21 -59	- 31	$7{ }_{7}^{7}$	25		CuA coat
		-87	- 12	${ }^{70}$	25	${ }_{\text {dia }}^{\text {dia }}$	GUNE COAT
Soliltain ill		-30	-03	$7{ }_{70}^{70}$	$\begin{array}{r}25 \\ 25 \\ \hline\end{array}$	${ }_{\text {a }}^{\text {atik }}$	
		:37	-08	${ }_{70}^{7}$	25 50	dick	Sutising
		-31	-04	${ }_{20}$	25		FOTTNG
	GSFCO248	- 32	:04	208	55	${ }_{\text {ALK }}^{4}$	CuAp coat
	CSSCC 14.96	- 69	:09	${ }_{70}^{78}$	25		cutcing
	${ }_{\text {GSF }} \mathrm{GSF} 7175$	-30	:01	${ }_{72}^{248}$	50	${ }_{\text {a }}{ }_{\text {ALE }}$	\%uTTING
		-47	:00	70	25	${ }_{\text {a }}^{\text {a }}$	皆TTIMG
		-46	-04	70	25	ALk	¢TMING
		-47	:04 09	$\stackrel{\text { ¢H. }}{15}$	54 50	${ }_{\text {a }}^{\text {A }}$	

material	DATA EEFERENC	*TML	gCych	$\begin{aligned} & \text { CURE } \\ & \text { TIME } \end{aligned}$	$\begin{gathered} \text { CURE } \\ \text { TEME } \end{gathered}$	AI	application
SJLITHANE $113 / 300 / \mathrm{EH}-330$ AS $100 / 73 / 1$ BY FORMULA 21	GSC10736	. 56					
	GSC13236	$\because 32$	-02	2 2	93	A 1	COAFINGAT
SOLITHANE 113/300/EUADROL FORMULA 24 FMUULA 23	GSCio 75	- 29	-00	$7{ }_{7}$	25	ai	CUNF COAT
	GSC1u760	-31	-00	78	25	di	Codr coat
	GSFC 1225	-37	. 01	3 3	65	Aib	YUTTING
SOLITEANE 113/300/T-12/FERRIC OXIDE/CABUSIL	GSC13511	$\bigcirc 38$	-06	7	25	$\stackrel{\text { A }}{\text { A }}$	¢anf coat
SOLITHANE 113/300/T-12/FERLIC OXIDE八ABOSIL	GSC13514	-40	. 05	2 D	25	A+	EAINT
SJLITHANE $133 / 300 /$ T-12/SILFIAKE $13 \mathrm{~S} / \mathrm{HEXAKE}$	GSFC8 177	. 62	. 00	${ }_{7 D}{ }^{4} \mathrm{D}$	60	A 1 hin	
	GSFC6 ${ }^{\text {GSFC4 }} 26$	- 36	- 02	7 D	25	Aid	LuIESIVE
SJLTTAANE 13/300/TOLUEAE AS $100173 \mathrm{EH} / 173 \mathrm{i} V$	GSFC4252	-50	. 03	$4{ }^{4} 4$	90	${ }_{\text {AL }}{ }^{\text {din }}$	AUAESIVET
	GSC1 1258	- 36	.02	7 D	25	A1	HuTTING
	GSC10739	-43	.03	7 D 20 H	- 25	ais	$\bigcirc \mathrm{OHP}^{\text {COAL }}$
SJLITHANE $113 / 300 / 328$ AS $100114.7 / 11.5 \mathrm{Sa}$ FOKMULA 15	GSFC 1069	-79	-04	${ }_{2}{ }^{24}$	70	A1 $A+B$	EOTTING
	GSFC 1585	-34	-00	16.6	70	a 1	UTTING
SOLITGANE 113/360/328 AS 100/65-5\%1.5 EiU FOEMULA 8	GSC10263	$1: 19$	-08	${ }_{3 i}{ }^{\text {dig }}$	60	${ }_{4 i}$	YuTTING
	GSFE 2470	. 21	. 00	210	25	Aid	SUTTING
So LiThan lilile	GSEC2519	- 53	-00	${ }_{70}{ }^{\text {ch }}$	$\begin{array}{r}57 \\ 5 \\ \hline\end{array}$	Aid	SUTTING
SOLITRANE $291 / 271 /$ TIPA AS $100 / 48.5 / 1.9$ be	GSFC 1957	1.36	-57				
			. 57	$1{ }^{16}$	100	A-	cuStign
	GSFC GSPC S	8.85	.06	5D	25 25	AL	EALNT COMPOSite
SPACE GARD 4-b-33 CYEin Randolph priale t $54 / 8$				${ }_{20}{ }^{\text {OH }}$	69	Ais	
	GSFC4278 $\mathrm{GSC1}$	¢-46	-00	${ }_{5 \mathrm{D}}{ }^{\text {H }}$	25	A-b	
SPEED-O-PAMUE KEL CPAYUEINGLIQUID	GSFC 8027	5.72	-02				SHRINK TUBING
	$655 C 3904$	8.72	-02	$7{ }^{2}$	25	${ }_{\text {A }}^{\text {A }}$ a	
SPEBEX SP-131 VAT EIGA TEHP COATING-WHITE SILICONE	GSPC6656	3.44 .29	-83	70 15	25	${ }^{\text {A }}$ A ${ }^{\text {R }}$	EdiNT
				15 id	121	$\underset{A \rightarrow a}{ }$	Paint
SPIRAP NYLON CABIE MRAP 500013				1 H	316	ALid	
	GSFC ${ }^{\text {GSPC911 }}$	14.10	4.92				CAMPL
SPONGE RUEBER SIIICONE AMS 31950 U. $31 / 100$ IN	GSPC9889	2.74	1.60	24 H	125	E-7	Damper
SPONGE ROEBEE SIIICONE AMS 31950.031 ICU IN	GSEP 6703	-71	-40	24 H	138	Ath	UAMPEK
SPONGE RUEBEE SILICONE MIL 22-R-765 HED	GSFC6 9808	-07	- 40	22H	177	$\triangle 1 \Delta$	Uadpek
SPONGE RUEBEE SHSLE9/SE546 AS $1 / 1$ OH SILICONE	GSPCo884	. 53	. 25				LAMPEE
	GSFC6887	-48	-23	42 H	177	Aid	
SR $165 / \mathrm{MICA/IRON}$ OXIDE/ALUM SILICATE COATING	GSFC ${ }^{\text {GSC12 }} 1980$	3.34	-81	244	25	${ }^{\text {A }} 1$	LOATING
Sa 240 SIlicone leafing aluminum	GSC11547	-58	-19	488	25	${ }_{\text {A }} 1$	
SR 240 Siliconz leafing aluminum	GSC1 1549	. 74	. 24	488	29	${ }_{\text {A }}$	Kackr
SR 240 SIlizone teaping aluminum	GSC11642	. 72	. 18	488	25	L-	caINT

Matemial．	DA IA KEF＇BKENCR	＊TaL	8CVCH	CUas TIBE	CUnE TEAK	aldus	APPLICATIUN
SR $2702-75$ VITUN PER MIL R 83248 TYPE 2 CLASS 1	GSPC4474	－ 16	00				UUST SEAL
SQ $2724-75$ VIIUN E－60 ${ }^{\text {S }}$	GSC11294	． 46	． 00	24 H	260	－ 14	ら上AL
SX 290 SILICONE（SE 17 AND Sk 98）	GSECU110	0.00	2.60	$\begin{array}{r} 4 \mathrm{H} \\ 2 \mathrm{D} \end{array}$	65	Aith	
SR 529 SILGAIP SILJCONE PSA	GSEC7421	2.48	． 75	30 M	25		dUHESIVE
S3 585 SILVER FIILED SILICCNE	GSFC6679	2.09	1.00				AUHESIVE
Sa 58 S SILVER FILLED SILICCNE ON SLLVERED TEELON	GSFC6682	.60 .28	.27 .14	$12{ }^{124}$	38 66	A1～	AUHESIVE
SR 585 MTCLUENE	GSPCil68	10．37	5．09	24H	25	AL	AUALSOR TAPE
S3 $634-70$ SUTYL C FING STILLMAN EUBEEH	GSPC 1804	－93	－ 10				u bing
SS 4155 SILICONE PELMER NATUUAL NYLON ETHANOT UASH	GSFC2551	15． 52	－ 00	1H	25	ALts	\triangle Ud PRIMEE
STA－STHAP SST CABLF TIE NATURALUNLON ETHANCIC WASH	GSFC7439	3.25	.01 -36	7 D			しABLE T ${ }_{\text {L }}$
STAKING CPND BLUE SOLITHANE 173／300 BASE	GSFC8057	4.43	－$V 6$	70	25	A14	CAINTSYCPND
SIAND－OFP G－10 EFCXY／GLASS COMPOSIIION	GSEC5713	－ 10	－ 00				$\mathrm{S}^{1} \mathrm{AND}-0 \mathrm{FF}$
STANTHANE 817C－2（EORUERLY CPE 17－2C	GSEC 829	1.78	－00	12H	66	Al $\mathrm{a}_{\text {a }}$	CUAA
STANTHANE 817C－2 LEAHEHLY CPG 17－2C	GSFC5855	1.32	． 00	4 ti	105	A14	tuaia
STANTHANE 817C－2 EFOhHERLY CPR 17－2C	GSPC5 857	1.37	－ 11	2H	12 J	A14	ruAa
STAPH CHECN 6 PABRIC－LIGHT AUUA／WHITE VINYL	GSC1 2880	27.16	17.11				KACSAGINO
	GSC12808	37.60 .87	23.60 .00	24 H	25	H $1 \times$	دIATIC CCNLRUL tuAM
				4 H	66	A 14	
STRIP－N－STICK SIIICONE TAPE 440 S SPUNGE／ACRYLIC ADH／F	GSC13120	2.05	． 91				142 E
Sticher	GSC13204 GSC GS	-30 -34	： 11				1APE
STRIPPABLE VINYI CCATING	GSFC 2393	9.31	4．97				KaOTECLIVE coat
STW 0474 WHLTE SILICONE MIRE INSUL	GSFC 2859	4.16	． 76				LaSUIATION
STW 0474 WHITE SILICONE IRE INSUL	GSrC 2887	－10	－ 00	9 OH	204	A1k	－MSULATIUN
SIYCAST CPC 18 A／B AS 100／12．5 B	GSFC6059 GSFCO 152	1.31	－ 20	7 D	25 25		VUATING－2OTTINJ
				48 H	70	AIK	
STYCAST CPC 18 A／B AS 100／12．5 B in POLYURETHANE	GSFC9509	． 96	． 15	16 H	65	AL	SAAKING CPND
STYCAST CPC 19 A／E AS 100／38 ${ }^{\text {a }}$（ POLYURETHANE	GSECOOS6	19.37	12． 16	7 D	25	A1 ${ }^{\text {d }}$	LUATING－EOTTING
STYCAST CPC－4 10 A／B AS 5／6 BW POLYUEETHANE	GSC1 GSFC 543	－39	． 04	7 D	25	A1K	LUTCUNGUR
STYCAST HIHIK FILIED EPOXX	GSFC8081	－38	.00				UKELECSKIC
STYCAST 0005 POLYSTYRENE	GSC10565	－29	． 01				UULD CPND
STYCAST 1090－SI／ 241 V AS $100 / 23 \mathrm{Bu}$ EPGXY FOAM	GSC10131	3.44	－ 10	10 H	25	a 14	tuam
SIYCAST 1090－SI／24IV AS 100／23 Bid EPOXY FOAM	GSFC3680	． 74	.09	24 H	25	A14	ruail
SPYCAST 1090／11 AS 100／12 BW EPOXY FOAM	GSFC5457	.49	． 06	6 H 24	65 100	d 1 k	ruAd
STYCAST 1095／11 AS 100／12 BU EPOXY FCAE	GSEC5459	－38	－04	3 H	95	A14	c UAM
STYCAST 1095／11 AS 100／12 BH EPOXY FOAM	GSEC5465	－ 36	－ 00	34 24	125	A14	$r \cup A M$
STYCAST 1095／9 AS 100／9 BH ELACK EPOXX FOAM	GSFC8366	． 72	． 07	10 il	25	A1H	cuam－potting
SIYCAST $1217 / 9$ AS $100 / 13 \mathrm{BW}$ EPOXY	GSFC5485	1.20	－ 16	10 H	32	$\boldsymbol{A} 1 \times$	LUNF COAT
STYCAST 1263／31 AS 100／3 BW EPOXY	GSFC5 891	－33	－ 04	16 H	107	A1E	m U HESIVE
STYCAST 1267 a／b AS 100／30 BH CLEAK EPOXY	GSC1 2208	1.06	.07	40	25	A	A 5 ESIVE
STYCAST 1467／CAT 9 AS 10U／7 BW EPOXY	GSPC 2517	－ 14	． 00	16 H	26	Aik	EOTTIMG
STYCAST $2057 / C A T$ 9 AS 100／6 BW EPOX			． 01	1 H	77	A 1 H	
STYCAST $2651 /$ CAT 11 as $100 / 8 \mathrm{bH}$ BLACK EPOXY	GSFC9053	.63	.01	3 H	100	A1品	KUTEING
STYCAST $2651 / C A T$ il AS 100／8 Ba BLACK EPOXY	GSEC9071	.84	.03	18 D	25	ALk	ADIESIVE

Material	DATA REFEEENCE	XTHL	xcver	COEE	TEM	ATM	APPLICATICN
TE MP-PLATE $240 /$ SCEEEN	GSFC0596	4.14	. 30				HiLM
TEMPR-GLAPE AL-471 TEFLON/FIBEGELAS/ACRY/SILICQNE ADH	GSFC9380	87	- 26				YaPE
	GSC13171	-. 67	-134				tape
TEMP-R-TAPE C-400 TEFLON FEP/SIL ICONE ADH/R	GSEC2693	-27	- 09				14 PE
TEMPGR-TAPE G-557 SILICONE COAT FIBEKGLASS/SIL ADH/P	GSCi2118	1.28	- 46				TAPE
	GSC12121	-14	\bigcirc	4 H	205	ALH	TAPE
TEAP-R-TAPE G-569 FIEERGLASS/ACBYLIC ADH/F FLAME R	GSC13183	2.72	1.46				AAPE
	GSFC2131	1.69	-93				${ }^{1} \mathrm{APPE}$
TEMP-R TAPE HM-225 TEFLON TFE/SILICONE ADH/F	GSC10 502	1.22	- 67				TAPE
TEMP-R-TAPE HM-350 TEPLUN TPE/SILICONE ADB/PRIMER/F	GSCiO ${ }^{\text {S }}$	-28	$\because 15$				
TEMP-R-TAPE HM-430 TEFLON TPE/ACRYLIC ADH/F	GSCl9 921	-26	-15				2ape
TEMP-R-TAPP HM-65 TEFLON TPE/SILICONEADH/F	GSC13523	-14	-. 07				TAPE
TEMP-R-TAPE HM-650 TEFLON TFE/SILICONE ADH/R	GSPC 3363	-19	-08				Ta
TEYP-R-TAPE K-100 RAPTON/2 SIDE SILICONE ADH/KAPTOM	GSFC ${ }^{\text {GSFC4548 }}$	1.74	-41	24 H	66		$\angle \mathrm{SIDED}$ T'APE
TEMPR-TAPE K-102 RAFTON/ACRYLIC ADH/P	GSC1 3508	. 65	-01	24 H	66	E-4	LAPE COMPOSITE
TEMP-R-TAPE K-104 RAPTON/SIIICONEADH/P	GSPC 688	1.78 1.42	- 01				14 FE
TEMPR-TAPE K 105 KAPTONSILICONE/P	GSC13123	-64	-15				
TEAP-R-TAPE K-250 KAPTON/SILICUNE ADH	GSFC 3022	-88	. 32				IAPE
	GSC13135	-81	-23	244	06	E-4	hape cumiusite
TEMP-R TAPE M-S2, MYLAR/SILICONE ADH/F TRANSEARENT	GSC13186	-93	. 47				TaPE
	GSFCA756	-48	-04				LAPE
TEMP-R-TAPE M-706/GHITE POLYESTERER ACRYLIC ADH/P	GSC10994	-4 4	. 04				Amez
TEMPR-RAAPE M-99 MYLARACCRYLIC ADH/YELLOH/F	GSC13138	.52	-07				HAPE
TEMP-R-TAPE THTEFIONTFESSILICONE ADB/P	GSCi3 192	-44	-20				$\xrightarrow{4 P E}$
	GSPC9841	1.07	- 41				$\triangle A P E$
TEMP-R-TAPE TV-350 TEFLON TPE/SIHCONE ADH/R	GSC1 195	- 71	-41				MAPE
TEAP-R-TAPE TYPE T TEFLON FEP/SI LICONE ADH/F	GSC1 1821	-52	-31	24 H	100	A. H	TAPE
	GSPC2308	-90	53				YAPE
TENAECO PO 502 U UETHANE POAM HHITE $1.8 甘 / C D P T$	GSPC9077	5-66	2.02				ruam
	GSFC9074	2.14	-10				cuad
TERHINAL T-2-S CLAYBCRN LABS DC $282-G E 102-\mathrm{CLOTH}$	GSPC6965	1:89	. 65				\#EEETNASUL
	GSC13275	37.82	22:77				LUOAICaNT
TP 1008 POLYURET HAEE/SLASS AS 60.140	GSFCi 159	-37	-178				AULD CENU
TFE 1006 SIRE SILICOATE	GSFC 6086 $G S F C 2251$	-01					THRE INSUL
Tr 1006 SILICONE	GSFC 251	. 71	. 15	${ }_{2}^{104}$	110 149	${ }_{4}{ }^{\text {di }}$	$3 \mathrm{xaT}$
				${ }_{1}^{46}$	204	ALa	
	GSPC 1057	1.54 .08	-14	30M	82	Aİ	cutting
Trearabicote 250 teemai joint cend	GSEC5835	$1: 80$.06	70	25	Aidit	ADHESİE

matebial	DAPA ${ }_{\text {der }}$	xthi	xCV Ca	Cu8	${ }_{\text {CUBE }}^{\text {TEAP }}$	a	licath
		:04	-00				M1AE
		1:040	:09				M1.
TSERMAX TEFLON	${ }_{\text {GSFC4 }}{ }_{\text {GSC }}$	-27	-08				${ }^{\text {a }}$
		:97	:02	1 H	143	d	cisil coutias
	6SFC ${ }^{65600}$	8.55	-36	58	93	${ }_{\text {ALH }}^{\text {ALK }}$	
	GSCPCC438 GSPC 236	-860	:38	54	${ }_{2}^{225}$	${ }_{4}^{\text {A }} 18$	Stick
		-14	-05	5	300	A1世	Sukink Tubide
	GSFC 7469	${ }^{-31}$	-07	5			SHRIAK TUBIAGG
TEERHOFTT KHF-100 CLEAR - SUAEACE ETCHED	GSFC 4524	1.50	-30	5m	$\stackrel{181}{172}$	${ }_{1}$	Shaiak Tubibl
	6SPC9419	1.72	-69	51			SHALNK MUBIAGG
	${ }^{6 S F C C O 887}$	-97	:35	54	17.	148	MAREMK SUEVVE
THERHOFIT	GSPC8102	-24	- 28		125		SHRINK TUBIAGG
		1:16	- 05	${ }^{19} 108$	(300		3GKINKK TUBING
	GSPC 315	-77	- 21	30h	104	${ }_{1 i d}$	SUEINKK TUAING
THEMOFTT	(-437	-10	15a	125	ALS	jukidk Tubixili
		-681	-14				SUALNK TUBING
	- ${ }^{\text {GSPCC4 }}$	-47 -69	-20	5月	225	ALE	OURINK TUBIUG
	GSPCC5000 GST5002	-76 -63	-26	${ }^{0.54}$	140	ALS	SHREAK TUBiNG
THERMORFIT SCL SCL GEAY	GSFCS052 $\mathrm{GSFC5070}$	-81	- 34	- ${ }_{\text {0, }}$	400		SaRINK
THERMOFIT SCL SEAY Shbink tubing lot 11491		-82	- 51		140 174		Sabink fubling
THEEMOFIT SCL \#HITE	$\mathrm{GSPC}^{\text {col }}$	-52	:24	${ }_{\text {2 }}^{2.54}$	100 140	$\xrightarrow{\text { dide }}$	Sađixak Tubidg
	GSFC 1687 GSPC4404	-00	-09				SMENK TJBING
THEXOB ${ }_{\text {THES }}$	¢S5FC416	5:96	- 71	718	(\%0	${ }_{\text {ALI }}^{\text {AL }}$	${ }_{\text {ckin }}$
TI		$1: 88$ $2: 95$ -15	-20	D			A
	${ }_{6 S F C}^{6591}$	-37	-11				HTE CORD
		8.08	:09	1 ${ }_{\text {H }}$	$1{ }^{100}$		
tile cote 1202 a/b as $1 / 1$ bV black epquy	GSEC 3977	8	. 08	1 H	25	ALA	diaking cpad
to-1000 sintactic foam white	GSC10 146	1.46	. 14	$\xrightarrow{904}$	126 120	${ }_{\text {a }}^{\text {A }}$	futting foam

Matehial	DATA EEFERENCE	XtML	xCVCM	$\begin{aligned} & \text { CURE } \\ & \text { TIHE } \end{aligned}$	$\begin{aligned} & \text { CURE } \\ & \text { TEHP } \end{aligned}$	aidus	APPLICATIUN
T）－1000 SYNTACTIC FOAM WHITE	GSPC4440	1.82	59	8 B	65	AIE	EuA
TORLCN 4203 MOLDING CPRD POLYAMIDE／IMIDE T）R CUE－SEAI PLUOEESCENT I ACQUEB	GSEC9674	$\begin{array}{r} 1-85 \\ 10-16 \end{array}$	$.00$				YOLD CPRD
TJER SEAL A／BAS 1／1 BY TJRUUE－SEAL PLUOEESCENT LACQUER	$\begin{aligned} & \mathrm{GSFC} 3672 \\ & \text { GSEC0981 } \end{aligned}$	$\begin{array}{r} 10.16 \\ \hline .84 \end{array}$	$\begin{array}{r} 1.08 \\ .00 \end{array}$	78 24	25	A ${ }_{\text {a }}$	LACQUER
TP－2 PANDUIT NTLCN SUPPORT	GSEC 3125	1.84	． 02	24 H	25	dis	AUH SPORALAET
	GSFC3179	1.71	． 01	2 F	60	A ${ }_{\text {IR }}$	ADGESIVE
	GSFC 6 G47	1.35 2.90	． 08	$7{ }^{72 \mathrm{H}}$	25	AiA	ADHESIVE
TAA BOBD 2112 STAKING CPAD EPOXY BIPAX KIT	GSFC6848	1.45	－ 01	$7{ }^{\text {D }}$	25	Ais	SPAKIMG CPND
	GSFC2937	3.40	－15	32 H	25	A1发	AUPESSIVE
TRA－BOND 2116 EPCXY BIPAX KIT	GSFC790	3：16	． 05	24 H	25		SLHESİGECPND
TRA－BOND 2122 ALOM FILLED EPOXY BIPAX KIT	GSFCo 107	1．15	.05	72 H	25	${ }_{\text {A }}{ }^{\text {a }}$	UDHESIVE
	GSFC7661	2.27	－ 31	7D	25	${ }_{\text {alk }}^{\text {AIK }}$	ADHESIVE
	GSPC 6248	1.95	－ 00	72 H	25	A1莬	\triangle AUBESIVE
TAA－BOND 2248 THIXCTEOPIC HI－TEMP EPOXY BIPAX KIT	GSFC6254	－67	． 01	12 H	25		ADHESIVE
				2 H	95	${ }^{\text {A }}$ A ${ }^{\text {a }}$	
TRA－CON ERL2795／2793 EPOXY KIA EMOM	GSEC3 GSFC	16.43 16.04	－． 04	16 B	25	A1B	AUPESIVE
				2 C	60		dudesive
CRA－DUCT PA	GSFC 3177	1．06	－03	2H	60	AIE	CUND ADHESIVE
TRANSLUSE 20204 LUERICANT PILM（A）	GSCi 1135	9.13	5.88	304	121	A14	LUBRICANT PILK
TRANSLUBE 20204 LUERTCANT FTLA	GSC13422	5.29	2.27				LUBRYCANT PILH
TROYTUF $109.0-195$ HON HOVEN DACRCN FELT HHITE	GSCio 835	－33	－12				TaERGAL BLABKET
	$\mathrm{GSCl}_{\mathrm{GSC1}} \mathbf{2} 210$	－25	－08	67H			A BERMAL blatiaker
TROYTOF－9，0－195 SON WOVEA DACRCN FELT WHITE HASHED	GSC10859	． 25	－04	208	115	Ais	THERMAL BLANKET
	GSPC2491	－ 36	－91	24 H	25	${ }^{\text {A }}$	YuTTING
TJ－0590／XAD－0158 AS 1／1 B G GEEEN POLYURETHANE	GSFC7766	－65	． 02	4 4	66 25	Aitik	MOTTIAG
TUBING－SILICONE－EEL GEADE 60 CL 2 SPEC 22E765	GSPC4718	． 75	－ 26			ALt	luaing
	GSEC 4766	－09	－04	24H	166	ALE	IUBING
TJFCON 50 MIL－ENE FOLYESTEE EIBHC甘 CABLE	GSC1 374	－36	－21	24H	90	E－3	CLEX WIEAMG
	GSC13451	${ }^{2}-94$	－24	104	100	Aik	THNE
	GSPCO GSFC8 S	$\begin{array}{r}1.74 \\ \hline .10\end{array}$	－05				CABLE TIE
TY 307 TY－EAP TEFLCN CABLE TIE	GSFCO 78	－03	－00				Cable TIE
TY ${ }_{\text {TY }}$ 34M TY－RAP NYICA CABLE TIE	GSFC6155	2.49	． 02	24H	123	aik	CABLE TIE
	GSFCL5103	1.93 1.90	： 08	16 H	100		CABLE TIE
	GSPC5150	1.24 2.49	． 01	24H	125	A 1 E	CABLE TIE
TY 523M TY R AP AY LCA CABLE TIE	GSPC967	1.85	－00	24i	125		CABLE TIE
TY－RAP KYNAE CABLE TIE	GSFC4134	－05	－ 02				CABIE TİE
	GSFC2591	1.83	－00				LACIHG TAPS
	GSFC4982	1－61	．05	16	10		CABEE TIE

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline material \& DEATA \& staL \& zicucm \& COR E \& CUAE \& ata \& atilication \\
\hline \& \(\mathrm{GSFCO}_{6458}\) \& 2.06
1.98 \& -01 \& 24i \& 125 \& \({ }_{41}{ }_{1}\) \& CABLE TME \\
\hline TYGON TVBINGFCEEUATEONB44-3 \& \& 32:914 \& 14:50 \& \& \& \& \\
\hline \& GSC1395 \& \(3: 43\) \& -03 \& \& \& \& TABLE TIL \\
\hline \& \& \({ }^{206}\) \& -0\% \& 6H \& 125 \& 148 \& \\
\hline 俍 \& \& 12.07
-37 \& - 08 \& \& \& \& mud coid \\
\hline UNICOT \(2081-314\) Otich \& \({ }_{6 S C 11971}^{6085}\) \& 5:95 \& 3.73 \& 2 H \& 25 \& A \({ }^{\text {k }}\) \& guti cend \\
\hline unicoat 2081-31a one pabt fluubescent epuxy/f \& 6SC12280 \& . 31 \& . 11 \& \(\stackrel{\text { 2H }}{\text { 2 }}\) \& + 25 \& A AL \& cuar coat \\
\hline \& \& 6.26
0.03
50.21 \& 1. 25 \& \({ }_{12 \mathrm{~L}}^{12}\) \& 70 \& \({ }_{A 1}^{1} \frac{\square}{\text { a }}\) \& ludif coat \\
\hline HNIGLAZE C 1752 G GEEN EPOXY NK \& \(\checkmark 5 S C 6048\) \({ }^{6 S C 1} 3538\) \& \begin{tabular}{l}
5.21 \\
4.12 \\
\hline
\end{tabular} \& -11 \& 2 \({ }^{18}\) \& \({ }^{85}\) \& \({ }^{\text {A }}\) ALE \& iNK \\
\hline JNITSALE \({ }^{\text {S }}\) \& \(\mathrm{GSCl}_{6535}\) \& 7:82 \& - 95 \& 1 1早 \& 150 \& \({ }_{\text {A1 }}^{\text {A }}\) \& LuKd AdHes \\
\hline UNISET \({ }^{\text {O- }}\) \& GSC12 \({ }^{\text {GSC12 }}\) \& - 19 \& -15 \& \({ }_{9}^{18}\) \& 180 \& A1H \& Cund Adiesive \\
\hline \& \& - 32 \& :00 \& 30M \& 15 \& \& CuNj \\
\hline UNISE \& \({ }^{\text {GSC1 }}\) \& -14 \& -01 \& 304 \& 1 \& \& CuMD \\
\hline \& \({ }_{6 S C 1} 6957\) \& -40 \& :01 \& \({ }_{\text {H }}^{\text {H }}\) \& 125 \& \& CuND ADHESIVE \\
\hline \& \& -31 \& :00 \& 30M \& (150 \& \({ }_{\text {A1 }}{ }_{\text {a }}^{\text {a }}\) \& \\
\hline uniset c-940-1 Silvee filled polyimide \& 6SC11739 \& 2 \& . 00 \& \({ }^{\text {H }}\) \& 270 \& \({ }_{\text {Ala }}\) \& cund adhesive \\
\hline uniset c-943-4 oam component silver filled polyimide \& GSC11986 \& . 08 \& . 00 \& 108 \& 170
170 \& \& cund adeesive \\
\hline UNISET MEE8U5 THEREALCOND ADHESIVE LLIVE-GKEEN \& GSC12216
\(\mathbf{6 S C 1 2 2 4 2}\) \& : 36 \& : 01 \& ! \& 125 \& \({ }_{\text {a }}^{\text {a }}\) \& THEREM COND \({ }_{\text {Con }}\) \\
\hline UNISET 9066 -25 SEMI-KIGID EPOXY \& \({ }_{\text {GSFC6 }}^{6194}\) \& \({ }^{1.31}\) \& :34 \& \& + \& , \& ADH-poteing \\
\hline \& \& 10.17
4.33 \& -09 \& 6 \({ }^{\text {H }}\) \& 100 \& \({ }_{\text {A }}^{1 \times}\) \& \\
\hline \& \& 20,
2
2
20
50 \& -51 \& 244 \& 25 \& \& k \\
\hline \& - 6 SFC 1675 \& 1.60 \& -08 \& \& \& \& EUNPCOAT \\
\hline \& \& 2-44 \& . 05 \& \({ }_{1}{ }_{108}\) \& \(\begin{array}{r}75 \\ 7 \\ \hline\end{array}\) \& S- \& \\
\hline GKALANE 22H POLYUKETHANE 2 COAT SAMPle \& GSFC3626 \& 3:44 \& :02 \& 20M

20 \& 25 \& \& CUNP COAT

\hline gralane 22h/mdac eivorescent tracer \& 6SFC9026 \& 2.43 \& . 08 \& 154 \& 85 \& \& cuaf coat

\hline \& | GSPC 1840 |
| :--- |
| GSFC |
| 176 | \& 10.71 \& 1.18 ${ }_{6} 18$ \& 168

3 H \& $8{ }^{8}$ \& ${ }_{\text {a }}^{1+1}$ \& EUTMITEG

\hline
\end{tabular}

APRLICATION

$\underset{~}{\star}$
YVT
XVT

a

4098新 LUND GASKET
GULD CPND
GULD CPND
GUAM DAMPEK CUAM DAKPEK YUAK DAMPER
JRUCTVNAL
AEHBAANE
 DATA WTAL CVCB CURE CURE ALAUS

 -62 \qquad 8.76 no

－ .40 $\stackrel{7}{=}$

 WORNOH CAT－L－INK 50－100／CAT 9／50－900 THINNEF WHITE／F GSFC3240
HORNOH CAT－L－INK 50－121869／CAT 28 AS $20 / 1$ BU ALUM GSFC4 214 HORNON CAT－L－INK 50－121869／CAT 28 AS 20／1 BU ALUM GSFC4214 GSFC4 212 GSFC2482 GSFC8243
9力て82as
 WOKNOW $\mathrm{H}-2-\mathrm{N}$ EED／CAT $45 / \mathrm{T}-1$ THINNER／F

$$
\text { WOENOW H-S-N GREEN/CAT } 45 / T-1 \text { THINNER/F }
$$

WORNOW 1000 MASK FILM GREEN

 WORNOWINK MOG－N／CAT B3 AS $100 / 4-9$ BW X 7902 a／B AS $4 / 1$ EU BLACK FLEXIBLE EPOKY $X 7902$ A／EAS $4 / 1$ EM BLACK FLEXIBLE EPOXY

 －-850 FILELAMINATE ALUK MYLAK／DACRON SCKIM／AL MYLAR
 XECCN CS－14 12\％SLIVEG FILLED SILICONE
 AN 3529／ECCOSPHEFES SI AS $1 / 2$ BH SYNTACIIC FOAM PINK XN $3529 / E C C O S P h E K E S$ Si AS $1 / 2$ BW SINTACTIC FOMM PINK R FERPLUOFOSULFCNIC ACID MEHBRANE GILM
SEMI－K AA－5140 A／B AS $2 / 3$ BW BROWN SEMI－KIGID EROXY

SECTION C

MATERIALS HAVING A TML

OF 1.0 PERCENT OR LESS

AND A CVCM OF 0.10 PERCENT OR LESS

SECTIUN 1 -- ADIIESIVES

		Triz		-	cime	-iãō	-icaitu
	${ }^{\text {Prg }}$. 45	\cdots	${ }_{30}^{24}$		${ }^{\text {A } 12 .}$	${ }^{\text {and ast vi }}$
	${ }_{80}^{\text {Prg }}$: 71	: 04		${ }_{12}$		20uasity
		: 39	:		(ist		
		: ${ }_{\text {\% }}^{\text {\% }}$	- ${ }^{\text {a }}$		${ }^{135}$		
	asc	. 24	.vs		-		cunu auņivye
abilbond 7-1 siver filleb pohyinide	${ }_{\text {asc }}$. 25	.00		275		cuad auilesive
	${ }_{\text {a }}^{\text {a }}$: 58	:83				Cudu aubitive
	$\xrightarrow{\text { atac }}$: : $_{\text {\% }}$:01				
		\%	:		${ }_{\text {d }}^{4}$	$\xrightarrow{\text { andid }}$	
		:33	:30		${ }_{\text {3 }}^{3}$	-	
		: ${ }^{3}$	-		125	${ }_{\text {a }}$	
${ }^{\text {a }}$	$\underset{\text { a }}{\substack{\text { ack } \\ \text { act }}}$:48			$\xrightarrow{740}$		-
			:30		- 1.75	\pm	
		: ${ }^{19}$: ${ }^{\text {:30 }}$		-	\pm	
		: 3	:84		${ }^{6}$	${ }_{\text {atir }}$	
	${ }_{\text {cke }}^{\text {ap }}$:87			-		Audututy
		: ${ }^{\text {a }}$			${ }^{\text {25 }}$		
		: ${ }^{\text {S }}$:				
		: ${ }^{\text {S4 }}$: ${ }^{3}$	$\xrightarrow{\substack{30 \\ 310}}$	${ }_{5}$		

SECTIUN 1 －－adiESIVES

material	$\begin{aligned} & M F E \\ & \text { CODE } \end{aligned}$	82tu	nCVCH	$\begin{aligned} & \text { CUnE } \\ & \operatorname{TinE} \end{aligned}$	$\begin{aligned} & \text { CUBE } \\ & \text { TEME } \end{aligned}$	\triangle Trus	AEとん」どTICN
ARMSTBCNG C－7／ACT AS $2 / 3 \mathrm{~B}$－EPOXY	A CC	． 81	． 09	70	25	A14	ADusblve
ARASTECNG C－7／h－20 AS 3／1 Ew CLEAR EPOXY	$\triangle \mathrm{APC}$	－ 79	． 05	24 H	25	A Ia_{4}	Autasive
AY－105／HY－951 AS 1CO／12 B W EPUXY	CIB	． 61	－ 05	3 H	$0 \cdot 0$	ALa	ajabelve
A9－601 EFOXY HOUEYCOMB ADH	HYS	． 36	． 03	1 H	121	$\underline{2} 1$	ADa H ${ }^{\text {a }}$
BONDMASTEA EO4S A／E AS $10 / 3 \mathrm{Bm}$ ADH	NSC	－ 68	． 04	1 H	204	${ }^{\text {A }}$ In	ADnLSLYE
BONDMASTER E645 A／L AS $10 / 3 \mathrm{Bn} \mathrm{EPOXY}$	NSC	－ 50	.01	$4{ }^{14}$	100 180	A1к	Andisicivi
BONDMASTER 620	NSC	． 74	． 02	2 n	80	A1n	ADuc．ive
				1 H	100	A In	
Ba 34 EPOXY ADilesivi	acc	.05	－00		20		Adusion Ve
				3 uit	104	${ }^{\text {A }} \mathrm{Im}$	
BA 34 EPOXI ADhESIVE	ACC：	． 34	． 00	Y01 30 m	177	${ }_{\text {A }}^{\text {Ar }}$	AusiSiVe
				301	104	A ${ }_{\text {r }}^{\text {a }}$	
				901	132	$\mathrm{A}_{\text {In }}$	
BR－610 EPOXY／TETGAbYDROFUHANE／F	WTis	． 99	.02	900	288	${ }_{\text {A A }}^{\text {A }}$	
				3 ${ }^{\text {¢ }}$	150	Aİ	avacsive
BJL 308 BiAck EFOXX UGSUPYOKIED ADAESIVE FILH	CLS	． 70	.09	1 H	170	AIn	Aut ricit
BSL 312 GRAY EROXY UNSUPPUHTED ADHESIVEFILM	CIE	． 62	． 07	30 M	120	AIN	AUG 5ALA
C－b $/ C A T$ a as 100／5．3 BW GHAY EPUAY／70\％Sandrilled	HYS	－ 12	． 01	20 H	82	ALa	
CASTALL E A／BAS 1C／1，GW GKaY EPOXY	CAS	－ 51	． 00	12 H	05	A 2 n	ADu
	CAS HCC	－28	－01	4 30 H	125	${ }_{4}^{A} \mathrm{I}_{\mathrm{K}}^{6}$	AJucsayc
				10.1	100	AIf	
CHEBLOK 220 ADHESIVE BLACK	HCC	－ 34	． 00	3 UM	25	AIa	4 UHESIVE
				1014	160	AIm	
	CHO	－02		4811 2411	177	${ }_{\text {A }}^{\text {a }} \mathrm{In}$	cuad adaesive
CA O－BUND 360－208 CCNDUCTIVE EPOXY ADAESIVE CL－522 EPOXY LAMINATING EILM	CHO	－06	．06	2411	25	AIm	cuad adatsive
CONAP K－20 A／B AS $20 / 9 \mathrm{BW}$ GKAY EPOXY	Cun	－75	．05	2 H	50	a $\mathrm{I}_{\text {a }}$	ADAらうう
				304	${ }^{\text {d }} 5$	${ }_{\text {A }} \mathrm{Im}$	
	CON	．93	－01	140 300	23		
CONATHANE EN－21 A／EAS 100／110 BH PQLYURETHANE	CON	－ 50	－03	140	25	AIn	Auditisive
CONATHANE EX－21／［PS761／DP9802 POLYUAETHAME BLEND	CUN	． 75	.02	300	25	A İ	a u desive
CONATHALE EN－24 a／E AS 100／82 3y PuLyukerhane	CON	－ 57	． 04	7 D	25	A $\mathrm{I}_{\text {a }}$	A Uadesive
CJNATHANE EN－24 a／E AS 100／82 BW POLYUGETHANE	CON	． 32	． 02	24 H	60	AIn	aud cist VE
COTRONICS 940／ACT AS 4／1 Bm FAST SET CEEAILC	cot	． 79	． 01	24 H	23	AIn	－DuSらくVE
CREST 3135／7111 AS 1／1 BN EPUXY	CPC	． 47	.01	24	25	${ }_{\text {A } 14}$	andiciave
CT 5047－2 A／B AS $1 \mathrm{CO} / 6 \mathrm{BH}$ SILVER PLLLED EPOXY	AMC	.39	.00	24 H	25	AIN	cuduanliesive
				2 H	65	A Ia	
CY 209／HT972 CLEAE AMBER EPOXY	CIE	． 78	.01	40 H	250	AIE	a Jucisude
				5 H	80	AIn	
O＝6－1104 L0T E2134－142	DCC	－ 20	． 03	5 D	25	${ }^{\text {A }}$ In	
D：6－1104 LOT FMO10380	${ }_{\text {DC }} \mathrm{DC}$	－ 10	－05	7 7	25	${ }_{\text {a }} \mathrm{In}_{\mathrm{n}}$	Avatiolvi
D＝6－1104 LUT FM 10 C329	DCC	－ 21	－03	14 D	25	Aİ	ADALSt E
DC 6－1104 LOT FH129370	DCC	． 13		75	25	AIA	A Uacil $V{ }^{\text {c }}$
D＝93－500 A／B AS 10／1 Did SILICONE LOT E2467－133 6／76	DCC	． 99	－03	7 D	25	AIK	autesive
D＝93－500 A／B AS 10／1 BY SILICONE LQT FMO20392	DCC	.10	－02	70	25	ASn	Auiacisive

SECTION 1 －ADHESIVES

Material	$\begin{aligned} & \mathrm{MPR} \\ & \mathrm{CODE} \end{aligned}$	\＄TML	\％CVCM	CURE TIAc	$\begin{aligned} & \text { CURE } \\ & \text { TEBP } \end{aligned}$	a Tdus	ARPLICAIIOA
D＝93－500 A／B AS 10／1 BH SILICONE LOT FH047611 6／77	DCC	－ 19	． 04	7 D	25		
DE 93－500 A／B AS 10／1 BH SILICONE LOT FM119335k2	DCC	－13	－ 01	7 D	25	A1m	ADMESLVE
D＝ $93-500$ a／B as 10／1 BH SILICONE LOT FH129358	DCC	－10	－02	7 D	25		A datise
	${ }_{\text {DC }} \mathrm{CC}$	． 099	．01	70	25	${ }^{\text {A }} \mathrm{LH}$	ADdSSIVE
				24 H	40	AIE	A．Jdesive
delta lond 152－x－B4 A／B AS 100／3．5 Bd BLUE ErOXY	WAK	． 49	． 00	1 H	25	AIP	ADaES\＆VE
DEN $438 / \mathrm{MDA}$ AS 100／27 BW EPOXY－AMBER	DOE	－60	． 01	2H	60	AIK	ADtisSiVE
DEE 332／DADS／LITHAFRAX AS 10／3／40 B	DOw	． 24	.00	4 H 8 8	150 120	AIL	ADacily
				4	150	A Ia	Avarsige
DEE $332 /$ TETA／LITHAFHAX／CAB－0－SIL／AS $100 / 14 / 235 / .67 \mathrm{~B}$	DOW	－39	－00	1H	105	A In	ALD ASIVE
DER $332 / Y E E S A K D D 125$ AS 1／1 HWE POXY	DOW	－ 58	－01	2．5H	105	${ }_{\text {A La }}^{\text {A }}$	ADdCSIVE
DER 332LC／VENSAMID 140 AS 6／7 BW EPOAY	DOM	－ 54	.01	12 H	40	a 1 a	ADHESLYE
	DEV	－ 53	． 00	7 D	25	AIn	àdacist
dJecat 55uta Siaver kille d Epoxy	DUP	． 05	－ 00	1H	100	A IK	Cuad auHESIVE
EA 8 A／B AS 100／E Eii broin eroxi	HYS	－98	． 02	9 OH	93	${ }_{\text {AILA }}$	Audcisive
	HYS	． 83	.04	5 H	116	AIR	ADHESIVE
ES 9307 a／b AS $100 / 14$ BW BROWN EPOXY	HYS	． 48	． 00	3 OM	121	A Ia	ADasesi y
EA 9321 GRAY EFOXX	HYS	－ 94	.04	90 H	66	AIS	mudichyE
	HYS	－49	－01	7 D	25	AIM	ANHESLVE
EA 936 EEOXY AS 100／33 Bil GRAY EPOX\％	HYS	－54	－01	7 D	25	Aİ	ADGaSa VE
EASTHAN FA PILI 04010	EAS	－67	－0 05				hDacisive
EASYEUXY K－20 EEFAIR KIT A／B AS EQUAL BEADS FR TUBES	CON	.65	.01	24H	25	A15	FLa，
	CON	－0 0	． 04	24 H	25	AIE	
EASYPOXY K－40 A／E AS EQUAL LENGTHS FROM TUBES GRAY	CON	.60	－02	24H	25	AIB	ADOESA $\mathrm{S}^{\text {A }}$
EN 2258 EFOXX	ABM	1.00	． 00	24日	175	AIA	ADnごSty
E 2290 EPOXI ADH	HAM	.01	.01	30 L		E－4	andéSive
EG $3500 \mathrm{~B} / \mathrm{A}$ AS 2／3 BH EROXY ADHESIVE	MMit	． 19		14	177	EFO^{4}	
EJ 3500 EPOXY ADEESTVE	BMH	.40	－00	60 M	17 c	${ }_{P}^{\text {A }}$ SS	ADASSIVE
ECCOBOND $104 /$ A／B AS $100 / 64, \mathrm{Bin}$ GRAY／GREEX EROXY	EMC	.52 .49	－08	$6{ }^{6}$	120	AIt	ALH cisiye
Eucobord $276 / \mathrm{Cat} 17 \mathrm{aS} \mathrm{10/1} \mathrm{BW} \mathrm{EPOXI}$	EMC	－ 49	． 00	2H	$\begin{aligned} & 80 \\ & 150 \end{aligned}$	AIR	ALAESIVE
				2 H	200	AIn	
ECOBUND $205 / 11$ AS 20 ／ 1 Y EPUXY	EMC	． 35	.06	8	88		Treua cosd ady
ECCOEOND 285／24LV AS $25 / 2$ BH EPOXY	EMC	1.00	－00	24H	25		adacsive
ECCOBOND $285 / 9$ AS $25 / 1$ BH EPOXY	EMC	． 48	－01	24 H	25	AIA	ADassive
ECCOBOND $55 / 9$ AS $50 / 0$ B EPOXY	EHC	－44	－ 02	24H	25	ALi	$A \cup H E S I V E$
ECOBOND $55 / 9$ AS $50 / 6$ BA EPOXY	EMC	．46	． 01	34 H	25	AIM	ADaLSay
ECOBCND 56C／9 AS 40／1 BW SOLDER	EHC	－23	.01	30 M	25	A1\％	AUAESAVE
ESCOBOND 57C A／3 AS 1／1 BE COND EPOXY SLLYER				7 H	60	AIE	
EOCOBND 57C A／B AS 1／1 EX COND EPOXY SLLVEX	EMC	.36	－03	75 30 M	150	AIn	CUAV ADHESIVE
EGCOBOND 83C A／B AS 100／3．5 BM BI－PAK SILVEH FILLED	EHC		－02	1 H	66	AIn	CuAd ad iesive
ECCOBOND 83C－1 ONE COMPONENT SILYEE FILLED	EHC	.35	.01	1 H	149	AIA	CUND AUHESIVE

SECTION 1 －－ADHESIVES

MATERIAL	$\begin{aligned} & \text { MFR } \\ & \text { CODE } \end{aligned}$		SCVCM	$\begin{aligned} & \text { CURE } \\ & \text { TI iE } \end{aligned}$	CURE TEMK	ATMUS	atrlicat Io
ECCCMOLD L28／24LV AS 100／26．4 ⿺𠃊	EHC	． 73	． 05	4 D	25	A I凶	ADit cisive
ECCOSIL LN1049－97 A／B AS 10／1 BW CLEAR SILICONE	EMC	． 18	． 04	24 H 30 H	66 100	AIM	Audstible
	EFI	． 4.4	.02	2 H	05	A1k	CuAd ADHESIVE
EPIBOND $1210 / C A T$ GE 15 AS 100／65 BW EPOXY	PPI	． 05	－ 01	$3 \mathrm{3H}$	06	a	AUHCSIYE
EPIBCND 1210／9861 AS $5 / 1$ BW EPUXY	FPI	－ 77	－00	7 D	25	AIN	$A D A L S V E$
EPIBOND $123 / C A T$ S $615-10$	${ }_{\text {PPI }}$	．85	－03	7 D	23	AIa	A DubSa VE
EPIPHEN $825 A / \triangle O D$ I／FILLE世／CONVERTER－EPOXY	ECM	－85	.01	10 OH 10 l	25	A1a	AUnESLVE
				8H	60	AIK	
EPO－TEK H21D A／E AS 10／1 BH SILVER FLLLED EPOXY	EPK	－ 19	－00	304	100	A Ia	Cuda adiesive
EPO－TEA H22 d／B AS 20／0．y BW SILVER TILLE EPGXY	EPK	1.00	.01	3.5 H	50	AIH	ADdest VE
EPJ－TEK H22 A／B AS 20／0．9 BW SILVEE FILLED EPQXY	EPK	－ 99	－ 1	20M	100	AIn	A UdeSiVE
	EPK	－52	－U9	1H	150 150	AIn	CUad ajtesive
EPJ－TEK H31 SILVER FILLED EPOXY	EPK	.59 .47	.05	1 H 1 H	125	AIn	CUND adidesive
EPJ－TEX H40 GOLU FILLED EPGXY SINGLE COMPQNENT	EPK	－19	－00	1H	120	A It	CuNi ADHESIVE
EPO－TEK E4 GOLD FILIED EPOXY	EPK	－ 14	－ 00	1H	150	AIM	CUAD ADHESIVE
EPO－TEK H43 GULD FILLED EPOXY	EPK	－ 20	－ 00	1 H	150	A IK	cuau adilesive
LPO－T上K H44 GOLD FILIED EPOXY	EPK	－27	． 03	1 H	150	A In	Cudu nutiesive
EPU－TEK HTOE A／E AS $1 / 1$ ¢ THEKM COND EPUXX	EYK	． 99	． 03	12 H 18 D	60 25	AIK	ADHESiVE
	ERK	.31	． 00	30H	100	AI以	ANHCSLVE
EPO－TEK H74 A／S AS 10／3 3 U THERMCOND EPUXY bKOWN	EPK	－ 56	－00	30 H	150	AIA	A VACSt E
EPO－TEK H77 A／B AS 20／3 BH BROWN ESOXX		－ 22	－0	$1{ }^{1}$	125	AIE	ADaciSa VE
	EPK	． 10	－01	24 H 16 H	50 60	AIf	CuNu adHESIVE
EPO M M		－ 6	－	16 H	95	E－0	Cuav aunesiva
EPO－TEK H81 A／B AS 10／1 SW GOLD FILLED E2OXY	EPK	． 06	－ 01	12H	50	AIs	CUNL \triangle UHESIVE
EPO－TEK H81EA／B AS 1／1 Bh GULD FILLED EPOXY	EPK	． 20	． 01	2 H	100	A IK	CUNL ADHESIVE
EPO－TEK 390 POLYIMIDE／P	EPK	． 43	.01	30 H	25	AIM	AUlléSave
		． 65		450			
EPO－TEK 930 A／b AS 100／3．3 BW FILLED EPUXY	EPK	.49	－00	45 H	80	À $\overline{\text { áa }}$	MAEAG COND ADH
ERON X－24 EPOXY	SHL	.42	． 05	15 4	60 25		ADrLSLVE
				4 H	25	AIE	
				10H	100	AId	
EPON 815／DEH－20／VEFSAMID 150 AS 100／12／12 BW EPOAY	SHL	． 81	． 03	4 H	25	${ }_{\text {A }}^{\text {AK }}$	addcsive
	SHL	.56	－ 47	4 H	74	AIK	
EPON 815／TETA AS 10／1 BH CURE 4	Sidi．	.76	.01	16 H	63	AIt	WDabSayE
EPON $815 / \mathrm{V} 140$ AS $3 / 1.8$ Bn EPOXY	GSC	－ 51	－ 02	7 D	25	A In	ADAESLVE
EPON 815／V 140／AL2C3／PIGAENT MODLFIED BLACK LPOXY	GSC	－60	－ 06	70	25	AIK	Cudu audesive
EROA 820／TETA AS 10／1 BH CURE 1	SHL	.43 .36	． 05	${ }_{16 \mathrm{D}}^{3}$	25 63	AIM	AUHSSIVE
				48 H	25	AIE	MUAちS\＆
EPON 826／NMA／EDMA 15 10U／88．5／1．5 BW EPOXY	SH2	． 41	． 00	2 H	93	AIH	ADasSLVE
	SHL	． 96	－01	8．${ }^{\text {3．}}$ H	177 60	AIn	andesive
EPON 828 $-A L U G I N A / V-125 / M E T H A N E D I A M I N E / A L U M I N A ~$	SHL	－ 21	－ 01	3 H	71	Aİ	ADasらiVE
EPON $828 / \mathrm{CTA}$ AS $10 / 1$ BH EPOXY	SHL	－ 75	－04	3 D	25	AIS	Andesty
EPON 828／EM 308／SILICA FLOUR AS 10／5／1 B\％EPOXY	HAC	－ 29	－ 00	1．5d	65	A Ia	ADatis y
E＇PON 828／TETA AS 1C／1 BH COEE ？	Sid	． 50	． 01	3D	25	ALt	ADdESLYE

SECTION 1 -- ADHESIVES

matexial	$\begin{aligned} & \text { MPR } \\ & \text { CODE } \end{aligned}$	STHL	\%CVCM	$\begin{aligned} & \text { CUKE } \\ & \text { TIHE } \end{aligned}$	$\begin{aligned} & \text { CUGE } \\ & \text { TEBP } \end{aligned}$	ATMOS	Ar'PiICATIOX
ERON 828/TETA AS 10/1 B	SHL	38	. 00	16 H	63	A In	ADuESLVE
EPON 828/V 140/AL2C3/PLGMENT MODIFIEU BLACK EPOXT	GSC	. 46	- 02	2D	25	${ }_{\text {A }} \mathrm{LK}$	CUND adHESIVE
EPON 828/VERSAHID 125 AS $100 / 75$ BU EPOXY	SHi	. 69	.03	70	25	AI宊	AudeSive
EPON 828/YERSAMIC 140 AS $50 / 50$ B E EPOXY	SHL	- 58	-04	70	25	AIa	AUHESIVE
EPON 828/VERSAMID 140/DTA AS 70/30/1 BM EROXI	GSC	-18	-00	$7{ }^{7}$	25	AIE	AUHESiVE
EPON 828/VERSAMID 140/SILFLAKE 135 AS 5/5/20 BW		. 81	. 03	124	50	A Ia	Cuad adhesive
EPON 828/VERSAEID 140/SILFLAKE 135 AS 5/5/40 BH	SHL	. 50	. 04	7 D	25	Aİ	
EPON 828/VERSABIE 140/SR $82 \mathrm{AS} 70 / 30 / 1 \mathrm{BH}$ EPOXY	GSC	. 35	-01	7 D	25	a ${ }_{\text {a }}$	ADAESAVE
EPON 828/VEASAMID $140 / \mathrm{T}-61 \mathrm{AS} 2 / 3 / 16 \mathrm{BH}$ MQD EPOXY	GSC	- 88	-05	7 7	25	${ }^{\text {A }} 1{ }_{\text {E }}$	ADdESLVE
	GSC	. .93 .92	. 05	7 7	25	AIK	AUHCSLVE
EPON $934 \mathrm{~A} / \mathrm{B}$ AS $100 / 33 \mathrm{BH}$ EPOXY ${ }^{\text {a }}$	SHL.	-95	- 00	7 7	25	AIE	AUHESAVE
EPON 934 A/B AS $100 / 33$ BH EPOXY	SHL	- 28	- 01	7 D	25	AIA	
EPON 956 A/B AS $10 \mathrm{C} / 58$ BH EPOXY	SHL	-19	- 01	7 D	25	AIn	
EPON 956A/B AS $100 / 58$ Bu/CAKBOL AC/CABOSIL	SHL	.81	-00	7 D 24 H	25	AIE	A LUESLVE
EPOXY 220 a/bas EGUAL PaRTS FROMTUEES	HUE	-89	-07	24 H	25	A ${ }_{\text {at }}$	a da-scalant
EPY 150 PRE PACK EEOXY ADH LOT 2101	BLH	- 99	-03	16 H	25	A14	avais 1 VE
ESP 109 GRAY OAE PART EPOXI	PIC	- 50	- 10	45K	150	An	AvacSive
	SAG	.33 .08	. 00 -00	1H			AOH
				2 H	240	AIA	AUHESIVE
FIBEAITE E-3938 EECXY	FIB	- 44	.01	10 M	149	AIT	Audesive
FY 123-2LYC EPOXY ADH FILG PURPLE	ACC	. 68	.01	1H	161	${ }_{\text {A }} \mathrm{I}$ In	
PM 123-2LVC EPOXY 12 DH PILH PURPLE/E	ACC	.98	-00	90 M	124	PSi	Aua chat
Fi 123-2LYC MODIEIED AS NB149D-68C EPQXY PURPLE	acc	.81	-0 0	1H	121	A In	ava ribu
PY 123-5 EPOXY ADH FILH BLUE-GEEEN	ACC	-98	-02	1H	121	PSt	AUH cica
PM 150-1 SUPPORTED EPOXY ALUM FILL HOAEYCQHB ADH	${ }_{\text {ACC }}$	-49	. 04	1 ${ }^{\text {d }}$	177	${ }_{\text {A }} \frac{1}{\text { I }} \mathrm{H}$	Ava bibit
F1 150-2U UXSUPPCRTED EPOXY FILM ADH	acc	-89	-02	1H	177	AIK	
FA 36 FILA ADHESIVE POLYIMIDE/GLASS	ACC	.82	-02	2H	177	AIE	ADa misat
FH 37 EPOXY POAH ALH OLIVE GREEN	ACC	.73	. 04	2H	288	${ }_{2}^{4} \frac{1}{51}$	
FG 40 EPOXY POAB	ACL	1.00	-04	$1{ }^{\text {H }}$	170	PSt	AvH kuan
PSP49 A/BAS 1/1 BE SILVER FILLED EPOXY	Jmi	- 52	-01	24 H	25	A IA	Cund adiesive
	MON	.79	. 08	7 D	25	AIt	ADHESLVE
gelya mp Sul ra $263 / \mathrm{ACRYLIC}$ PRES SESS ADH	HON	. 62	. 03	244	65	A AK	AUACSLVE
GELVA MP SOL ga 784/aCEylic pres Sens adi	MON	1.00	. 05	24H	25	AIh	ADALSLVE
GENEPGXY 185/VEFSAEID 115 AS 1/1 Bil EPOXY	GMC	. 35	.00	24H	26	AIK	ADHESLIE
				12H	66	AIR	AvHESIt
	ACC ACC	-89	.01	$1{ }_{10 \mathrm{H}}$	177	PSS	Fibat audesive
H 432 2PGX2				45M	174	PSI	
HI ${ }^{\text {HPS }} 1000$ IAMINATING FILM	MM ${ }^{\text {H }}$	-10	- 00	13	216	Aİ	Aud FLid
	HYS	. 85	-00	2 H	71		Avaciave
K-16 A/B AS 3/1 ER CONDUCTIVE EPOXY	HYS	- 22	-01	48 H	25	AIE	Cudidauhesive
K3-4238/日2-3475 AS 25/4 B4 EPOXY	HYS	- 32	. 00	24H	25	aIb	Cund adhesive
LOA4/ACT BAS AS 100/4.5 BW EPOXY	dac	. 19	.00	16H	100	Aİ	avasumbe

SECTION 1－－ADHESIVES

MATERIAL	MFk CODE	\％TML		CUKE TIME	CUHE TE EP	ATaU	Articliatiun
LCA9／act bas aS 10C／4．5 Bh MINERAL FILled GEEEN	$B A C$	． 23	$.03$	$2 \mathrm{H}_{\mathrm{K}}$	93	$A I R$	ADdLSAVE
MA 509 CONDUCTIVE SILICONE	CME	-28	09	250	25	$A \underset{I}{A}$	$\Delta \nu \mathrm{a}$
MARPOXY 95－163 SINGLE COMPONENT CU FILLED EPUXY			.01	${ }^{2} \mathrm{H}$	149 204	AIK	ADatisay
MARPOXY 95－168 A／B AS 19／1 BW CU FILLED EPOXX	KEY	－45	． 04	${ }_{2}^{16 \mathrm{H}}$	250	AIn	LUWU \triangle UHESIVE
Marpoxy 95－202 SINGLE COMPONENT CU FILLEd epoxy	KEY	． 27	． 00	2 C	149	AIE	$\triangle \sim H A S I V E$
MARPOXY 95－9 OME CCMPONENT CU FILLED EPOXX	KEX	． 63	． 06	1H	204	AIK	こund auliesive
				2 H	204	AIn	
METLBOND 227 EPGXY FILM ADHESIVE METEE－GEIP $3446 / T 9$ AS 1% CAT BH	WCN MEP	.98 .49	． 08	1H	127 93	${ }_{\text {AIK }}^{\text {A }}$	ADH r゙LLM
				16H	204	－İ	
MICROCIRCUIT TYPE ESILVER PILLED EPGXY ${ }_{\text {M }}$	TMC	1．24	． 00	16 H	150	AIM	CUND \triangle UHESIVE 2 دLDEL TAPE
MMM TAPE X -1255 KAETON／THEKMOSET ACKYLIC ADH／2 SID／E	HMM	． 93	.07	30M	130	AIm	$\angle S \triangle D E D$ TAPE
NAHMCO $3135 / 7111$ AS 1／1 BHE EPOXY	${ }^{\mathrm{HCN}}$	． 59	0.1	24H	25	AIn	－Liducivec
NOA 60 OPTICAL A LLIESVE／F 5 MIN UV EXP	NOR	－ 90	－01	1 H	125	A Ik	UKI CEGENT
NODE BOND EXE－10176 LX－125 THEBHOSET ADH／F	$\triangle \mathrm{CC}$	－ 61	． 00	30.4	25	A IM	ADHESIVE
NODE BCND GG－288－8 BATCH 108	Acc	． 57	． 04	30 M	25	AIM	A Wacbe Ve
				$1{ }^{14}$	177	AIk AIK	
P－61 SILICA FILLEL EPUXX	AEC	－31	.04	2 H	100	AIn	AUASSLVE
PJLYSET EPC 68 bLUE EPOXY POUDER	HNC	． 25	.03	2 CH	160	Aİ	
				20 H	94	AIM	
PR 1660 A／B AS 11．5／100 BW POLYURETHANE FILM	PRC	． 86	.01	16 H	100	A I	ADri SLVE
¢R 1660 L A／B／CAB－O－SIL M－5 AS $25 / 100 / 8$ W／PGMT／DEFOAM	PRC	－81	－ 01	14 D	25	AIH	A Wd $二 ⿺ 𠃊 ⿴ 囗 十$
PR 1710 ADHESIVE FCR VITON A	PRC	． 38	.01	16 H	231	AIH	ADUESさVE
PS 18 ACRYIIC CEMEAT		－73	－00	72 H	20	AIM	
PYRALUX HA CLOTH SUPPORT／ACRYLIC FILH ADH－AMBER	DJP	－20	． 01	1H	204 154	A $1 /$ A a	FLCE ADIESIVE
PYRALUX 3249－87 CLCTH SUPPORTED EILM ADHESIVE	MCG	． 31	－04	7 D	25	${ }_{\text {AIS }}$	CALA ADSESTVE
H－1500 ONE COMPONENT ELEC COND SILICUNE LOT O13－058	${ }_{M C G}$	． 45	－ 08				
R－1500 ONE COMPONENT ELEC COND SILICONE LOT 013－087	MCG	． 45	－ 07				A u a－Scalant
R－1500 ONE COMPONEAT ELEC COND SILICONE LOT U13－087	MCG	－ 39	－ 07	7 D	25	AIk	ADrascalans
R－2500 A／E AS 10／1 BW CLEAR SILICONE LOT 014－034	MCG	－ 27	． 04				Aun－PudTING
ER－2500 A／B AS 10\％1 BW CLEAE SILICONE LOT 014－034	$\xrightarrow{\mathrm{MCG}}$	－ 35	－85	7 D	25	AId	ADH－PUITIMG
R－2500 A／E AS 10／1 BW CLEAR SILICONE LOT 298	$\mathrm{HCG}^{\text {a }}$	－ 29	－07	70	25	A18	
$\mathrm{R}-2510$ 0．5 5 BW CAT WHITE SILICONE LQT 295	ACG	－ 37	－ 03				Auntilv
	MCG	－ 59	－03	7 D	25	${ }_{\text {A In }}^{\text {I }}$	AUHESLYE
	${ }_{\text {MCG }}$.28 .42	． 07	7 D	25	A If	
H－2520 0． 5% BH CAT WHITE SILICONE LOT 297	$\triangle \mathrm{MCG}$	－44	－ 07	7 D	25	A Is	A Dd CS $\mathrm{S}^{\text {de }}$
E－2560 0.5% BW CAT RED CONT YOLATILITY SILICOAE	MCG	－ 35	－ 02	7 D	25	AIn	ADA－YUTTING
R－2566 0．5\％BW CAT RED SILICGNE LOT 281	${ }^{\mathrm{MCG}}$	－ 31	－ 03				ADA－pURTNG
R－2566 0－5\％Bi CAT KED SIL ICONE LOT 281	${ }_{4} \mathrm{CG}$	－ 30	． 03	7 D	25	A If	
	${ }_{\square} \mathrm{MCG}$	－63	－06	7 D	25	A Ib	LUA－pULTING
R－2567 0．5\％BL CAT CLEAB SILICONE	MCG	－62	.05	7 D	25	AIk	Auticilve

SECTION 1 -- adeESIVES

Materical	MFR CODE	\$T ML	xCvCs	$\begin{aligned} & \text { CORE } \\ & \text { TIME } \end{aligned}$	$\begin{gathered} \text { CUEE } \\ \text { TEAP } \end{gathered}$	A IMOS	APRLICAIICN
R-2567 0. 5 页 BH CAT CIEAR SILICUNE LOT 300	MCG	41	02				
Q-2567 0. 5 ¢ B CAT CLEAR SILICONE LOT 300	${ }_{M C G}$	- 31	- 0	7 7	25	AIH	ADUESSVE
	${ }_{H C G}^{\text {MCG }}$	-38	.07	7 D	25 25	AIN	ADHESIVE
R-2568 . 5% LY CAI RED SILICONE LOT 3O1(KERUN 12688)	HCG	- 12	.03	7 D 24	25	A Id	AUnsSiVE
RELIABOND 7115 CLOTH SUPPORT EPOXY PILM	RMC	-96	. 06	$1{ }^{1}$	121	PSi	rLıA A LHESIVE
	RES	-67	. 03	10 M	160	A İ	ADAESLVE
RESYAi 30-1215 PRESSUEESENSITIVE ACKYLIC ADHESIVEX	NSES	-82	-031	10 C	160	${ }_{\text {AIS }}^{\text {A }}$	ADdesive
				2 H	66	AIm	
kioplea N-619 pees Sens acrylic adh/foil Sanduich	ROH	- 51	. 00	30 M	25	AIG	ADHCSive
RIV 142 ONE COMPCNENT UHITE SILICONE	GEC	- 21	. 01	$1 H$ 60	70 25	AIA A Li	and-StaLant
RIV 142 ONE COMPCNENI WHITE SILICONE	GEC	. 24	. 00	7 7	25	AIE	AUHGSLVE
ETV 500/T-12 AS 0.1\% T-12 Silicone Lot JM 107	GEC	. 228	. 004	70 150 D	25	Aİ	ADUESIVE Aunesive
				24 H	125	E-6	
BIV $200 / 577 / \mathrm{T}-12 \mathrm{AS} \mathrm{1/9/0.5} \mathrm{\%} \mathrm{BW} \mathrm{SILICQNE}$	GEC	. 45	. 08	14 D 6 D	25	AIbib	
				10 D	25	AIE	
RIV 5060.07% Bh CAT SILICONE	GEC	- 12	. 00	7 7	25	A $\frac{1}{\text { a }}$	ADHESLVE
KIV 5660.08% BH CAT SILICONE	GEC	.11	.01	$7{ }^{70}$	25	AIt	
RIV 5600.09% HE CAT SILICONE	GEC	.10	-01	7 D	25	AIE	Abacislve
RIV 5060.1% BE CAI SILICONE	GEC	-10	-02	7 D	25	AIL	adat
ETV 566 0.1\% B. CAT SILICONE LOT BH164/Ad102	GEC	$\bullet 10$	-02	7 D	25	AIL	ADJeSive
QГV 5660.1 P BL CAI SILICONE LOT JB 133	GEC	- 08	- 00	7 7	25	AIE	ADUESI HE
RTV 5060.17 BE CAT SILICONE LOT KA 136	GEC	-13	-00	7 D	25	AIK	ADdesiyE
	GEC	-13	.001	7 7	88	${ }_{\text {A }}^{\text {A }}$ Ia	ADAESIVE
QIV 5660.1% BM CAI SILICONEJGE SS4 155 PRIM/SANDHICH	GEC	-13	- 01	4 H	80	AIf	ADacStVE
RIV $5600.3{ }^{\text {O }}$ EA CAI SILICONE	GEC	- 34	. 00	24 H	25	Aİ	
EIV 566 O.78 BH CAT SILICONE	GEC	-36	-01	24	2	ain	gucincu-ade
RTY $5670.5 \% \mathrm{Bi} \mathrm{CaI} \mathrm{SILICONE}$	GEC	$\bullet 51$	-02	5D	25	AIE	PuTtum-ADH
KTY 5680.13 B B C CAT SILICONE	GEC	- 10	. 01	7 7	25	AIt	addestye
FIV 615 A/E AS 10/1 EEDEVOL LOT CB237 Batce 3	GSC	- 10	. 04	7 D	25	AIE	abassive
	HYS	.85	-03	24 H	25	A ${ }^{\text {c }}$	ADGCSI VE
	HMS	.98	-02	$2{ }^{2} 4 \mathrm{H}$	20	AIM	ADGESAVE
SOOTCHWELD 1838 E/A AS $1 / 1$ BW EPOXY	MMM	-65	-03	24 H	25	AIk	ada-puit Ting
SCOTCHWELD 2214 ED ALUK FILLED EPOXY	BMG	-48	- 05	400	121	AIm	Cuaj adatsive
SGOTCHMELD 2214 bIEH TEMP ALUM F ILL BU EPUXY	Mig	-45	-0	$1{ }^{1}$	121	AIn	CUNU ADHESIVE
SOOTCHWELD 2214 NGF UNPILLED EPOXY	M M G	. 77	. 02	$1{ }^{16}$	121	Aİ	CDHESIVE
S COTCHEELD 2216 B/A AS 5/7 BW	HMM	76	.03	16 H	25	AIK	ADAESiVE
SCOTCHWEL D 2210 SAADWICHED BETWEEN ALUMINUM	AMA		. 02	248	100	A Lic	
SJLITHANE $113 / 300 / T I P A$ AS 100/51/4.5 Bh FORMULA 10	TCC	- 36	-02	70	23	AIK	$A D A E S I V E$
SPAKING CPND ELUE SOLITHANE 113/300 base	IDE	-43	. 06	70	25	AIH	STAAING CEAD
STYCAST $1263 / 31$ AS $100 / 3$ BW EPOXY	EMC	- 33	. 04	16 H	107	AIn	ADHESIVE
STYYCAST $2651 / C A T$ 11 AS $100 / 8$ bi blach EPGXY	EMC	-83	-01	3 H 18 D	100	${ }_{\text {A }} \mathrm{LK}$	ADHESLVE
STYCAST 2651 MG/CAT 9 AS 100/6.5 Bh BLACK EPOXY	EMC	-38	. 00	7 D	25	A1\%	ADGUSIVE
STYCAST $2850 \mathrm{FT} / 11$ as 100/4.5 Bh EPGXY	EHC	-38	.01	12 H	85	AIa	ADatsare

MATERIAL	MFB CODE	\%TML	SCVCH	CUKE TIME	CURE TEDP	ATHUS	ALrıACATION
STYCAST $2850 \mathrm{FL} / 24 \mathrm{LV}$ AS $100 / 7 \mathrm{BW}$ EPOXY	Eac	39	- 00	$\begin{aligned} & 24 \mathrm{H} \\ & 72 \mathrm{H} \end{aligned}$	25	AIn	ADAL Sis VE
STYCAST $2850 \mathrm{GL} / 9 \mathrm{AS} 10 / 0.3 \mathrm{BW}$ EPUXY	EMC	- 33	-00	7 D	25	AIa	
STICAST 2850 Aİ 11 AS 100/2.7 DM BLUE EPUXY	EMC	- 52	.03	24 H	74	A İ	Audesive
	EMC	- 52	-02	24 H	25	Aİ	A NucSive
SYLGAdD 184 A/E AS 10/1 BH DEVOL LOT GBOS3274 BATCH1	GSC	- 39	-01	7 D	25	AId	A UatcSive
	TEC	. 02	-00	484 306	121	E-S	Cudu ADEESIVE
TRA-BCND 2151 THFK COND EPOXY BIPAX KIT	TRA	- 65	.02	72a	25	AIK	CuasらuyE
IRA-BCND 2248 ELIXCThOPIC HI-TEMPEPUXY EIPAX KIT	TKA	$: 72$	- 01	16 H	25	${ }^{\text {a }} \mathrm{If}$	a LrasivE
				2 H	05	AIA	
UNISEA C-429-2 SILVEA PILLED THIXOTRUPLC EyOXY	AXC	- 19	.01	${ }^{2 \mathrm{H}} \mathrm{OH}$	90	${ }^{\text {A }} \mathrm{In}$	Cux adHESIVE
UNISET C-84J SLLVEG FILLED EROXY	AKC	.32	-00	30 L	150	AIM	Cuad adhesive
USISET C-840 SILVEh KILLED EPOXY ONE COMEQNEAT	AMC	.61	- 00	${ }^{3} \mathrm{H}$	125	AIn	Cuau adiesive
UNISET C-OSO SILVEF FILLED EPOXY	AMC	- 14	-00	304	190	AIN	Cudu a HiESIVE
UNISER C-850-4 SIL UEG EILLED EPUXY ONE PART	AMC	.43	-01	${ }_{1}{ }_{\text {H }}$	125	AIa	Cudu adresive
UNISET C-929-49 SIIVEK KILLED EPOXY	ABC	-31	-00	304	150	AIa	
UNISET C-940-1 SILVEE EILLED RULYIKIDE	\triangle AC	. 06	- 00	104 10 H	170	AIta	Cund idSEESIVE
UNISET ©゙-940-1 SILYEF FILLED 2OLYIMIDE	ABC	. 02	- 00	10 H	170 170	A Lu	
UNISET C-940-4 ONE COMPONENT SILVEK ELLL L D POLYIMLDE	AMC:	. 0.8	. 00	3014 10 cl	270 170	AIn	COAL ADHESIVE
				10 H	270	A In	
UNISEL ME-84S TLEERAL COND ADHESIVE OLIVEGGRLEN	AMC	-30	.01	1 H	125	A 1 a	Incag Cond adh
	AMC	. 26	. 02	30 M	270	AIK	ChEMA LOND ADH
	AMC	-48	-04	2 H	125	a IK_{4}	Thgia cond ADH
URALANE 5753 A/E/ALUMINA AS 1/5/3 BW	FPI	. 73	. 03	14H	58	A In	ADdSSiVE
XA-3476 CNE COMECSENT GXAY EPOXY	MMM	- 28	. 04	${ }_{1}{ }^{\text {H }}$	$1<5$	AIn	Avasidye
X:9-G710/H2 3561 AS 100/26 BW EPGXY	HYS	- 90	. 02	241	25	A In	Avdesive
X1-2561 A/E ÁS 10, 0. 2 BW CLEAR SILICONE COATING X3-6022/CAT 6060 AS 10/1 BW SLLICUNE/FHLAEK DC92-023	DCC DCC	10 .35	. 00	14 D 14	25 25	AIn	CUMr GUAT AUHaS\&VE
X3-6092 (U6-1125) CNE PAET WHITE SLLICONE 2 Y-663 THERLOPOXY AIH ONE COMPONENT	${ }_{\text {STY }}^{\text {DCC }}$.17 .40	.01 .08	34 H 1 H	25 25 177	E-2	ADuicilve ADHESIVE

SECTION 2 -- CABLE INSULATION SHBINK TUBING

SECTION 2 －－CABLE LASULATLON SHRINK TUBING

Matefilal	MFH CODE	WTML	SCVCM	CURE	$\begin{gathered} \text { CURE } \\ \text { TEME } \end{gathered}$	ataus	arrillatica
RAYCEEM POLYALKENE WIRE INSULATICN YELLOX TYPE 44	RCC	－ 75	－03				Whas taSJi
KAYCHEM POLYALKENE HIGE GACIATION CEUSSLINKEE	RCC	－34	.07				W1at insul
BAYCHEM POLYALYLEAE HIRE 88B0111－20－9 HHITE	KCC	－15	－ 01				WIRE AMSUL
BAYCEEM ECLYAEYLENE WIRE 88BU811－20－9 GEAY	HCC	.14 .46	－00				WHaE＋aSUL
BAYCEEM SPEC 44 WIEE INSUL LOT J0408297704 INNER	BCC	.71	． 05				14凶心 1 MSJi
EAYCHEM SPEC 44 WIEE 1 NSUL LOT J 0408297704 OUSER	ECC	－18	－02				miae lasua
	$\mathrm{BCC}_{8 \mathrm{CC}}$	． 64	． 04				－1EE 1 NSUL
RAYCHEM SPEC 44 WIEE INSUL LOT J 1102067911 INAER	RCC	． 66	－04				－LaE AMSUL
RAYCEEM SPEC 44 HiEE INSUL LOT J 1102007911 OUTER	HCC	． 15	.02				－AKE 1NSUL
RAYCEEM SPEC 44 HIEE INSUL LOT J 1105187913 INNER	hCC	－ 68	－03				－14c 1aSUi
RAYCEEM SPEC 44 WIEE LNSUL LOT J 1105187913 OUTER	HCC	． 22	.04				made ansul
RAYCHEM SPEC 44 bibe INSUL LUT PJ0401127801	RCC	． 67	.04				－ 1 at 10 SUL
RAYCHEM SPEC 44 WIEE INSUL LOT PJO511107814	RCC	－65	． 05				－1KE 4 MSU̇
BAYCAEM SPEC 44 HIEE INSUL LUT PJ0602278014	RCC	－ 26	． 04				＊LaE anSul
RAYCEEM SPEC 44 WIEE INSUL HEITE LOT PJUSU 157909	$\mathrm{RCC}^{\mathrm{RCC}}$	－ 29	． 05				WLAE LASUL
RAYCHEM SPEC 44／0417 SPACEGE MHITE	RCC	－ 19	－0 0				Wlat LNSULO
RAYCBEG SPLC $44 / 0411-20$ SPACE GG OUTER INS HHITE	KCC	.77	.03				WLGE A SSUL
RAYCEEK SPEC $44 / 0411-20 X$ SP GR INS H／O BENCOPGENONE	HCC	－26	－ 42				－1くx aSUL
RAYCHEM SPEC 44／0414－24－9 WHITE WIEE INSUL	RCC	－65	． 05				Wike insul
RAYCHEH SPEC 44／1441－24 SEACE GR OUTER INS WAITE	RCC RCC	． 13	． 01				diKl anSul
HAYCHEM SPEC $44 / 2431-22-0 / 1 / 9-9$ COLOK CODE INSUL	RCC	.46	． 05				－has lasul
QAYCHEM SPEC $44 / 2431-22-0 / 1 / 9-9$ WHITE UUTER SHEATH	HCC	－ 15	.34				Wlat insui
	RCC	－ 22	－00				－Liactasju
QAYCEEM SPEC 88 ECIY X INSULATION	HCC	． 80	－00				
REATEK GLO－135 WHITE PULYULEFIN SHEIWK TUBING	RTC	－49	－ 01	0.5 M	135	H Lu	SHELMK TUEING
RJ 304／U CABLE INSOL PTFL CUTER COVEKING ONLY	TI目	． 01	． 00				Cades Insul
RI 1146 BLACK VITCN SHEINK TUBING－GEAT GUN SHRINK	$\mathrm{HCC}^{\text {che }}$	－ 37	.07				Saxd Na TUBING
SPACEPOLYOLEPIN TYPE 702 ELACK	GEC	P .56 .53	． 03	2411	125	E－7	Wancitus SuL
STW 0474 WHITE SILICONE WIRE INSUL	STC	－ 10	－00	900	204	A ik	LasudaliUN
SURLYN A HIEE INSULATION	DUP	－ 28	． 03				W¢HE \rightarrow NSU
SURLYN A PIRE INSULATION IN SHEET FOKA	DUP	－ 53	.06				gaijuration
TEPLCA EEPSHEINK TUBING EIT 400	${ }_{\text {A }}{ }_{\text {BRX }}$	－00	－ 00	5M	149	ALi	Sukzun TOBING
TEPLON PFA HIEE SLEEVING TE－9704 SQDIUH ETCHED	DUP	－00	－00				wince at juj
TEFLON PEA HEE SLEEVING TE－G704 UNETCHED	DUP	－ 50	－ 09				－1at 1 NSUL
TEKPIT GPO 135 ELACK POLYOLEFIN SHRINK TUBING	ETC	－ 58	－ 05	SM	121	A IK	Snatan TUBING
TEASOLITE 4318 LE －bIGG VOLTAGE WIBE INSUL MOD TPE	CTD	－04	－ 00				mac iasul
TEE HIEE INSULATIC	MSY	－01	－00				W－AE 2 ASUL
THERAATICS 1×2－ $20-1932$ HEITE WIRE INSUL	THI	0.04	.01				WLEE 1 MSSUL
THERMATICS 3XZ－16－1929 BLACK KIRE INSUL	THI	－ 00	－00				－ 1 ¢E 1 ASUL
	TWC	－27	． 88				Wha 1 NSUL
THEBMELEC G $273{ }^{\text {C C CIL COATING }}$	BAL	－87	．02	1H	149	AIn	¢ULLL L SATLNG
THERMOTIT KYNAE CLEAR				${ }^{1 H}$	204	Alk	
THEEMOFIT H120 Y ITCN－BLACK HEAT GUN SHRINK	RCC	$\square 31$	．07	Sn	3	A	Suadin Tublug
THEhHOFIT EL 218 HEITE KYAAR／VITON HEAT GUN SHRINK	RAY	$: 24$.01				Su®imk itueing

SECTION 2 -- CABLE INSULATIQN SHRINK TUBING

Mategial	MFR CODE	\% T HL	\%CVCM	$\begin{aligned} & \text { CUhE } \\ & \text { TIME } \end{aligned}$	$\begin{aligned} & \text { CURE } \\ & \text { TEBR } \end{aligned}$	a TAOS	APrLicaticn
TIEEMOFIT ET 350 KYWAK SHEINK TUEING NATUEAL	RCC						
THEKMOFIT ET 870 ECLYULEFIN WHITE HEAT GUNSHEINK	RCC	. 67	-10	$1 / 1$	300	A La	SukANK TUBING
	RAY	. 43	- 10	15M	125	AIn	SHacka TUBING
PGEKMOFLEX HYGRALE 1200 g ibekglas Sineeve	RAX	. 00	- 00			axa	SaKiNK TUBING
TH HAGNET WIRE PCLYURETHANE COAT ING	HWS	. 06	- 08				IOSUL LEEVE
UNIGLASS 1542 FIEEEGLASS TAPE/VOLAN A FINISH/NO ADH	UNX	-0.3	-01				LAEE CUATANG
VARGLAS SPECA3074 HLASSIBERGLAS SLEEVE	VFX	. 01	-00				IMSUL SLEETE
VITON TDUINS C-6412-47	VFX DOU	- 00	-07				MLKE 1 SUL
WRE INSULATION YELLOW/EEOWN	LDD	. 63	. 00				TUBCNG
WIRE INSULATION GRFEAN FLOUKOCARBON POLYIdIDE/TFE	LicG	-28	-03				W1EL PASUL
WIGE INSULATION GEANGE MIL-H-22759/16-20	1 ICO	- 07	$\bullet .01$				-12E 1 MSUL
WIRE INSULAIION WEITELOLKOCAKBON PULYIMIDE/TFE	WLG	-19	- 01				- 1 ara 1 NSUL
WLRE INSULATIO GHITE MLL-W-22759/18-20	${ }^{160}$	-13	.00				HIHL LASUL MIES 1NSUL

section 3-- conformal coating

hatebial	$\begin{aligned} & \mathrm{MFM} \\ & \mathrm{CODE} \end{aligned}$	8TML	3 CVCM	$\begin{aligned} & \text { CURE } \\ & \text { RIME } \end{aligned}$	$\begin{aligned} & \text { CURE } \\ & \text { TE } \end{aligned}$	ataus	hnelalcation
blue coating ix 001057 LeVa flexible mod epoxy	NCI	41	. 04	1 iif 1 H	125	${ }_{\text {A }}^{\text {A }} \mathrm{I}$ 伶	cualia
conathane ce 1155/Cellosolve acetate nulticuae	CON	- 81	. 05	109 154 154	25 49	AIL	cuar cuat
DE 3140	DCC	. 16	. 06	34 78 78	60 150 25		cuaciag
D= 6-1104 JNPILLED W/UUMINESCEE 174	$\underset{\text { GSC }}{ }$. 30	-07	$7{ }_{7} 7$	25 25 25	A Ana	cumat luat
	$\bigcirc \mathrm{DCC}$	-28	-04	7 D	25	${ }_{\text {a }}^{\text {a }}$	cuar cuat
	DO:	-91	0.05	3 B	71	${ }^{4} \mathrm{Mri}^{\text {a }}$	cuaf cuat
DK-4 DRI-KOIE EPGXI POWDEE COATING	HYS	-37	-01	20 M	149		cuatiag Coatiag
djanfilm 300 Sekifs Eathel				204	149 260	AIE	
Ea 934 a/e as 100/33 Bu Gray eroxy	HYS	. 79	-01	7 7	25	${ }^{\text {A }}$ Im	Cuatial
	FPI	. 63	-03	24 H	25	A ${ }_{\text {a }}$	Audesive
EPO-TEK H73 A/BAS 10/0.3 BW EPOXY	${ }_{\text {EPK }}$	-43	-01	30 C	100	${ }_{\text {AIK }}$	cuating
EPON 828/VEESAMIC 140 AS $50 / 50$ B E EPUXY	SHL	-91	-81	30 D 300	25	${ }_{\text {A }}^{\text {AIM }}$	CuAdimug
EPON 828/VEKSAMID 140 AS $70 / 30$ Bu EPUXY	SHL	-32	. 00	7 D	25	A 1	cuating
	TSC	:87	. 01	7D 2 l 2 H	65 25 70 175	A ${ }_{\text {A }}$	Cuatimis
EY 73/dACRON KNIT/EK 127 PGIMEh ON FOIL	$\triangle C C$. 78	. 00	${ }^{1}$	120	A IM	cuatious
FPC 461 flubrocahech/vinyl cupulymer pila	FPL	. 38	. 01	24 H 24	25	${ }_{\text {A } 14}$	conitino
Fre 461 fluorucageca/vinyl Cupolyata film	FPL	. 24	. 01	24 H	25	AId	Cuatimis
İ-2 polyugethane coat ing	EMC	. 59	. 08	248	50	${ }_{4}^{4}$ In	cune coat
ISOLEX R-6' ACLYIIC COATING SYST EM/E TSOADD FOLYESTEE/PCLYLAIDG COATING	BEE	.52 -44 .85	-02 -03 -02	${ }^{10 \mathrm{Ha}}$	185 400	${ }_{\text {A A }}^{\text {A }}$ (18	Cuating cuact cuat Tluagal BLANKET
HOBIL 173 CJATED VIALUMIALZED KA PRON	KST	-85	-02				Cudeadal blanket
OL 650 GLass hesin 40% Bu IN ETHANOL/F	${ }^{017}$	-15	-03	${ }_{1}{ }^{\text {H }}$	175	${ }_{\text {a }}^{\text {A }}$	Cuar cuar
	dYS	. 88	.03	16H	50	AIb	Cuar coat
	GCK	. 71	-01	3. 10 H 10 H 10 H	100 93 177 177		cuallag mask cuatian
polyurethane coatimg 22h one comronentatoil	ELS	. 91	. 01	$7{ }^{4}$	25	${ }_{\text {AIL }}$	cuaicmu
PR 1546i a/b as 40/100 Bn polyureteane thin film	PRC	-6 6	. 06	3d	25	Aid	cuar loat
PR 1540L a/b as 40,100 3w polyuathane thin rila	PRC	. 78	.06	244	25	AIN	cuar luat
	${ }_{\text {PTE }}$	-86	. 01	${ }_{\text {1 }}^{1664}$	65 163	AILu	$\begin{gathered} C U N F \\ C O A A T \end{gathered}$

SECIION 3 -- CONFORMAL COATING

Mateelal	MFK CODE	XTGL	XCVCM	CURE TIME	$\begin{aligned} & \text { COEE } \\ & \text { TEGP } \end{aligned}$	ATMUS	Astilcation
PKEE-ML RK 692 POLYIMIDE 15 MIN PLASH/COAT	DUP	. 96	. 00	15m	149	4 I*	CJALIMG
PYRE-HL RX 692 PCLYIMIDE 15 MIN ELASH/COAT	DUP	. 86	. 00	$30 M$ 15 M	204 149	A $\frac{1}{\text { a }}$	CuAching
				30 H	204	ALK	CUARAG
ESS 9384 COAPED VEALUHINIZED KAPTON				24 ar	149	AIs	
RES 9384 COATED VEALUHINIZED KAPTON	KST	.73 -72	-0 01	24H	50	E1-6	Tucadac Bla
R-1152 ONE COUPONEAT SILICONE-CLEAF LOT U13-166	MCG HRG	.15 .48	. .01	7 D	25	AIK	cuar cuat CUNF CUAT
BESISTOR COATING IYRE 200 RLAT BLACK/E	THC	.32	-08	15 H 30 m	65 125	${ }_{\text {A }}^{\text {A }} \mathrm{IL}$	CudF cuat
RIV 511/T-12 AS 0.5\% T-12 By SILICOnE	GEC	. 09	.00	30 H 30	200	A ${ }_{\text {A }}$	cuations
	GSC	- 19	. 07	16 H	177	或家	coating
RCV 615 A/B AS $10 / 1$ BW DEVOL AT 125 C SCOTCHCAST $281 / 282$ EPOXY PORMULATION	GSC	.19 .37	. 07	7 D 4 7	25 120	${ }_{\text {AIA }}$ I	cudir cuat
SOLITHANE 113/RICIAOLEY ALCOHOL FORHULA 25	${ }_{T C C}$	- 59	. 01	7 7	250	${ }_{\text {A }}^{\text {A }}$ In	CuAPLNG
SOLITHANE $113 / 300$ AS $100 / 100$ BU FOBMULA 4	TCC	- 30	-03	7 D	25	AIA	cudr coat
SJLITHANE 113/300 AS $100 / 73$ B P FOKAULA 1	TCC	. 32	. 04	20 H	70 55	AIn	Cuar LuAT
SJLITHANE 113/300/CALCAPLUOR WHITE/T-12/HIBK	TCC	. 57	. 04	${ }_{5}$	54	AIK	cour cuat
SJLITHANE 113/300/EH-330 AS 100/73/1 BL PORMULA 21	TCC	. 56	.05	7 D	25	A1k	Cuar Coat
SOLITHANE 113/300/EUMISEAL THINNER 521	${ }^{\text {TCC }}$. 32	. 02	$2{ }^{2} \mathrm{H}$	93	AIn	cuathag
SOLITHANE $113 / 300 / \mathrm{L}$ / METHYL MURPHOLINE POEMULA 23	${ }_{T} \mathrm{CC}$	-88	- 00	7 D	25	AIK	Cudr buat
SOLITHANE 113/300/GUADROL FORMULA 26	TCC	-38	-00	70	25	AIn	Cunt cuat
SOLITHANE 113/300/1-12/CALCAFLUOR BT/DB CASTOR OLL	SLK	$\square 37$	- 02	3 H	60	AIK	conct cuat
SOLITHANE 113/300/T-12/SILFLAKE 135/HEXAME	$\mathrm{TCC}^{\text {c }}$	- 62	- 00	7 D	23	AIN	Cudd junf coat
SOLITHANE $113 / 300 /$ TOLUENE AS $100 / 73$ UH/173 BV	TCC	- 50	. 03	24 H	55	${ }_{\text {A }} \mathrm{IK}$	cuar cuat
	TCC	. 43	. 034	7 D 24	25	A IK	çuar cuat
SJLITHANE 113/328/EL.EXRICIN 9 FOBMULA 29 (TCC	. 60	-03	$7{ }^{41}$	25	A $1 \times$	cuar cuat
SR 165/AICA/IAON OXIDE/ALUH SILICATE COATING	DEX	- 30	. 00	12 a	300	AIK	cuadinu
STYCAST $2850 \mathrm{KI} / 241 \mathrm{~V}$ AS $25 / 1$ B ${ }^{\text {S }}$ BLUE EPOXY	EMC	. 65	-09	7 D	25	A İx	cuating
TEPLOA TFE/4966/ALUA KAPTON/Y966 COHPOSITE TAPE	GTP	-57	.01				CuEAPCAL CONTEOL
				2 H	60	AIE	cuap cgat
URALANE 5750 A/B AS 18/100 Bw	FPI	- 83	.03	1 H	25	AIE	Cunr COAT
URALANE 5750 A/b AS 4/25 Bu URET HANE	FPI	. 45	.01	3 H 9 9	65 60	AIt	Cunc cuat
URALANE 5753 LV A B AS $1 / 55$ BH POL YUEETHANE	FPI	- 62	.01	$7{ }^{7}$	25	AIk	cuat coat
URALAKE 5753 LV A/BASS $1 / 5$ BE POLYURETHANE	${ }_{\text {FPAK }}$. 60	. 01	24 H	60 20	AIt	Cunt cuat
X1-2561 A/B AS 10/1 BH CLEAR SILICORE COATING	DCC	-19	0.03	7D	25	AIA	cour couat
X1-2561 A/B AJ 10/1 bil Clear SILICONE COATING	DCC	. 06	. 03	${ }^{14} 1{ }^{10}$	100 25	${ }_{\text {A }}^{\text {A }}$ In	Subir LuA

SECTION $4-\infty$ ELECTRICAL COMPONENIS

Section 4 -- electrical components

material	$\begin{aligned} & \mathrm{MFB} \\ & \mathrm{CODE} \end{aligned}$	\%TML	\%craca	$\begin{aligned} & \text { CURE } \\ & \text { TIME } \end{aligned}$	$\begin{aligned} & \text { CURE } \\ & \text { TEMP } \end{aligned}$	4 HiO	arphication
DEOTSCH CONS ECTCR 3544 E BE64-212P SILICONE INSERT	DEU	16	. 02				
DEJTSCCH CTJ SEEAIES TERGINAL BLOCK GED SILICONE ONLY	DEU	-24	03				TAASAMAL BLOCh
	${ }_{\text {acm }}$	-19	-01				TGBMIAAL ELOCK
	EMC	-70	-07	2 dH	100	ain	ADOUMOAKT
ELCOSORB CR-S ${ }^{\text {E C }}$	EMC	-29	. 09	$3{ }^{3}$	80	Aİ	A3دUADAAT
E ${ }^{\text {c }}$	EMC	- 20	-08			AIn	AbSukbant
EMECTROLUALSESESENT LAMP-GRIMES-YRLLO*	${ }_{\text {MRG }}$		-01				LAMP
EMA 7085 IkON	SBI	$\because 23$	-. 00				DAELECTA RIC
EMA 8190 IKON	SbI	-21	-00				HCLECTRIC
GORETTEMP GTS 810 ETFE RIBBO	${ }_{\text {WMP }}^{\text {AM }}$	-14	. 02				fisceilding
GROMMET FR GOSHEN FUBAEA SILICONE CPND 1817	SRC	- 34	-09				gavamet
HEATER - CUL USA MAIL COX SEEC 4500 Elastomer	cox	. 10	-00	${ }_{8}^{24 H}$	125	Liod	HiATEL
HEATINGTAPE CLAYECE in LAdS A-16-2 DC 282 SIliciconeft	Cix	$\because 10$	-01	${ }_{2}^{8}{ }_{2}$	205	${ }_{\text {A }}^{\text {A }}$	
HEATING TAPE CLAYECRN LABS F-16-2X DC 282 SILICONE	${ }_{\text {CLI }}$	$\begin{array}{r}.15 \\ .07 \\ \hline\end{array}$	-08	30 H 48 B	150 155	E-2	aciat fape
	ROS	: 44	.02			E-2	DSAP 1 APE
insultek 445 Uiethane dielectric	IER	-38	.01	1 H	163	A In	DEELELTRIC
ITT CONNECTJE 7929 DBii-258 BLUE/GREBN MGID I SSEHT	ITP	. 55	-01				CONA 4050 L
	${ }_{\text {HIR }}$	- 18	.09	5H	171	E-	CuAA $1 \times$ SUL
	CAE	-91	-03				INSUEATCO
PA 61 CERAML C	ELR	. 00	-00				IUSULATICN
PLASTIC PART HOTCECLA CMOS 14044 DTPD 7731	HOT	. 25	-. 01				MULD CEND
PLASTIC PAKT HOTCECLA 74 LSO O DTD 7732	mot	-20	.01				MULD Ceki
	MOT	-27	-00				auti cend
PLASTIC PALT NATI SEKICONDUCTOR CEUS 4044 DTV 727	NSE	-26	-00				BULJ
PLASTIC PART EACA CROS 4011 DTD 723	RCA	-27	-01				HuLu CEAD
PLASTIC PART SIGXETICS 74 LSOO DTD 7733	${ }_{\text {SCA }}$	- 26	-02				MULD
PLASTTC PART SIEGETICS 74 LS 174 DTD 7723		-31	-02				MULD
PLASTIC FAET	TII	-24	-00				HULD CPAD
POLYGGNSG-101 CGMifosite Glass/Se 319 Silicuae	POi	-06	-02	10k	454	A Ia	anSulation
	${ }_{\text {SPR }}$	-10	-02				INSuLa PIDN
SCOTCHFLEX SOCKET CONNECHOB GLASS HEIWF PQLYESTEA	man	$\bigcirc 19$	-04				CuNACitor
	${ }_{\text {EFP }}$. 08	- 03				HEATcit
STYCAST 日i K 500 DIELECTRIC	EMC	- 47	-04				HEATCLTM
TEFELON PTFE COHDUCTOR GIBBBON CABLE INSULATION	${ }_{\text {MPC }} \mathrm{ALG}$	-00	-00				
VIBRO-FLC E-301 EECXY POHDER CUATING	${ }_{\text {APC }}$:87	:08	306	180	AIn	Pada cuating

SECTION 5- ELECTKICAL SHLELDS

chos
Faxis
Su刀
SECTION 5－－ELEECTRICAL SHIELDS
SECTION 6 －－FILMS SHEET AATERIALS

material	MFE CUDE	杖 HL	\％CVCM	$\begin{aligned} & \text { CURE } \\ & \text { TIME } \end{aligned}$	$\begin{aligned} & \text { COAE } \\ & \text { TEAR } \end{aligned}$	ATinus	AKPLICATICN
	ACM	－13	． 01				F16ix
AこLAR 33C CiEAK FILM POLYCHLOROTEIFLUQROETHYLENE	$\mathrm{ACM}^{\text {a }}$	$\bullet 11$.01				P164
ACEYLITE ACEYLIC SIEET	ACC	－ 51	． 05				8ヵ凶u゙CLJkAL
ANTI STATIC FILM 2100	MMM	． 32	． 05				P1La
AR MALON FILH LGO350 BLACK TFE ON GLASS EABRIC	DUP	． 09	－ 01				HEal inarkier
APMALUN FILA TG4O3C NEUTRAL TEPLON GA GLASS FABRIC	DUP	－05	． 01				dcai nakEIER
BAVICK II METHYL METHACRYLATE－MCDIFIED 2530	CRY	． 59	． 00				んíns incuLation
CELLULOSEACETATE LUTYRATE 2U0 MICRON FLEMPUEPLE	FAE	－ 95	.01				Fiba
CHO－THENM 1661 TEESM COND SHEET HEITE SELICONE	CHO	.76	－ 08				cibian comifiol
CHO－THERM 1661 TEEEM COND SHEET WHITL SILICOUE	CHO	－10	． 06	24d	175	AIn	taska LONTROL
CHO－THERM 1663 TEEEA COND SHEET WHITE SILICONE	CHO	－ 26	－ 45	24 H	175	A If	LHEAG LUNTEUL
CHO－THERG 1671 THERM COND SHEET WHITE SILICONE	$\mathrm{CHO}_{\mathrm{CHO}}$	－ 70	.07				TALAC GNEROL
CHO－THERM 1671 TEEFA COND SHEET MHITE SILLCONE	$\mathrm{CHO}^{\text {che }}$	－ 11	－ 05	24 H	175	${ }_{\text {a }}^{\text {In }}$	TEKA CONTHCL
CHO－THER 1673 TEEKM COND SHEET GREEN SILLCONE	CHO	－ 12	－01	24 H	175	AIn	THEAM CONTRCL
CHO－THERH 167J TEEFA COND SHEET WHITE FLUOROSILICONE	CHO	． 51	.01				CHEHM $50 N H E C L$
COADULOA AHTISTATIC FILH 2 HIL B LACK	PVL	－${ }^{\text {d }}$.03				
C NDULCN ANTISTAIIC FLLM 4 BIL BLACK	PVL	． 70	－ 02				c1L1
CONDULUN 89－7A A EIISTATIC PILM BLACK \＃9437	PVL	． 86	－02				RLLa
COVERLITE E PAEEIC 55－61811－XX HYPALUY COATED NYLON	HEE	－ 98	－ 02	72H	125	S－2	ciuna
CRONAFLEX FILM－FEOSTY	DUP	． 75	－00				PrAdSLAEENCI
CRUAAR POLYESTER FILM TRANSPARENCY	DUP	． 37	－01				PLutios
DAこEON CLCTH 302 CAKinolicn	HOB	． 05	－04				CuFh
DACEON DAYBOND Y－46－8X	HOB	． 45	－09				Tagbau
DACRGN MESH 32A	APX	． 19	． 03				mesa
DACBON MESH E2A PCIYESTEK NETTING	APX	－15	－ 00				ducau dianket
DACECN NETTING $70886-10$	$\mathrm{BEH}^{\text {BEH }}$	－19	－ 06				decituc
DACBCN POLYESTER CIOTH	BEH	－ 31	－ 4				Cover
DACECN POLYESTER HESHESTYLE 15320	SST	． 121	－00				TiEAdaL BLANKET
EA 7 POLYESTER FILEINSULATOK－FEOSTY	EAS	－ 46	－01				rich $1 a \operatorname{SJLATOA}$
ETPE EXTRUDED SHEET HI－TEHP APPLICATION	$\triangle{ }^{\text {A CM }}$	－ 08	－ 01				LuSULadiciom
ETFE O． 5 HIL PILM	${ }^{\text {ACM }}$	－17	－05				URTICHL FILH
ETFE－O MIL FILM	ACM	． 19	－ 04				U「」」CAL FILM
ETPE 10．8 JZ／YD FABKIC UNCALENDERED UNHASHED	${ }^{\text {ACH }}$	－ 62	－ 09				BLaivket
ETFEE 10．302／YD FABEIC UNCALENDERED HASTED ETOH／ACE	${ }_{\text {ACM }}$	－28	－03				BLatinct
ETPE 7． 3 OZ／YD FAEKIC UNCALENDERED WASHED ETOH／ACE	ACH	－ 21	． 07				DLeAmKet
FAIEPEENE VSOO60 ELACK VITON A SHEET	DUP	－35	． 05				Gaskel－SEAL
PAIRPRENE VS0080 ELACK VITON A S HEECT	DUP	－ 22	． 01				Gajaciostal
FLBERGLASS WOVEN RETTING STYLE 1562 LIC	STE	－ 23	－ 03				LASULAEION
FLUOEOFILM DF－1200 TEFLON FILM－ACRYLIC ADH	DIL	－19	－01				KaESS SENS PLaM
FLUOROGLAS 389－7 EERA CLUTH／PTFE COATED	DIN	－03	－01				INSuLation
G 4019 TAPEPTEE FILH／AG GETALIZED／ACBYLIC ADH／A	GTS	－ 33	－ 00				
GENCTHERM D10ธ UNPLASTICIZED PVC FILM CLEAR	AMti	－ 12	－ 00				8 \％idis
GENCTHERM HT UNPLASTICIEED PVC FILA CLEAK	ABH	－ 23	． 01				P180
GENOTHERG NTLS UAEIASTICLLED PVC FILA CLEAR	AMH	－63	． 05				$\underline{5164}$
GEHOTHERA NTLS UNPIASTICIZED PVC FILA wHITE GENOTHEEM US 1002 CNPLASTICI EDD PVC FTIM CLEAR	AMH	－38	． 05				Flia
GENOTHERM US 3003 UNPLASTICIZED EVC FILM CLEAR	ABH	－ 50	． 06				chas
GLass Cloth tape 124	FIC	． 18	－0 0				Chuait mape

MATERLAL	$\begin{aligned} & \mathrm{MFR} \\ & \mathrm{CODE} \end{aligned}$	STML	\%CVCM	$\begin{aligned} & \text { CURE } \\ & \text { TIME } \end{aligned}$	$\begin{aligned} & \text { CUGE } \\ & \text { TEGP } \end{aligned}$	ATBu	AHELICATION
GLASS CLOTE $1620-5 H A L L ~ M E V E ~$	STE		08				
GLASS FABEIC 195/50/857 SUUAKE MESH CQATED white	STE	.23	-05				CuSUUAMTION
KAPTON FEP EIL 4 40CFO22	DOP	. 25	-01	90M	302	AIn	Elia
KAPTON H FILM KEINE M/GLASS CLOTH 104	BCA	- 42	. 05	24H	150	AIK	THEMALAL CGATROL
Ki PTOA H FILH/LIMGEAVE BETA MARQUISETTE GLASS Cloth	DUP	- 73	-				CInil
KIMEOL $\mathrm{O}^{\text {GAUGGE PCLYCARBONATE }}$	KCC	-16	-00	24 H	150	A İ	InSULAZION
LEXAN 9034-112 PCEICAEBONATE LENS	GEC	:19	-01				insusiation
LI ${ }^{\text {G-13 }}$ STATIC DISSIPATIVE CURTAIN FILM - BLACK	PYL	. 68	.07				BAGSING
MAXORB SCLAK PLACK TLELON ON EABEIC	DIN	. 05	. 01				HLAT DAERIER
MYLAB IGAGING FILA M/CIRCUITHY ADESIV	SCG	- 71	- 0				THEx CONTROL
	DUP	.75	- 04				Flina
HYLAR PHOTOSENSITIVE FILM TYPE A	DUP	.59	-00				Ftom AaSERT
HORYL GFN-3-801 MOL PPO	GEC	- 03					InSuintion
NORYL-MODIFIED EFO	GEC	- 10	-00				HuSuT
ORCOPILM KN-10 KAPION/NOKEX THREAD/PULIESTER BINDER	ORC	. 92	. 02	48H	125	E-3	THEKHAL BLAMRET
P-OS POLYETEEE URETHANE FOAG WHITE H2O HASH	GTA	-91	. 04	24 H	100	Aİ	PUAG
P-65 PCLYETHEK UKETHANE FOAM HITE MENOHCLASE ASH	GTA	.12	-10	24 H	100	${ }_{\text {A }} 18$	puga
P-65 POLYETHEE UGETHANE FOAM WHITE METOH/H2O WASH	GTA	- 14	-05	24 H	100	ALs	fuad
PARASUL GT-76 LAMIAATE NYLON/MYLAR/ALUM	JSC	.72	. 08				fiohimal comtrol
PLEXIGLAS VS-100 OFIICAL	ROH	1.00	. 01				Leds
POLYCABBONATE CIFCLIT CARD GUIDE	HOH	- 57	-00				Leds
PJLYCHROME FILH 8 KL	PCR	- 64	-0				GULDE
PJLYETHYLENE FILM ANTISTATIC DF PINK	SCE	- 20	-06				F1ha
POLYETHYLENE FILM 2 HLLS ALACHON UESIN-BEANCHED	DUP	-14	-02				E10a
	PHI	. 02	-0 0				
PDLYPENCO PULYSTYEENE 6 MIL	EXX	-37	-10				FLig
PYEALUX FILM POLYIEIDE 2 MILS THICK	PPC	- 09	- 00				Simucaural
R - AS- 1200 ANTASTATIC POLYETSYLENE FILM	DUP	- 34	- 0	1H	177	A In	Flid
SAIL CLOTA ALUKIINIZED	ADL	- 43	-06				
SUELIN SB IONOMEF EILM	PIE	-40	.05				PHEGRAL CONTROL
SJRLYN 16522 MII EAGGING FILM	DUP	. 39	-09				Flali
TEDLAK COATING ON ALUMINUM	8 PC	- 14	. 05				cunatua
	DUP	- 14	-00				Fibatiou
TEPFLCN FEP INSULATION TX22-731	H76	- 02	- 00				INSULATION
TEPLCN PFA PILA SHEET TE-970	DUP	. 01	- 00				FiLid/jnEET
TEFZEL PILM 2 MIL	DUP	- 12	- 32				Fifa
TROYFELT S4-19-070-17P POLYESTER	TRO	- 10	.04				THGKHaL BLANKET
TEOYTUF 1-9.0-195 AON WOVEN DACRCN FELT HBLTE	TRU	. 25	- 08				
TROYTUF 1-9.0-195 BON WOVEN DACRCN FELT WHITE WASHED	TRO	.04	-03	67 H	95	E-b	Trickimi blasket
							CuExCub Blanket

SECTIUN 7 －－FOAHS

Material	HFE CODA	大吅边	\％CVCM	CURE TIdE	CURE TEMP	AIUUS	AYHLCLATICN
AAP－SS－H RF AbSURBER METALLIC／GRAPHITE／FOAM	AAP	－ 8	－				FUAL－UMPOSITE
ABLESIIK Be1－1／ECCCSEAEZES SI AS 55／45 BW－\＃HTE	AAC	.78	－ 00	2 H	93	A In	KUE RUAG
ASLESTIK BLI－2／ECCCSPGERES SI AS 55／45 Di－Witce	$\triangle A C$	－ 80	． 01	2 H	93	aIa	pur cluam
ABSAFIL F1200／20 FCAL／20\％GLASS PIBERS	FBh	－ 33	－ 1				Euad
AF 3015 C125690－1 HAED FOAMED EPOXY	MMM	． 88	． 017	$\underset{2}{2 H}$	177	${ }_{\text {A }}^{\text {A }} \mathrm{I} \dot{\text { a }}$	EUAGEL ADH
CONAFLEX EA－50 PCLYUELTHANE FOAM ALCUHOL WASí	BLA	． 05	． 03	8 H	100	A ${ }^{\text {d }}$	103ULAIION
CPE 17－2C POLYUKELEANE EOAM	UJC	.87	－10	1 H	120	A In	toab
CPa 17－2C polyureteane foam	UJく	－24	－10	01	80	AIA	cuati
CPR 17－2C UOLYURETEANE FOAM	UJC	－97	－09	1611	75	AIH	PUAL
D＝ 5370 SILICONE FCAM	DCC	－ 59	． 09	72 H	150	E－4	tuam
DER 661／2－PHENYLIAIDAZOLE WHETE SYNTACTIC FOAM	MOMC	． 72	． 034	$2 \mathrm{4g}$	100	AIn	EUGAa
	EMC	． 40	－09	4 4	100	AIK	Fuak naidelit
				24 H	125	E－O	
EEL 2795／HN 951 SYNTACTIC FOAM	HAC	－ 50	－02	24 d	25	A In	Puadi
ETHAFOAM WhITE	Pri	－ 47	－03				EJAL rad
ETSAFUAM 220 POLYETHYLENE FOAM 2．2\＃／CUFT	DOw	． 36	－ 03				LuSucation
ETHAFOAM 400 POLYETHYLENE FOAK $4 * C U S T$	DOw	－20	－04				insumation
ETHAFOAM 600 POLYETHYLENE FOall o\＃／CU ET	DOW	－24	． 04				fusumation
FLUOKOSILICUNE Closed cell extruded foam－Brown	INa	－12	． 03	10 H	204	A in	Fuad
FY 41 EPOXY EUAM SILVĖ－GRAY	ACC	.76	． 00	1 H	170	AIM	Aut Fuad
FJAM CEOSED CELL ECLYURETHANE MIL 220514 ETOH WASH	YOF	． 84	． 00	24H	100	AIK	ruan
FJAM ME－1－10－94－1 EOLYIMIDE	INT	． 40	． 02				Pricum uvuybe
FJA EL－2－17－52－3 FOLYIMIUE	NNT	－ 53	－0				Tusam bouver
FJaM $1702-1$ SAN THEAMALACCUSTICAL	INM	． 00	． 00	24H	$1 \angle 0$	A In	fuak
M in Santo 1835 POLYETHER－URETHANE PUAH ISUHEOP WASH	BON	.29	－ 08	1 id	25	A Ia	tuan
				21 H	100	AIk	
MONSAETO 1835 POLYETHER－URETHANE FOAM METOH WASH	HON	． 27	． 04	30 H	25	A IK	Fual
W PCO G302	nop	－ 30	． 07				fuàa
P－17 POLYORETGANE FOAM 0．062 THICK milte	GTh	－ 77	． 08				PUAG UAMPER
P－17 POLYURETAANE FOAM O．U62 THICK WHITE	GTR	． 49	－ 08	16H	100	AIL	ruas namped
P－25 PULYURETHANE FUAK OPEN CELL	GTK	－ 92	－04				funa
PORON URETHANE ECAK 4701－01－20125－1633 ALCOHOL WASH PROFIL F60／20 2GLYEROPYLENE FOAM／20\％GLASS FIBER	$\underset{\mathrm{FOH}}{\mathrm{FO}}$	－73	．05	8H	100	A If	DASEEム $\bar{r} \cup A B$
PROFIL F60／20 CGLYERUPYLENE FUAM／20\％GLASS FIBER	FBE RFC	． 10 .53	． 045	48 H	66	A Is	ruag
hr 263 POLY				24 H	100	AIE	
S＝OTO POLYESTEA－UEFTHANE FUAA－TAN $2 \times 24 \mathrm{HE}$ ETOH WASH	$\mathrm{SCL}_{\text {SCT }}$	－81	－01	24 H	100	AIn	fuad
SOOTT POLYESTEG－UEFTHANE FOAM SROWN 2X24HK ETQH WASH	$\mathrm{SCI}^{\text {SCI }}$	． 88	． 05	$2{ }_{2}^{24}$	100	AIf	fuata
SOTT POLYESTEE－URETHANE POAA 100 PPL METOH HASH	SCT	－ 09	.00	24 H	100	AIn	ruda
SEOTT POLY 5 STEK－URETUANE FOAM 60 PPI METOH WASH	SCT	－33	－ 04	24 H	100	A İ	fuad
SHUK－LOK SLE 3010 SYNTACTIC FOAM BLUETGEEEN	SLK	． 77	.03	10 H 8 8	25	AIn	tuag
				8H	121	AIn	
SKYBOND RI 7271－06 EIGID PCIYIMIDE POAM	MON	－ 31	－ 04				ruan
SKYBCND EI 7271－12 EIGID POLYIMIDE FOAG	MON	－42	－01				cuat
SKYBCND KI 7271－18 RIGID PULYIMIDE FOAM	IMN	． 28	－01				cuad
STEFANFUAM G－306 6i／CU FT WhITE	SCC	． 87	． 06	24d	25	A IE	fuas

SECTION 7 -- pOANS

SECTION 8-- GREASES LUBRICANTS

 ${ }_{8}^{E}$

$\xrightarrow{4}$
$\underset{4}{4}$

$\underset{4}{4}$

-

--ー-

 a

SECTION $10-$ LAMINATES CIhCUIT BUARDS

Material	$\begin{aligned} & \text { MF } \\ & \text { CODS } \end{aligned}$	\＄TML	\％CVCM	CUEE TIAE	$\begin{aligned} & \text { CUBE } \\ & \text { TEMP } \end{aligned}$	AIMUS	AHYLACATICN
CIFCUIT BUARD COMPCSITE NEHA G10 MICA／CE 115	RCA	48	.01				
COAST EPOXY PREPREG E101－83－108－E	CMS	.46	.01	${ }^{2} 1 \mathrm{H}$	163 149	AIn $4 I n$	AUH 5iLH
				2 H 165 M	204	AIM	
COAST EPOXY／GLASS EREYLEG FIO1－83－1PU8／20	CMS	． 29	.01	1654	163	AIn	CuAといよ 1 TE
CONVAIR GRAPGITE／EFOXX／SI203／ALUMINUM	GDC	． 54	－01				CuacuSt TE
		． 49	.01	${ }_{1}^{1.5}$	00	$\mathrm{E}_{\mathrm{E}}^{\mathrm{S}} \mathrm{S}$	ذL＇RJLiURAL
CYこOM 985－T300 GEAFHITE／EPOXY	ACL	． 57	.01	${ }^{\text {H }}$	121	－ 5	Scauclubat
E－720 EPOXY／EIEARGIASS LAMINALE－POTTING CORMS	SPI	． 54	.04	2 H	17		LAGLMATE
EPOXY FIBEGGLASS ECOM CYLINDEK	PLI	． 20	.05				LASIMAJE
FIBERITE HY－E 1076F EPGXY GRAPHITE LAMINETE	FIB	． 50	． 00	2H	177	A Iu	Latilda PE
FIBEFITE HY－E－1334A EPOXY／GRAPHILE LAYUP	FIB	－ 81	． 00	2H	177	E－3	Ladimate
FLREEAM GOO EPUXY／EIDERGLAS	TAM	－04	． 031				Lami MA TE
GOODYEAR GAAPHITE EIESK EKOXY COMPUSITE	GAC	－ 5	.04				S「ムJCIUGAL
GRAPHITE FIEEE EEINFOLCED POLYMEA HEECULES 2VO2M	HER	－． 48	－0 1	6 H	149	E－4	SL゙凶UC＇JEAL
GT 5500 COPPER $5 C I L / M Y$ LAE LAMINATE ONE SIDE	GTS	－ 0.5	． 04	，		E－4	Lathaste
GY－70／X－30 GEAPLITE EPOXY COMPOSITE	GDC	． 46	－01				Slujciubal
GY－70／5208 GRAPAITE EPOXY COAPOS LTE	WCN	． 53	－ 01	2 H	177	A In	LAGL Mate
	HEN HEX	－ 40	－09	2H	177	${ }_{\text {A }}^{\text {P }}$ IK	CALA AATE
UEXCEL E $174-120$ GLASS CLOTH／QCLYIMIDE PEE PREG 7CUEE	HEX	． 48	－00	7	171	PS1	LACAMAEE
KFL 4030 ACETAL／30才 GLASS／15\％TPE	LNP	． 26	－02				SPajctukai
KFL 4530 ACETAL／30 GLASS／15\％TFE／SILICONE	LNP	－ 35	－02				STuUCLUHAL
KL 4540 ACETAL／20\％TFE／SILICONE	LNP	． 53	． 01				－Tauciulal
LAMINATE AL－300 G3C FOLYIMIDE／GIASS－DRONN	ATL	． 63	－00				LaMi Hate
LAMINATE AL－3137 EF TYPE PLOGF H／O COPFEK	ATL	． 29	． 00				LAGL Mate
	ATL		－ 0	6日	135	${ }_{\text {A }} \mathrm{Sa}_{4}$	mail Nate
LAMINATE AS－4／19C8 EPOXY／GRAPHITE	HER	－11	． 01	2 H	1214	PSI	Lagisate
LAMINATE BL－2 EPCXY／EIBEKGLASS W／O CUPPEk	HER	a .19 .25	． 031	2H	149	PS1	Lah LAMTE
LAMINATE E33 NATUEAL TYPE GF CORLAh 5104／GLASS／FR4	FLC	． 02	.00	1H	177	PS1	Laundele
LAMINATE CE339 HMS EPOXY／GRAPHITE TUDE	FEid	． 54	.03	6 H	177	PS1	Samuciunal
LAMINATE CiC 6－8－1－3－1 KAPTON／COPPER FOLL／KAPTON	GMC	． 19	.02				Ladidate
LAMINATE CUCLAO TEELON／GLASS W／FONTIA ECO31P03 ADH	HiM	． 04	－01	45m	177	A In	LAGL NATE
LAMINATE CUSTOM IAE 60＇	HMM	－00	． 00				Lata Nate
LAMINATE COSTOM FCLY TG TEFLON／FIBERGLASS	COM	． 02	－01				LaGL NACE＇
	KOL	－43	－02				2L HOAGD
	MUA	.28 .93	－01				Lad LAATE
LABINATE EPOXY／GLASS BLUE BIL－P13949／4A MULTLLAYER	MUP	． 35	－01				EGuUAKD
LAMINATE EPOXI／GIASS UNIGLASS STYLE 181	UNI	． 30	． 00	${ }_{1}^{2 H}$	121	AIt	LaMidate
LAMINATE EPSIL AM 10 MICROWAVE SUESTRate w／O Copper	MME	． 04	－ 00			AIM	LAM\＆MAIE
LAMINATE FLEXIELE EEANTED WILING	SPA	． 13	－00				LASIMATE
LAMINATE FLG 65M 2E－11 EPOXY／FLBERGLASS／EIEE BETARD	M日a	－19	． 00				LABLNATE
LAMINATE FLG／FE－4 EC BOABD	USP	－ 32	－01				Lamb MASE
	FiLit	． 51	.01				LadLAATE

SECTION 10 -- LAMINATES CIECUIT BOARDS

	Material	MFR CODE	\$TML	${ }_{5} \mathrm{CVCM}$	$\begin{aligned} & \text { CURE } \\ & \text { TIME } \end{aligned}$	$\begin{aligned} & \text { CURE } \\ & \text { TEMR } \end{aligned}$	A T	AKLLICATION
LAMINATE	FE-4 G- 11 EPOXY/FIBERGLASS	MCA	31	01				
LAMINATE	P161-83-1F08/20 EPOXY/FIBERGLASS	HEX	- 27	. 00				Laml Aat
LAMINATE	G-10 BLACK EPOXY FIBERGLASS	ATL	- 30	-01				LaMA MALE
LAMINATE	G-10 EPCXI/FIBER GLASS	HCA	. 48	. 01				LAn¢ MATE
LABINATE	G-10 TO MIL P13949-NORPLEX	UOP	- 93	.01				Lataldat
LAMINATE	G-10 465 EPOXY/FIEEAGLASS	SYN	-47	. 03				Latha Nate
LAMINATE	G-11 GEC-111 EPOXY/GIBEHGLASS	SYN	. 59	-00				Leald
LAMINATE	GE 11 EECXY/FIBERGLASS	GEC	.43	-01				Ladinate
LABINATE	GEE HIL P 18117 BLUE EPOXY/GLASS	GEC	- 33	-02				Lamidate
LAMINATE	GEE TY MIL P18177 EPOXY/FIBEEGLASS	GEC	- 52	-00				
LAMINATE	GEE-EK 4300 EESIN EPOXY/FI BERGLASS - ELACK	PFP	. 61	- 01				PUTiANS COP
LAMINATE		WEC	-14	.01				Latidate
LAHINATE	HY1534/934 GEAPHITE EPOXY TRALE REIARDANT	GDC	- 29	.00	85M	121	$\underline{1}$ SI	Ladiasact
LAMLNATE	K 6098 TEFLON/FIBERGLASS/3M	MMM	.01	. 00	2H	177	AIn	
LAGINATE	K-6098 M/AF 46 PILM ADHESIVE	HMM	.05	.01	90 M	166	PS1	Latinat
LAMINATE	KAPTON ENCAPSOLATED COPPER	DUP	. 39	-01				Ladisict
LAMINATE	MICAPLY EG 802 TYPE GP w/O COPPEE	${ }^{\text {MCA }}$	- 41	. 02	90M	171	PSI	Laminat
LAMINATE		${ }_{\text {MCA }}$	-91	-01				LAXINATE
Lagidate	HICAPLY $102-11$ EPOXY/GLASS PGE-PREG 8 LAYER	HCA	-38	-03				CGBOAD
daminate	MICAPIY 102-11/G-10 EPOXY/GLASS	WEC	± 44	-00	80 M	163	P SI	LaMi NAME
LAMINATE		MCA	.39	. 02	$1{ }^{1}$	188	PSI	LAMANAIE
LAMINATE	MICAPLY $818 \mathrm{~T} / 0$ COPPER	-CA	- 36	-00				Lami mat
LAMI日ATE	MICARTA $65 M 50-22$ LIGHT GREEN	WEC	- 28	.00				Ladi ${ }^{\text {duc }}$
LAMINATE	MULTI-LAYER PER MIL P55617 P556.36 P13949	TCI	. 32	- 00				Ladidale
LAMINATE		KOL	-63	- 1				PC BUAXD
LAGINATE	M-205 EFOXY/GLASS PL-GF PR-4 \#/0 COPPER	${ }^{\mathrm{HCO}}$	-25	. 00				Ladinate
LAMINATE	N-3 105 RESIN EICH PR EQOXY/GLASS H/O COPPER	NCO	- 30	-0 0				Laghante
LAMINATE	N-4105 EPCXY/GLASS FLEXIBLE H/0 COPPER	HCO	- 29	- 00				LAGIMATE
LAMINATE	NARMCO $3203-12 U$ EPOXY/GLASS	$\omega \mathrm{CN}$	-33	-0	90 M			Lads Ma's
LAMINATE	NARMCO 3203-1581 EPOYY/GLASS	WCN	- 32	.01	90 n	127	9SI	Ladi Nat's
LAMINATE	NARMCO 8517 EPOXY/GIASS	WCN	-47	- 08				Lam NALE
LAMINATE	NEHA G-10 GEC 500 EPOXY/FIBER GL.ASS	SXN	- 38	- 0				LAGINADE
Laginate	NEMA G10 HEST1 NGHOUSE 6 5427-S-12 DOCCOPPER	SEC	-11	-00				LAMI MATE
LAGINATE	NEMA G1O WESTINGHOUSE 65127-S-12 W/COPPER	WEC	. 06	.01				Laminate
Laginate	NEMA G7 GIASS FABEIC/SILICONE	SYN	0.9	-02				Ladidat
LAMINATE	NEM A/FR-4 $/$ SR 1000 SOLDER GESIST EILH	AUG	-12	. 02	90 M		AId	LadidaLE/beSIST
LAMINATE	NERA/FR-4 H/SR1000 SOLDER BESIST/IR CURE	AUG	- 14	.01	5M	177	AIB	
LAMINATE	NVF FLAHE RETARDANT RED MARKIHG	NVE	. 38	-00				LAdidiAEt
LAMINATE	NVF G-1L GREEN MAEKING Y	NYF	-49	- 00				Lidisict
Laminate	PHENOLIC/FIBERGLASS PEEPHEG	VAC	. 68	.01				CHOABD
LAMINATE	PHR-15/HMG EPOXY/GEAPHITE	USP	-48	.01				Lagasate
LAGINATE	FOLYIMIDE/GLASS PABLIC EY AMGCO	AOC	. 77	.00				handuade
LAMINATE	SHIM ALUMINUM	ART	. 05	. 00				Snla
LAMINATE	SUN SHALE AL-KAPTON/7360 TAPE/AG-TEPLON-CTR	GSC	- 58	-10	48H	143	E-O	Saísid
LAGINATE LAGINATE	SUX SHADEAL-KAPTUN/7366 TAPE/AG-TEPLON-EDG	GSC	-52	. 06	48 H	143	E-6	- U
LAMINATE	T300/934 GEAPHITE EPOXY	FIb	- 58	-00				bami nale LAAI NATE

section 10 -- laminares cihcuit boands

Material	$\begin{aligned} & M P_{K} \\ & C O D E \end{aligned}$	*TML	ncucs	$\begin{aligned} & \text { CuRE } \\ & \text { TIIAE } \end{aligned}$	$\begin{aligned} & C U R E \\ & \text { TEAE } \end{aligned}$	${ }^{\text {a }}$ Is	dreatcaticn
	USP	. 50	.01				LAd-aATE
	VEC	- 417	.01	1H		AIS	PC DUaht
LaMINATE WESTINGHCUSE EPUXY/FIBERGLASS	WEC	-25	. 02	2H	11	A18	
LAAINATE YLI	YLI	-43	-00				Latar Na IE
	ATC	-01	-00	1H	177		Latisamd
NAEMCO $550 / 120$ EFOXY/GLASS PRE-PREG	WCN	.69	-0\%	3 H 90 M 90 H	315 125 120		
nelco 11-4205-2 l-clasis fk fabric/erozy Cuated	NCO	- 29	. 00	65 M	177	${ }_{\text {a }}^{\text {A Ia }}$	Lasacio fablic
PJTRANG Cup 12 polyimite prepreg	DBP	. 62	-0 01	2 H 30 H 3019	163 137 175		LadinaTE
BLGIDAAP $19010-1$ IAMINATE ONLY PYRALUX COPPEE CIAI 2 SIDES SS 5 HLS THICK RT DUROID 5870 - LAMINATE HF DUROID 5880 - LAMINATE EI DUEOID 6010 - LAMINATE	DUP BAR H0G ROG ROG	19 .57 .05 -03 03	-00 $=00$ 000 000 000	${ }_{1}^{2 H}$	177		Latil Mate hadi nate LaMAMAE bailinale
S= I KE'Z 80/S Glass filament wound composite	SC.	. 22	.03	4 H 4 H 3 H 3 H	79 107 149 179		Bady
SE ott polyurethane fuam/alum mylar sandich SYYBOND 703 GEAPHITE/POLYIMIDE LAMINATE 3 STEP PCURE	SCT	$\begin{array}{r}81 \\ .31 \\ .38 \\ \hline 60\end{array}$. 04	${ }_{14}^{48}$	120	-	LXSULTION
	UPS	a .10 .60	-00	${ }_{4}^{30 \mathrm{H}}$	827	PSi	Stasusur

SECTION 11 -- makKing matekials \& Inks

SECTION 12 -- molding compuunds

haterial	${ }_{\mathrm{MFR}}^{\mathrm{MF}}$	\%TML	Scucy	COEE	CUERE	A I	arpalcation
	${ }_{\text {F }}^{\text {F }}$ (${ }^{\text {d }}$	-23	-00				AULU CEND MULU LKND
ADIPEENE L83/CAYTUE 21 AS 100\%16 BMP POLYUEETHANE	DUP	- 34	. .33	${ }_{72}{ }^{\text {H }}$	120	AIL	AULU LPND
AF 1006 ACEYL LUTALIELE STYEENE	${ }_{\text {L }}^{\text {L }}$ AP	- 20	-91				MOLD LAND
AMP MCLDING COMPCUSD AGBEERLDED AT 2600	ANP		-0 0				GULD CEND
ASTKEL 36 P POLYAEYI SULFONE	MMM	-94	-02				OUL
BF 1006 STYRENL ACEYIANITEILE	LNP	-24	- 01				MULD CPND
	CNS	-98	- 04				Busicmend
CELCCN M-90-04 ACEIAL COPOLYMEK UNMOLUED PELLETS	CNS	. 57	-0 01				MULD
CJNNECTOR TUBING FCLYP	JAC	-26	-04				Cubuechur
CT-4215/H2-356 AS $20 / 3$ BU BLACK EPOLI	HYS	- 68	. 00	2.51	105	AIH	MULD LEND
DAP C2580-11B FK FMC ${ }^{\text {d }}$	HMC	-30	-00				ALLD
	DCC	$\bigcirc 12$	-02	244	177	4ia	GULD CEND
DELRIN 107 BLACK	DUP	. 62	-01				MULDLAG CEND
	${ }_{\text {DUP }}^{\text {DLI }}$: 07	-00				MuLu Cend
DF 1006 POLYCAEBCNATE/FIBER GLaSS AS 70/30	LNP	$\bigcirc 14$	-00				GULD CPND
	EMC	-18 -59	-01	04 H 30 H	127	${ }_{\text {A }}^{\text {A }}$ I ${ }_{\text {a }}$	
				2 H	70	${ }^{1}$	
	EMC	-32	.07				MOLD M $^{\text {S }}$
	FMC	-52	.00	16 H	25	${ }_{\text {A }} \mathrm{I}_{\text {a }}$	MOLD CPND
EKKCEL C-1000 AECMATIC CUPOLYESTER BKGWN HIGH TEMP	${ }_{\text {cka }}^{\text {cka }}$	-26	-00				MUSL
ELTEN POLYETHELAMILE 302 GLaSS FILLED EPOXY	GEC	-85	-01	304 154	316	${ }_{\mu}^{\text {A }}$ Sid	GULS CND
			-.	12 C	143	${ }_{\text {P S }}$	aula lend
EYC ${ }_{\text {EPILS }}$	${ }_{\text {PAC }} \mathrm{PACM}$.29 -47	-00	70		A In	AULD CEND
EPOCAST 403-S-3	${ }_{\text {PPI }}$	-32	-01	419	163	AIa	MOD ${ }^{\text {P P }}$
	${ }_{\text {HPF }}$	-48	. 09				STruciund
FF 1006 HI-DENSITY YOLYETHYLENE/GLASS AS $70 / 30$	LNP	- 12	$\bigcirc 03$				AOLJ CEND
	${ }_{\text {FPr }}$	- 34	-00	64	149	A Ik	MULD
$G \mathrm{G}$ G-DUR CLEAR GLASS	GAR	- 07	-01	6H	149	AIA	HOLD COND
	GEE	-134	-02				duLj ${ }^{\text {MOL }}$
GF 1006 POLYSULFCNE/FIBER GLASS AS $70 / 30$	LNP	$\bigcirc 24$:00				MULU CX ${ }^{\text {c }}$
hatiane 1602-6Jd a/bas $2 / 1 \mathrm{BV}$ urethane	HPC	:72	-01	24H	25	${ }^{\text {A }}$ L ${ }_{\text {b }}$	HuLJ Cun
HF 1006 NYLON 111 GIASS AS $70 / 30$,	LNP	-37	-02				MULU ${ }^{\text {M }}$
IMPAX SM ${ }^{\text {S }}$ UHME ECLYAES - NATURAL	IPI	-22	. 03				simultual
	LNP	-59	-00				MULALEND
	Lup	. 27	. 01				

SECTION 12 －－molding COMPOUNDS

material	MPR CODE		\％cvem	$\begin{aligned} & \text { CURE } \\ & \text { TIUE } \end{aligned}$	CURE	A 1	applicailua
LAMINATE P550 EPOXY／CELION 3000 GRAPLITE COMPOSITE	HEX	－ 42	－ 0	6H	121	PSI	hailinate
LEXAB 940 black rial plate	GEC	－10	． 00				WULL CEND
MAI－60 MCLDI MG CENL－GRAY	${ }_{\text {ACD }}$	－13	－08				DiAL ELATE
MFI－60 HOLDI AG CEAL ${ }^{\text {M }}$	${ }_{\text {ACD }}$	－ 75	－01	16H	100	AIH	M0以
	INP	－13	0.03				AULD ${ }^{\text {CPND }}$
Mi 11 bLACK HOLDIAG COMPOUND	HYS	－18	.01	5M	149	${ }_{\text {A }}^{\text {A }}$ SIE	AULJ CRSD
M⿴囗 6 F MOLDING CPMD－BLACK	HYS			3H1	149	AIm	
NF 1006 PPO／PIBEE GLASS AS 70／30	LNP	－11	－01				HULD CEND
	UPC	－17	－00				MOLD ${ }^{\text {P P N }}$
NPL LASI NT 64 HV SINTEAED NYLON OIL RESEEVOLK	${ }^{\text {PPC }}$		－02				
PGENOLIC 76－0001－0 ${ }^{\text {PJL EROXI }}$ ANHYDR	$\stackrel{\text { SPE }}{\text { FBH }}$	－ 33	－07	16H	150	${ }_{\text {A Lä }}$	MUSU CPND
PJLSET 521 BLACK	FBE	－ 12	－90				MOLD ${ }^{\text {AUS }}$
POLYSTYREAE CJ－EXTEUDED BLUE BOX	SHC	－ 50	－09				HULD
POLYSTYREAE CO－EXTEUDED WHITE INSEET	${ }_{\text {SHC }}$	－28	． 05				HULD CPMD
POREEX OLTAA GIGH MEIGHT POLYETHYLENE HEAT PIPE WICK	POB	$\bigcirc 11$	－01				HUANK
	${ }_{\text {PR }}$	－68	－10	${ }^{70}$	25	${ }^{\text {A }} \mathrm{IE}$	SULU CPND
PR 1547 A A B AS $3=100 \mathrm{BH}$ POLYURETHANL	PHC	． 625	－05	7 H	88	A ${ }_{\text {A }}^{\text {Lid }}$	MOLD ${ }_{\text {HUL }}$
\％PF 1006 HYLOM $6 / 10$ 30\％PIBER GLASS	${ }_{\text {L }}^{\text {LNP }}$	－65	－04				HOLD CEND
RJGEES BX 611	ROG	$\bigcirc 53$	－01				BU大D COMD
				304	149	A1L	UULD CFND
	GSC	－ 20	－05	70	25	${ }_{\text {A }}^{\text {AIE }}$	2ulitas
	PHP	－09	－00				QuL
SE 4401 SILICONE ELASTOMEE GHAY SHORE A 40 OETIANE	GEC	－15	－05	10M	166		MULD
SE 4401 U GENERAL EUEPOSE SILICONE	GEC			${ }_{24}{ }^{4}$	249	${ }_{\text {A }}^{\text {E }}$	
	GEC	－10	－00 01	244	249	${ }_{\text {A }}^{\text {A Lii }}$	HuLD Ced
SE 4524 J cleak silicone	GEC	． 07	． 00	7 H	200	E－	
			． 00	7\％	200	${ }_{\text {A }}^{\text {A }}$ It	Huad Lend
SE 5204 SILICONE 550	GEC	． 07	． 00	${ }_{88}{ }^{\text {H }}$	210	${ }_{\text {A }}{ }^{\text {Ik }}$	Euds Rumer
SE 5554U SILICONE FOOD GRADE FF	GEC	． 16	．00	30 M	163	${ }^{\text {P }}$ S ${ }_{1}$	aubu cevo
SE 5554U SIlicone focd grade gg	GEC	． 25	． 00	30 ${ }^{\text {H }}$	203	${ }_{\text {e }}^{\text {S }}$ S	dunu uedd
Se 565／Varox as 100／0．6 bu extreme luy temp silicone	GEC	． 12	03	15 H 2 H	127	${ }_{\text {A }}^{\text {E }}$	Husu - ORD
	$\stackrel{\text { LNP }}{\text { DCC }}$	－65	－01	$\begin{aligned} & 5 \mathrm{H} \\ & 90 \mathrm{M} \\ & 24 \mathrm{R} \end{aligned}$	177	E－0	auts cend
					$\begin{aligned} & 116 \\ & 216 \\ & 121 \end{aligned}$	$\begin{aligned} & \text { AIK } \\ & \text { ALA } \\ & \text { E-3 } \end{aligned}$	CULD
	EMC	－ 29	.01				AULL LEND

SECTION 12 -- molding cohpounds

SECTION $13 \rightarrow$ PALNIS LACQUERS VARNLSAES

GATEEIAL	$\begin{aligned} & \text { MFF } \\ & \text { CODE } \end{aligned}$	＊T 41	\％CVCM	CURE TIME	CURE TEMP	a IMOS	ARELICATICA
	$\begin{aligned} & A C C \\ & E \mathcal{E} C \end{aligned}$	． 48	． 03	$90 H$ 24	227	AIM	$\begin{aligned} & \text { PM\&AEM } \\ & \text { PANATOMPQSITE } \end{aligned}$
CHEMGLAZE A27心 HIGF GLOSS mHITE POLYURETHANE／F	HCC	． 99	－J8	48 H 150	121	AIn	palat
			－ 0	48	90	E－b	2aİ2
CHEAGIAZE H322 BLACK CONDUCTIVE PAINT PQIYURETHANE CHEMGLAZE V200／9924 GLOSS WHILE POLYURETGANE PAINT／F	$\underset{\mathrm{HCC}}{\mathrm{HCO}}$	． 86	－09	30 H 110	121	AIt	Cund raINT HaLuTSYSTEM
CHEMGLAZE ZOO4 BIACK COND PAINT MOD PQLYURETHANE	HCC	． 90	． 04	72 D	90 25		IUdu HAINT
				24 H	70	AIN	－Maik
CHEMGLAZE «202 PCLYURETHANE FORMEKiY TS 16U3－16 CHEMGLAZE Z306 BATCH L 11247	HCし HCC	．60	$\begin{aligned} & .02 \\ & .02 \end{aligned}$	7D	25 25	AIM	PALNT PALAT
CAEMGLAZE 2306 LGT LBC	HCC	． 47	． 04	24 H	100	E－6	
	HCC	． 47	． 04	16H	60	A15	galn
CHEAGLALE 2306 LOT AHA	HCC	． 92	－ 00	140	25	AI閏	pachat
CHEAGLAZE 2306 LCT NOA	${ }_{\mathrm{HCC}}$	－90	－00	14 D	25	A 1	Pada ${ }^{\text {c }}$
CHEMGLAZE $230 G$ LOT NDA SPRAYED	$\mathrm{HCC}^{\mathrm{HCC}}$.87	0.04	1140	25	AIM	Pain
CHEMGLAZE Z300 LOT ELA	HCC	－ 91	－03	14 D	25	AIn	PAL®I
CHEMGLALE 2300 ICT TDA	HCC	． 83	－ 01	140	25	AIK	2aide
CHEMGLAZ 2306 LCT WHA	HCC	－ 92	－03	140	25	a In	2ad ${ }^{2}$
CHEMGLAZE C306／B40L GICROBALLOUNS／TQLUENE	HCC	． 83	． 03	150	25	Aİ	PuId
CHEMGLAZE Z306／KAPION H	$\mathrm{HCCC}^{\mathrm{HCC}}$	1．70	－05	300 420	25	${ }_{\text {A }}^{\text {A }} \mathrm{In}$	Halmi composite
CHEMGLAZE $2306 / \mathrm{KAPTON}$ H REINF	HCC	1.94 .94	－09	42 D	25	A A	PaduT COMPOSITE
CHEMGLAZE $2306 /$ hafton H EEINF	HCC	． 88	－ 09	24 H	125	AIN	EAINT COMPGSITE
CaEMGLAZE 3402 ALUE VILLED PCLYUAETHANE LOT dEB	HCC	． 68	． 07	418	25 25	${ }_{\text {A }}^{\text {AK }}$	
CUYEKTIN 305 BLACK POLYURETHANE COATINE	HNC	－69	－02	14 D	25	AIH	SAINI
	${ }_{\text {ACa }}$	． 79	． 02				Pa＞k
DUPONT 4922 a／B AS 1／1 BW COND SLVEE PAINT	DUP	－ 61	． 00	$15 M$ $48 H$	66 9	${ }^{\text {A }}$ Ia	cuaud EaINT
D4 D LEAFING ALUMINUM	GEC	． 72	． 10	48 H	25	AIu	2aldud
E－KUTE 3030 CUNDUCIIVE ACEYLIC PAINT	EPO	． 76	.05	48 H 1 H	99 66	dIa	Cuad raint
				24H	25	aja	Cund bain
EVP 2200 ELACK SCLAK ABSORBEK COATIEG／F	MMM	． 08	． 00	${ }_{7}^{4} \mathrm{H}$	204	AIK	Tising CONTROL
FLUOAOCLAS CLEAE V $78 \mathrm{VP21}$	Sth	． 05	.01	30a	93	AIK	$\begin{aligned} & \mathrm{PaL} \\ & \mathrm{Kai} \\ & \hline 1 \end{aligned}$
FLUOEOCLAD WHITE G79¢P37	SHix	． 67	． 05	15M	260 93	${ }_{\text {A }}^{\text {A }} \mathrm{IK}$	PAidit
FSS BLUE PAINT／F	GSC	． 71	． 05	15 H 72 H	25°	AIm	PAINT
G 3113 2LACK COATIKG dall Chem alkydosilicone				24H	96	$\mathrm{E}=0$	
$\mathrm{G}=1897$ HT AL UMINUM COATING CHEM ALKYD－SILICONE	BAL	．03	． 024	${ }_{1}^{1 H}$	232	AIK	PACMT
GSFC 657－41 SIAICOAE IHITE PAINT	GSC	.17	－09	3.50	25	A ${ }_{\text {As }}$	Palmi
GSFC 657－41 SiLICCIE WHITE PAINT	GSC	． 14	－00	70°	25	AIR	Paidt
GSFC 657－42 SILICOAE WITE PAINT	GSC		． 08	24 H	66 25	AIH	
GSFC 6－37－44 SILICOAE HITE PAINT	GSC	． 15	.07	3 D	25	AIn	Mald
LAMINATE ASHiAn G4C Giilabe EpOXY／FİEKGLaS	MaS	． 39	． 01	2 H	10	A14	LAAIL MATE

SECTION 13 -- paINTS LaČuERS vafinishes

Matemial	MFE CODE		¢CVCM	$\begin{aligned} & \text { CURE } \\ & \text { TLME } \end{aligned}$	CUHE TEMP	ATaus	Actuicailcaid
MS 125 iHITE CGATJNG $4 A S O 4 / P V A / K K Y L O N$	GSC	. 70	- 10	14 D		A Iu	UKALCAL PALNT
MSA 101EGLEEN PAIAT OI OSU/CHROAIC OKIUE	GSC	- 11	-00	6 H	150	AIK	paiai
MSA 90 HHITE PAIN2 OI 650/POIASSIUM THEALED LSO	GSC	. 58	-06	$6{ }^{6}$	150	AIn	CALAD
	NEL	-96	- 03	216 L	100	${ }_{\text {Aln }}$	Paini
OI 650 RESIN VHITE PAINT GSFC SHAI	GSC	. 37	-02	16 H	150	aia	Yalal
	GSC	- 59	. 03	7 D	25	A Ia	Pasat
PJTASSIUM TITANATE WITE SAINT 150 GSFC SHAI	GSC	. 84	- 00	18 H	122	ara	gatnit
PYRCMAEK STANEAKL WHITE SILICONE ON ALUMLNUE	TEA	. 06	-02				¢atat
PY ROMARK STANDAKL hHITE SILICUNE ON EPOXX	TEM	-40	-03				Patat
ATV 602 764-1A WHITE PAINT FA BATCH Y	GSC	. 44	-01	7D	225	${ }_{\text {A }}^{\text {A }}$ IK	PADNT bASE
RTV 602/SRC O5 AS C. 25 C CAT DEVOL LUT DA242 BATCH 5	GSC	. 46	. 005	7 7	25	Aik	Paint base
	GEC	. 41	.03	7 7	25	${ }_{\text {A }} \mathrm{IK}_{\text {a }}$	PaduT \triangle ASE
RTV b02/SRC O5/ZNO, TULUENE DEVOL BATCH 4	GSC	- 33	- 00	7 D	25	A IR	PLINT
S-13-G SILICONE W日ITE PAINT	ITH	. 42	.09	48 H 16 H	25 $1<1$		2a+ul
S-13-G-LO WHITE PAINT A/E AS 100/1 Ein W/TOLUENE	ITM	. 54	- 10	7 D	25	AIf	PaLut
	ITM	- 37	. 02				Paidu
S-13-G-io milire paincoss 4044 SGIMEE BATCHE-40\%	1 TK	.44	. .04				SA1N
S-13-G-LO WHITG GAINT/SS 4044 PKIMER BATCH	ITa	.47	-03				Paiba
SICON ELACK 7×9055 SILICUNE	MID	. 98	. 04	30 m	177	A IH	HALAT
SICON R 8×929 BLACK PAINT	MID	. 05	. 00	15 M	510	AId	Patw ${ }^{\text {cha }}$
SICON 3×258 LEAFIAC ALUMINUM	MID	. 79	. 09	${ }_{4}^{48 \mathrm{D}}$	25	$\underset{\mathrm{A}}{\mathrm{A} / \mathrm{a}}$	caldy
SOLITHANE $113 / 300 / \mathrm{T}-1 \angle / \mathrm{FERRIC}$ OXIDEE/CABOSLL	GSC	. 38	. 06	7 7	25	${ }_{\text {AIn }}^{\text {A }}$	$\mathrm{P}_{\mathrm{H}}^{4} 1 \mathrm{DmT}$
				2411	60	AIn	
SPACE GAED 4-b-33 GVEK RANDOLPH PLCMEX T $94 / \mathrm{F}$	DEX	. 79	-03	24 H	100	E-2	PaIar composite
SPEAEX SP-101 VHT EIGAI TEMP CUATING-WHITESILICONE	SPX	. 29	.01	15 M 15 M	251	${ }_{\text {A M }} \mathrm{I}$	Patat
				1 H	316	AIM	
Vafnish Steriaidg Ttekhupoxy t-653-LBit	STV	. 70	. 02	$4{ }^{4}$	180	A La	VAENISH
Y-210 VAKNISH - THFRMODUR	STV	. 56	. 07	20 H	149	$\underset{8}{\text { A }}$ In	Vamy 15 H

SECTION $14-$ POTTLNG COAPOUNDS

mategial	$\begin{aligned} & \mathrm{BFA} \\ & \mathrm{CODE} \end{aligned}$		\＄CVC4	CUEE TIE	$\begin{aligned} & \text { CUEE } \\ & \text { TEMP } \end{aligned}$	ATMOS	aцgıicaticn
ABLETHERM 7－2 FILLED SILICONE	AAC	－ 29	－ 10	4H	74	A In	PuTilng
ABLETHERM 908－3 CERAMIC FILLED SOLITHANE 113／300／T12	AAC	－ 16	－ 81	4H	74	AIs	PUTTIAG
ADIPRENE L100／SCLITHANE C－300／CE BE BLK AS 100／40／1．4	DUP	.74	． 07	48 H	50	Aİ	Pusilng
ALLACAST 1776 POTTING CPED POE OPTICAL COHFONENTS	BAC	－ 25	.01	24 H	25	AIk	Pustlac
ARALDITE CY179／9C6／U65／AS－XL EPOXI	CIB	－ 16	－ 00	16 H	93		PUTiLAS
ARALDITE HY750／HT9 ${ }^{\text {a／AARBLE PLOUG AS }}$（00／27／100 BH	CIB	－ 20	－01	$3{ }^{3}$	80	AId	PUSHIXG
ARALDITE HY750／HY974 AS $20 / 4.6 \mathrm{BH}$ EPOYY	\bigcirc	－27	－03	45 M	100	AIt	add HUTTING
BACOU IWD LaPREGADAT 2		－ 27	－ 1	$8{ }^{4}$	100	AIA	Pusilag
BAKER FOLYUEETHANE SYSTEM 65	BAK	． 28	． 03	4 H	25	AIt	LUAF－UAT－POT
BAKER FOLYUREPHAEE SYSTEM 65				16 H	80	A İ	
BR－626 OAE COUPONEAT HEAT CURING EPOXY	ACC	.26	.01	$1{ }_{1}{ }^{\text {H }}$	601	AIE	Cude unat－POT
BSL 308 EPOXY	CIB	． 49	－10	18	175	AI㐍	Putitag
C－18F A／B AS $4 / 5 \mathrm{Eh}$ M／1\％H4－3441 BLACK EPQXI	HYS	． 74	－ 06	4H	130	AIk	Purtimu
CF 3003 EPOXT FR HLGHES CONAECTOR 138 C 320 HO1	HAC	． 43	.04				PUTIING
COLAD 984 A／B AS 3／E BV EHITE YUICK SAT EPOXY	CCD	． 84	－ 01	16 ${ }^{\text {d }}$	100	AIE	purisag
CONATHANE EN－1才 A／E AS $100 / 55$ bu polvurethane	CON	－ 33	． 02	24 H	60	AIa	puTtaab
Conaruane mejl a／e as 100／S bl Poliuneifane		－ 27	－ 01	24 H	60	ALG	PUiting
CONATHANE EN－11 A／E AS $100 / 55$ Bd POLYURETHANE	COH	． 43	－02	24 H	55	AIR	PU112心
CJNATHANE EN－11 $4 / E$ AS $100 / 55$ BH POLYURETHANE	CON	－ 38	． 01	244	50	AIK	curiduc
CONATHANE EN－12 A／E AS $100 / 55 \mathrm{BH}$	CON	． 43	－$\cup 1$	48 H	50	A L	yuillag
CONATHANE EN－12 A／E AS $71.3 / 75$ Bu butadiene uatehare	CON	． 44	.02	12H	38	A İ	PuTtian
CONATHANE EN－5 A／B AS $100 / 17.5$ BM POLYURETHANE	CON	－ 78	． 02	7 D	25	AIn	PuTimu
CONATHINE EN－7 A／E AS 100／17．5 BW POLYURETHANE	CON	.32	－01	20 H	25	AIL	Lutilag
CONATHANE EN－9 PCLYUEETHANE	CON	． 39	.00	24H	60 25	A Lix	PUTHLEG
				8 H	93	AIn	－
	CON CPC	.74 .35	－01	${ }^{16 H}$	10 100	AIb	puritag
			－ 4	2 H	154	AIn	EuBRENG
				2 B	204	Aİ	
C2－4259／3401	HYS	－ 55	.01				RULTING
	HYS	－ 16	－00	$4{ }^{4} \mathrm{H}$	77	A In	puftinu
C9－4190／H8－3503 aS $10 / 13$ BVEEED FLEXEBLE EPOXY	HYS	． 43	－03	${ }_{3}^{24}$	${ }_{125}$	AIK	PUATANG
				25B	125	A Lk	
C9－4198／H2－3561 AS 100／15 BGI EROLY	HYS	－ 38	． 09	$8{ }^{8}$	60	AIK	PUSiln
	HYS	． 46	－00	8 B	25	AIn	E6itinu
	HYS	－ 60	－ 05	3 ${ }^{\text {H }}$	25	AIk	PUTiAas
D＝93－500 A／B AS 10／1 B S SIIICONE	DCC	－ 20	－ 02	7 D	25	AIK	KUPLHAG－ENCAPS
D＝93－500 A／B AS IC／1 BH SILICONE	$\mathrm{DCC}_{\text {DC }}$	－18	． 00	$2{ }^{70}$	25	A14	POEAAMG－ENCAPS
D－93－500 A／B AS 1C／1 BW SILICONE LOT E2 134－16	DCC	－12	－0	7 D	25	AIn	PUAING－ENCAPS
D＊93－500 Fu 029159 FEB 79	DCC	－ 17	． 02				PUSALAG
$D=93-500 \mathrm{FH} 128101 \mathrm{DEC} 78$.	DCC	－ 24	－ 10				HOLTAM
DER $332 /$ MDA／LITAAFEAX／P－200 MODIFIED GRAY	DOw	－50	－ 00	18 l	65	PS1	Yusidnu
DER 33 $/$ TETA AS 10,1 BW EPOXY	DOw	－ 48	－00	184	65	PS1	putiong
DER $332 \mathrm{LC} / \mathrm{HY}$ AS $10 \mathrm{C} / 18 \mathrm{BW}$ EPOAY	DOW	－ 33	.01		25	AIL	¢u＇tiag
				124id	90 90	$\begin{aligned} & \text { AI } \\ & \text { AI } \\ & \text { In } \end{aligned}$	Putias

SEC2ION 14 －－OTTANG COMPUUNDS

Matehiad	MFK CODE	\＄TML	\＄CVCM	CUEL TIME	$\begin{aligned} & \text { CUGE } \\ & \text { TEMP } \end{aligned}$	AIMOS	AEELICATICN
E 376 EPOXY	USP	． 88	． 00	2 H	121	A If	PUCLING
EA 9 309．3 A／E AS 100／22／0． 3% YULYPROUYLENE BEADS BW	HYS	． 95	－03	75	25	AIk	HUTA140
EA 9309．3 A／B AS 100／22／0．5\％POLYMAOKYLENE BEADS BH	HYS	－99	． 02	24 H	25	AIn	ruishn
EA 9559 ERCHN EPCXY	HYS	． 80		2 H	177	AIn	
ECCOFOAM FPii／12－2it POLYURETHANE FOAM	EHC	－99	．07	$8{ }^{8}$	60	a la	Fuáa
ECCOFOAM FPH／12－4H POLYURETHANE FOAM	EMC	－ 08	－ 08	12 H 48	100	AIE	
ECOFOAM SH 4 \＃CU ET POLYUEETHANSFOM	EMC	－78	.00	4	10	A10	Fuan
ELCUSEAL 1207／Cal 20 as 100／1．j Bu BLaCK EPOXY	EAC	． 27	.01	$4{ }_{4}$	71	A Ik	PUI＇LNG
	PAC	． 60	． 01	54	150	${ }_{\text {A }}^{\text {A }}$ It	Hustimg
EPOCAST N4E－0 3／CAT 9816	EPI	.07	.02	2411	25	A 1 L	
EPUN 815／V 140 AS 50／50 BW ERUXY	SHL	． 70	.06	3H	93 25	${ }_{\text {A }} \mathrm{IK}$	puticimb
EPON 815／V 140 AS 65／35 Ed EPOXY	SHL	． 40	． 02	$3{ }^{2} \mathrm{D}$	25	AIM	PUTIEX
				24 H	110	A 1 K	
ERON EPON $825 / V$ $140 / S I L E L A K E ~$ A	GSC	． 65	－03	${ }^{7 \mathrm{C}}$	25	${ }_{A}{ }^{\text {I }}$	Uund EUFTING
	ITI	－04	－ 01	2H	8	AIK	MUT12ak
EPON 828／EM 308 AS $2 / 1 \mathrm{BW}$ EPOXY				4H	130	A Ih	
EPO 828／LINDEIDE E／LME 30 AS $100 / 90 / 1$ Bin LPUXY	SHL	． 34	． 06	1H	100	${ }_{\text {A In }}$	RUC11NG
EPON 828／LINDHIDE E／DMP 30 AS 100／90／1 Bm EPOXY／SAND	SHL	.04	－ 40	${ }_{1}^{48} \mathrm{H}$	70	A1这	
				48H	70	A If	
EPON 828／VEKSAMID 125 AS S0／SO BW \＆LUXY	SHL	． 74	－ 01	7 D	25	AIU	pulilind
EPON 828／VEKSANID 125 AS 6U／40 BW EPUXY	SHL	－ 56	－0 01	7 D	25	A1K	Pulidmu
EPON 828／VERSAMIL 125 AS O6／33 BW SPOXI	SHi	． 69	－05	70	25	硡	PUM1ALu
EPON 828／VERSAMI 140 AS $50 / 50$ B i E PUXY	SHL	－80	.03	7 D	25		putilau
EPON 828／VERSAMID 140 AS 50／50 BW EPCXY	SHL	－86	－ 01	7 D	25	AIK	ructino
EPON 828／VERSAMIE 140 AS $60 / 40$ B 4 EPOXY	SHL	－43	.01	70	20	Aİ	Pu゙tan
EPON 828／VERSALIL 140 AS 65／35 BW EPOXY	SH_{2}	－ 30	－00	7 D	25	AIK	cutidus
EPON 828／VERSAMID 140 AS 06／33 Bu EROXY	SHL	－ 26	－ 0	7D	25	A 14	cultimu
EPON 828／VERSAMIL 140 AS $70 / 30$ BM EPUXY	SHL	． 19	－U 1	7 D	25	${ }_{\text {a }}$	
EPON 828／VERSAMIL 140／B40A MICROEALLUQNS	©SC	． 61	－ 03	4 d	25	A IK	puiliduo
EPON 828／871／AEP A $40 / 60 / 15.5 \mathrm{BH}$	SHL	． 46	－U 2	961	126 65	${ }_{\text {AIf }}^{\text {A }}$	RUilinu
EPOXI－PATCH KiT 56C WHITE EYUAL LENGTHS FK TUBES	HYS	－ 34	－ 02	0 H	25	AIK	RUPLicus
EROXX 71B PFE－MEASUKED MIX PKG	EPX	.97	－ 02	30.4	81	A1景	Puising
EPOXYIITE 6203 A BAS $2 / 1$ EW EPOXY	EPC	－ 45	－ 3	4 H	121	A In	PUR＋140
PLJORINATED ACKYIATE	NRL	－ 12	－Ju				
PULTON 404 ACLTAL TEFION 80／20	L ${ }^{\text {d }}$	． 52	-01				YuFitas
GENEFOXY 190／VEESAEID 140 AS $3 / 2 \mathrm{BH}$ ambir EPOXY	GMC	． 24	.01	12 H	25	A1k	20140
				2 H	60	A In	
HY－MAT ${ }_{\text {HPA }}$	FIB	． 47	－00	3 H 16 H	177	${ }_{\sim}^{\text {P }} \mathrm{S} 1 \mathrm{H}$	RUCLING
				72H	150	dia	－
	HYS	.97 .56	．83	24 H	50	A1K	pusifáo CDCAEDULANT

SECTION 14 -- potting compounds

SECTION 14-- POTTING COMPOUNDS

Material	MER CODE	\%TML	\%CVCM	$\begin{aligned} & C U \Delta E \\ & T \perp M E \end{aligned}$	CuH己 TEMP	A14U	$4 L^{2} \mathrm{LCLCATION}$
Rry $655 \mathrm{~A} / \mathrm{B}$ AS 10/1 BW DEVOL AT 125 C LOT KF084	GSC	- 39	0	7 D	23	${ }^{\text {A Lh }}$	Sultaroulant
RT-2039/H2-3404 AS 9/1 Bm EPOXX	HYS	. 64	- 0	1 H	80	Aİ	Puiting
				SM 30 M	100	AIn	
SJOTCACAST AR-5133 EPOXY CASTING PORDER	MMA	- 42	.01		149	A i	SUR Livg
SCOTCHCAST 221 A/E AS $5 / 8$ B P POLYULETHANE	MME	. 55	. 01	10 H	25	Aİ	PuTting
SOOTCHCAST 221 a/B AS 5/8 Bh PULXUAEZHANE	MMM	. 25	- 5	24 H	50	$\mathrm{CLS}^{\text {A }}$	Pultam
SJOTCHCAST 221 A/E AS 5/8 BW POLYUEEHHANE	MEM	:71	-05	72 H	25	A14	Pusdinv
SOOTCHCAST 25 S A/B AS 1/1 BW EPOXY BixQwn	MMM	. 05	. 00	24	75	Alt	CHEALMAANT
S=OTCHCAST 255 A/E AS $2 / 3$ B W EPOXY	MHE	-52	. 05	4 H	120	A Ik	puciting
SOOTCHCAST 281 A B AS $2 / 3$ BW BLACK EPOXY	MMM	. 56	. 082	${ }^{4} \mathrm{H}$	130 100	AIR	cutriau
SUOTCHCAST 281 A/E ȦS $2 / 3$ BW GKay EPUXY	M ${ }^{\text {M }}$. 35	.02	12 H 72 H	100	AIR	cuctiais
SZOTCHCAST 282 à A AS 2/3 EW SEMA KIGID BLACK EPOXY	MMM	. 49	-10	16 H	90	${ }^{4} \mathrm{I} \mathrm{S}_{4}$	gucitas
SCOTCHCAST 282 A/E AS $2 / 3$ Bu SEMI HIGID BLACK EPOXY	MMM	. 45	. 09	${ }_{8}^{104}$	90 60	AIR	Pusitus
SHUELIOK SLE 3007 EPOAY - GKAY	SLK	. 32	. 00	12 id	25	AIB	PULTEMG
				8 H	6	AIn	
				8 B	121	AIM	
SOLITGANE $113 / 300$ AS $100 / 120$ Bn FOKMULA 6	TCS	. 41	-10	$7{ }^{\circ}$	25	Aİ	putitag
SJLITHANE $193 / 300$ AS 100/150 BW FOKMULA 7	TCC	.37	-08	7 D	25	AIN	PuTituc
SOLITHANE $113 / 300$ AS 100/150 B F FOBMULA 7	TCC	. 31	-04	16 H	50	A Is	pucilng
SJLITHANE $113 / 300$ AS $100 / 73$ Bw FURGULA 1	TCC	- 31	-04	7 D	25	AIR	puTRLAG
SJLITHANE 1131300 AS $100 / 73$ EW 33% ALUM RIGMENT	TCC	-69	-09	7 D	25	AIM	PuTr ${ }^{\text {deg }}$
SOLITHANE 113/3U0 AS 100/80 BW FOKMJLA 2	${ }^{\text {ICC }}$	- 30	. 01	24 H	50	AIK	PuTTING
SOLITHANE 113/300 HOGMULA 6 OVEE PRINER 919/920	TCC	.72	-03	7 7	25	${ }_{\text {A }}^{\text {A }}$	PuTheng
SOLITHANE $133 / 300 /$ CALUSIL MSS/I-12	TCC	.42	- 01	$7{ }^{7}$	25	Aİ	purating
SOLITHANE 113/300/CABUSIL MSS/T-12/FidUKESCENT DYE	TCC	. 46	. 04	7 D	25	A In	くutilis
SJLITHAUE 113/300/LTDLAS 100/80/1 BW	TCC	-60	-09	15d	50	A Ik	YuTPAMG
SOLITHANE 113/300/T-12 AS $25 / 18.26 / 1$ DROP BW	TCC	- 37	-01	7 D	25	AIK	YuTCANG
SJLITHANE 113/300/IIPA/ALUUINA TO1	TCE	-14	- 11	4 H	60	AIK	a $u \mathrm{HCSL} \mathrm{L}$
SJLITHANE $113 / 300 /$ TRACER-TECHT-704/60	SLC	. 36	. 024	7 D 2 OH	25	A1h	Mutidnc
	TCC	. 34	-00	20 H	70	AIK	PUST146
SOLITHANE $113 / 30 \mathrm{C} / 32 \mathrm{SaS} 100 / 51 / 4.5$ dW FOEUULA 10	TCC	-34	.00	$16 H$	70	AIR	PUTTANG
SOLITHANE $113 / 300 / 328 / B 3 S A$ GLASS BUBHLES	TCC	- 21	-00	210	25	AIM	PuTiduc
SJLITHANE 113/300/328/ECCOSPHERESSI	TCC	-53	-00	16 H	57	AIM	KULING
	EMC	.39 .74	-09	16 L	25	AIL	buating
				6 H	65	AIE	
STYCAST $1090 / 11$ AS 100/12 Ed EPOXY FUAM	EMC	-49	. 064	${ }_{3}^{24} \mathrm{H}$	950	AIK	RUAA
				3 H	150	ALE	
STYCAST 1095/9 AS 100/9 [6 BLACK EPOXY FOAK	EMC	. 72	-07	10 H	25	a Ia	Foad-butting
STYCAST 1467/CAT 9 AS 100/7 BW EPOAY	EMC	. 14	. 00	16 H	25	${ }_{\text {A }}^{\text {A }}$ IM	HULLMG
STYCAJT $2057 / C A T$ 9 AS 100/6 Bw EFOXY	EMC	. 72	- 01	24H	25	Aİ	PUSing
STYCAST $2651 /$ CAT 11 EPOXY	EMC	-14	- 00				puratig
	EMC	.37 .63	-03	84	250	AIN	puriting
SIYCAST 2762 ¢14 AS $25 / 2$ Bin BLACK ESQXY	EMC	.27	.08	3 H	149	AIH	PuTRLNG

SECTION 14 －－pottini compounds

Material	MFR CODE	\％TML	\％CVCM	$\begin{aligned} & \text { CURE } \\ & \text { TIME } \end{aligned}$	$\begin{aligned} & \text { CURE } \\ & \text { TEMP } \end{aligned}$	AT	APrta
STYCAST 285 FT 19 AS 100／3 B E EPOXY		25					
STYCAST $2850 \mathrm{FT} 11 \mathrm{AS} 100 / 3 \mathrm{BH}$ BLACK EPCXY	EMC	－ 40	.01	2011	70	AIt	
	EHC	． 47	$\bigcirc 01$	2 H	60	AI	$\begin{aligned} & P 01 A 1 \Delta G \\ & P O L I A G \end{aligned}$
					120	AIB	
				304	160	Ali	
STYCAST $2850 \mathrm{Fr} / 11 / 9$ AS 100／3／1．5 BM dLUE EPOXI				2 H	600	AIB	
STYCAST $2850 \mathrm{KI} / 24 \mathrm{Y}$ Y as $25 / 1$ EY BLUE EPOXY	Enc	． 55	－02	2410	60 25	${ }_{\text {AIB }}$	RURMING
STYCAST $2850 \mathrm{KT} / 24 \mathrm{LV}$ AS $25 / 1 \mathrm{BH}$ BLUE EPOXY					65	A IR	
STYCAST 2851 KF OAE COUP ELUE THERM COXD EPOXY	EMC	.34 .29	． 01	${ }_{2} \mathrm{H}^{\mathrm{H}}$	65 105	Aİis	PUETADG
STYCAST 3050／11／B40A idICROBALLOONS	GSC	． 75	.01	72 ii	25	Aİ	cuiding puricesis
TRUCAST $111 / 901$ AS $100 / 3.4 \mathrm{BH}$				904 248	126	AIS	
TRUCAST 111M／TKUCUEE 901 EPOXY	FEN	． 36	． 01	$2{ }_{3}{ }^{\text {d }}$	25	${ }_{\text {A }}$ IIL	PURCAAG
2J－0590／XHD－U158 AS 1／1 BH GREEN POLYURETHANE＇	HYS	.85	.02	4 H	25	AIE	PUTAING
URALANE 5753LU A／B AS $1 / 5$ 日					50 25	AI部	
	${ }_{\text {FPI }}{ }^{\text {P1 }}$	． 89	－02	14 D	25 25	AIE	purdiag
VAEY－PLEX EPOXY ECIYAHIDE	SlP	． 64	－ 01	24 i	25	Ali	204」心
XR－5166 A／B AS 2／3 BW FLEXIBLE BLACK EPOXY	MMM	． 51	． 07	24 H	$7{ }^{121}$	AIn	
	HYS	． 87	.01	$6{ }^{\text {H }}$	25	A 1 d	¢uTEINu
XOS－0050 A／B AS 10C／36 By	HYS	.83	． 01	24 H	50	${ }_{\text {A }}^{\text {A }}$ I ${ }^{\text {a }}$	U 1

section 15 -- hobbers elastomers

mategial	$\stackrel{\mathrm{MFH}}{\mathrm{CODE}}$	*TiL	\%CVCM	cuge	CURE	a 1 M	Actuicaticn
AMSE-332-11 ETAYLEAE PROPYLENE DEAIVATIVE	TEWS	-60	0.08				
ATS KJEBER HD2 $2-31$ FJDBER	LOE	-11 -39	.09	48 H 24	121 250		Dasidam
bTE RJEBEE HD222-22-2 IN ALUMLNUM SANDMICH	LOR	. 28	.01				Datersa
CPB 4012 FLUUZOSILICONE COATED DACROA FABRIC	${ }^{\text {CHI }}$	- 45	.09				Mosheit
	CHO	- 04	. 05	24 24	177	${ }_{\text {A Ad, }}^{\text {a }}$	Gaskets Sidaim
CJURLASTIC LUBBEK K 7470 SILICOLE SPUUGE	$\mathrm{CHz}^{\text {cha }}$	-10	0.03	24.1	204	A $1 \times$	
CJHRLASTIC KUSDER F10470 SILICONE SPUNGE SGMON	CHz	-12	-05	$1{ }^{240}{ }^{\text {d }}$	180		Daide
D_{2} 6-1104	LCC	-19	-01	7 D	25	A Ia	SEA maint
D= $6-1104$ LOT EMC99313	${ }_{\text {DCC }}$	-20	-03	$7{ }_{7}^{70}$	25	${ }_{\text {AIE }}$	SLaLAag
	${ }_{\text {DCC }}$	-15	03	7 7	25	${ }^{\text {a }}$ Ia	Scidiant
$D=6-1104$ IOT GAC9 3568	${ }_{\text {DCC }} \mathrm{CC}$	-14	-02	70	25	A IE	Scalast
	\bigcirc	-33	-01	248	25	${ }_{\text {A A A }}^{\text {a }}$	Stadamt
D= 6-1104 $\mathrm{V}^{(1)}$	UCC	-21	- 3	2418	25	A Ia	SEatami
	${ }_{\text {DCC }} \mathrm{DCC}$	- 13	-07	24 H	25	${ }^{\text {a }}$ A 1 m	Sealari
D= $6-1106 \mathrm{~A} / \mathrm{B}$ AS $1 \mathrm{C} / 1 \mathrm{BH}$ SILICONE	DCC	-09	. 01	75	25	a ${ }_{\text {a }}^{\text {a }}$	Scatamt
de 955 Silicune elastumer peruxide cat di cup 40 C	DCC	. 15	.00	154 64	160 177	${ }^{\text {A }}$ A Ia	ELastuamer
de 100 SILICOAE GUEBEk GE SE 565 baSE	DEC	.05	. 02	24 H	175	Si^{-4}	Stackn
				$5{ }^{3}$	204	A ${ }_{\text {a }}$	Sharcune
Eecosil $4954 /$ Cat 50 as 1010.01 bu Filled Silicone	EMC	. 24	. 10	$3{ }^{\text {3 }}$	25	A1i	lacau cuntrul
Eed OOS PERFLUOACEIASTCMER	DUP	- 14	- 00				Stalumaikez
EED 487-90 FLUURCEIASTOMEE THEEE PAET SYSTEM	DUP	0.51	.00				SLAL
	NPC	. 16	0.03	8H	200	AIR	idsumu
PLUBAN F5005 VITCN A LED TUBING	NPC	- 53	-00				ajBidio
GJRE-TEX CAR BON COEED EXYANDED TEFLON - GEAY	GOK	- 05	-03				Dagrica
GJRE-TEX GUDIFIEE LOPED HITH CAR BON - BLACK	GOR	-10	-01				Dade sia
HS 50 YAROX/RUBEER ADDITIVES BLUE CONAECTOR INSUL	DCC	-12	-00	7.5H	255	AIL	cuna amsul
HS 50/VAEOX/RUBBER ADDITIVES BLUE COHAECTOL INSUL	DCC	. 13	.01	${ }_{8.54}^{4 H}$	204	${ }_{\text {AIA }}^{\text {AIA }}$	cuan ImSul
	$\mathrm{Dup}_{\text {LMP }}$	-22	-08 004				buasmuasis
INTEAFACTAL SEAL SILICONE UC-K-1314	UCC	-21	-06	20.1	125	A Ia	SLAL
KALAEL 1050 PERFIUCRGELASTCMER	DUP	-44	. 00				$0 \mathrm{O} \rightarrow \mathrm{n}_{0}$
KALEEEZ 3018 PEEFIUCROELASTOMER	$\mathrm{DUP}_{\mathrm{KRC}}$	-40	-10				Go ${ }^{\text {a }}$ 明
KJSITES 1028 biack FLUOREL SPONGE RUBBER	MOS	- 30	-08	96 H	125	${ }_{\text {AIL }}$	cusinuw
MOSITES 1028 SPUNGE	MOS	- 21	-00				cisindua
	MOS	. 24	-10				ELASLUAER
AS-20L08	mox	-04	-00				ELASTUAEE
MS-30CO2 VITON	${ }_{\text {AMI }}^{\text {AM }}$	-07	-05				
	${ }_{45}$	-07	-03	8i	200	Ain	0 -us í

SECIION 15 -- ROBBERS ELASTOMEBS

Matehial	$\begin{gathered} \mathrm{YFK} \\ \mathrm{CODE} \end{gathered}$	STML	xcvCa	$\begin{aligned} & \text { COEE } \\ & \text { TIME } \end{aligned}$	$\begin{aligned} & \text { CURE } \\ & \text { TEME } \end{aligned}$	ATA	asplication
PASCAL 715 CHEOEE HETALIEED MYLAGACEYLIC ADG／K	${ }_{\text {APF }}$	－11	－03	16 d	65	A	TAsci－t1LM
	Cimb	－ 81	－01				TaFt
	GTS	． 27	－00				Tape
G－406400 TAPE EAU CCATED Kapton／aceylic adh／E	GTS	－ 75	－01				Tak
GT 100 TAPE MiLAE COMPOSITE AS MYLAR／GT 100／MYLAK	GTS	－25	－08	54	149	AIn	Tape composite
	MAM	－ 80	． 04	24H	100	$\mathrm{E}=2$	Tape
M⿴囗 TAPE X－1181 COEPEA FOIL／ACKYLIC ADH／E（BCC4868P）	Mma	$\bullet 31$	－04				Tapt
MY M TAPE X－1205 KAETCN／ACEYLIC ADH／E	Mag	－38	－02	1 H	125	AIN	Tate
	${ }^{\text {mbs }}$	－20	－05	16H	120	E－2	Tapt
	MMif	－18	－03				Ta_{4}
MYM TAPE	${ }_{\text {Mng }}$	－80	－02				TAPL
M9\％SAPE Y－9360 ALLM／i1YAB／ACMYLIC ADH／K	MAM	－34	－01				Tatic
MMM TAPE Y－9460 ISCTAL ACEYLIC TKANSFEE PILH		－85	－00				Trabskie tape
MSM TAPE 415 SCOICHPAE PILM／2 SIDE ACRYLIC ADH／F	\％ 4	－91	－01				2
MMM TAPE 4205 MIL LEAD FOLL／ AUBEER SASE ADH／F	HMM	－09	－00				MdPt
MAG TAPE 425 ALUA EOIL／SYATHETIC AD	HMM	－． 24	－00				TAPE
GYA TAPE 4253 MIL ALUM PULL／ACRYLIC ADH／P	M M	－20	－ 1				TAPE
MYM TAPE 467 TEAASEES FILM ACAYLIC／FUIL SANDMICA	MMA	－88	－02	24H	75	AIL	THA SFER TAPE
HML TAPE 5 POLYESTYR／ACRYLIC ADH／R	MEA	－ 56	－00				THALSELIC TAPE
MYM TAFE S411 KAETCN／SILICONE ADH／E	${ }^{\text {MMA }}$	－58	． 03	${ }^{18}$	125	${ }^{\text {a }} \mathrm{Ir}$	TAPb
GMM TAPE O T TEFLCA TFE／THERMUSET SILLICOAE ADH／R	${ }_{\text {HMM }}$	－14	－ 37	3H	260	AIE	TARE
MH TAPE 63 TEFLCN TFETHESMOSET ACRYLIC ADH／R	Mag	－33	.03				TAPE
MYM TAPE 70 SELICCAE	MMM	－29	．09	24 H	121	E－3	TAFe
	M8H	． 54	． 07				Tave
MAM TAPE BSO ALUEINILED POLYESTE H／ACUYLIC ADE／R	$\mathrm{MMg}_{\text {M }}$	－78	－49				TAPS
MMM TAPE 850 TGAASEAFEAT PULYESTER／ACRYLIC ADH／F	84	－ 61					TAAPE
MYH TAPE 852 ALUM／MYLAL／ACRYLIC ADH／F	MMH	－ 79	－02				Tape
MYSTIK TAPE 6401 PCLYESTEE PILM／ACHYLIC ADH／F	${ }_{B C M}$	． 51	－06				TA P
MYSTIh TAPE 7341 PCLYESTERACCRYLIC ADH／R	${ }_{\text {BCM }}$	－23	－04				TAPS
MYSTIK TAFE 7301 KAPTON／SILICONE ADH／F	${ }^{\mathrm{BCH}}$	－23	－03	48H	150	E－3	CAPE
MYSTIK LAPE $7362 \mathrm{KAPTON/SILICONE} \mathrm{ADH/K}$	BCM	． 65	03	48i	100	E－6	hape
MYSTIK TAPE 7367 KAPTGE／ACEYLIC ADH	${ }^{\text {BCM }}$	－63	－04				TAFE
MYSTIK TAPE 7367 KAP＇ON／ACBYMIC ADH／E	${ }^{\text {BCH }}$	－65	－02	24H	93	A In	TAPE
MYSTIK TAAEE 7375 TEDLAE／ACBYYIIC ADii／h M HiTE	${ }^{\text {BCM }}$	－ 34	－ 00			Ax	Taper
HYSTIK TAPE 74364.5 MIL	${ }^{\mathrm{BCH}}$	－2 24	－． 06				Taps
MYSTIK TAEE $74 ⿹ 2$ ALUM POILAACCYYLIC ADH／A	${ }^{\text {BCM }}$	－25					
	${ }_{3 \mathrm{BCM}}$	－21	－80				TAPb
PEGMACEL TAPE EE－7240 GLasS Cluthacifllic adior	PEK	－45	． 03				TALE

SECTIOA 16 -7- TAPES

mateeiad.	MPR CODE	\%TML	¢CVCM	$\begin{aligned} & \text { CUEE } \\ & \text { TIME } \end{aligned}$	CURE	ATaUs	ARELCATION
PERMACEL TAPE EE-7390 MYLAE YILM/ACBYLIC ADH/R							
PERMACEL TAPE 233 GLASS CLOTH/ACRYLIC ADH/E	PER	-47	- 0				TAPC
PERMACEL TAPE 224 KAPTON/ACRYLIC ADH/E	PEE	. 60	-0				HAPL
SB 1020 GLASS REINFORCED SILICONE ADHERE TAPE	PER	-25	- 09				Tars
STRIP-N-STICK 200 A RED SILICONE SPONGE/ACBYLIC ADH/F	CHE	-30	-10	16d	125	$\mathrm{E}-2$	Tapa
TEMP-ETTAPE C-400 TEFLON PEP/SIL ICONE ADH/E	CHR	-27	. 09				CASE
TEMP-R-TAPE G-55 F SILEHGLASS/ACRYLIC ADH/E	CHR	- 30	-05				Tavi
TEMP-R-TAPE G-569 FIEERGLASS/ACRYLIC ADH/F/SIL ADH/F	CHR	-14	- 02	4 H	205	AIH	TAPL
TEMP-R-TAPE HM-225 TEFLON TPE/SILICONE ADB/P	Cing	-32	-15				Cape
							¢apt
TE TP - -T APE HM-650 TEFLON TFE/SILICONE ADH/F	CHE	$\bullet 14$.07				Tara
TEMP-R-TAPE HE-650 TEFLON TFE/SILICONE ADH/K	CHR	$\bullet 19$. 08				Tapt
TEGP-R-TAPE K-102 KAPTON/ACRYLIC ADH/F	CHR	-65	-01				TAPE
TEAP-R-TAPE M-60/TAANSPARENT POLYESTEA/ACRYLIC ADH/P	CHR	- 78	-01				$\mathrm{I}_{4} \mathrm{~S}^{\prime}$
	CHR	. 48	. 04				'1428
TEMP-R-TAPE H-706/ WHITE POLYESTEN/FR ACRYLIC ADH/E	CHK	. 61	-02				2 Sided tape
TEMP-R T TAPE M-97 MYLAK/ACRYLIC ADH/YELLUW/F	CHR	-52	-07				Thes
TEMP-R-TAPE M-99 HYLAR/ACEYLIC ADH/F YELLON	CHE	.37	-05				TAPL

SECTIOA 17 －－THEKMAL GBEASES

mat eaial	MER CODE	＊TH1	\＃CVCM	$\begin{aligned} & \text { CUKE } \\ & \text { TIME } \end{aligned}$	$\begin{aligned} & \text { CUBC } \\ & \text { TEMP } \end{aligned}$	ataus	AEELICATICN
CHOMERICS 4220 SILVEE PILIED SILICUNL GHEASE	CHO	－	－ 10				Cuad thease
C5－1102 SILICONE GEEASE	DCC		． 02				Tucndai Gineast
EここOTHERM TC 4 PILIED HEAT SINK GEEASE	EMC		． 05				TuEay uREASE
ECCOTHERM TC－S FILIED HEAT SINK GREASE	EMC	－	－ 10				2口EMA UREASE
G－641 INSULGEiCASE	GEC	－	－07				THELAAM GKEASE
	MCG		－0				Cundutamaje

SECTION 18 -- MI SCELLAAEOUS

material	$\begin{aligned} & \text { MFR } \\ & \text { CODE } \end{aligned}$	*T	XCVCM	CURE TIMG	$\begin{aligned} & \text { CURE } \\ & \text { TEMP } \end{aligned}$	ATM	arPLICATION	
ALUMINIZED MYiAk 100 H 42	STC	13	01					
ALUSINTZED MYLAR/LACEON DUPONT ADH 46960	22	3	09				KGYLELTOR	
	APC	- 56	- 03	2H	60	Aİ	COND EThM	
B-0 10 UNBONDED B FIBEA B-010 UNBONDED B FIBER	JOM	- 21	- 01	2H	6	ALa	ADSUSATEN	
BORON NITRIDE - HEAT SINK WASHER	JCC	- 17	- 00	1 H	482	AIV	casubarion	
CROFON LIGHT CONL CIEAK NO JACKET	DJP	.37	-08				MASaEa	
CROFOiN 1 COND/JACKIT YELLOW CODE	DUP	-23	- 05				FIBSE UPTIC	
CROFON 1 YELLOW CCIED JACKET ONL Y	DUP	-26	- 03				FLBER UPTIC	
CROFON 3 COND/JACKET GREEN CODE	DUP	-26	-06				F\&BEA OPTIC	
CROFON 5 COND/JACKET PUEPLECODE	DUP	- 27	- 04				FLDEX UP9IC	
D\% 2106 SILICONE RESIN	DUP	- 23	- 02				FIBEX OPTIC	
D 93-500 UACUREI SO NUMER LOT E2467-133	DCC	- 06	. 02				SLLICUNE	
DY NA-EELT EEFEACTOEY EIDER FELT - ETOH MASH	JOM	. 09	.01				Dadetin FLUID	
DYNA-FLEX REFGACTOEY FIBEE FELT	JOM	$\bullet 13$	-05				PbLT	
	EMC	-49	. 00				çRol	
EPCOSORB AN 74 METHANOL WASH ${ }^{\text {E }}$ - 3	EMC	- 51	.05	21 H	100	aIn	ABSUGDANT	
EPON 828/VERSAMID 125/MD AS 100/21/13 BM EPOXY	SHL	- 70	.01	${ }_{4}^{4 H}$	71	AI曻	ADGASIVE	
FIBER OPIIC CABLE CC-100	SHL	. 60	- 00	1H	149	AIK	ADats 4 VE	
PIBER CPTIC CABLF 5030 ST - NU SILICONE	Pit	-28					Phoka UPTIC	
FMD 60-FURF PIEERGIASS BATTING	OII	. 69	0				FALEH OPTIC	
PJRMVAR MAGNET WIRE COATING 105 DEG C USE	222	-23	.04				IaSulaticn	
FÓ 1100 CONTROLLED VOLATILITY FLUID	DCC	.07	-04				SAEL CUATING	
Fz-1101 CONTROLLED VOLATLLITY FiUID	DCC	-05	-03				SLLOCUNE FLUID	
FG-1105 CONTROLLED VOLATILITY PLUID	DCC	- 17	. 06				Sibicude PIUID	
GFRP TUBE	DCC	- 11	- 07				S\&LICUEE PLUID	
GLASS/POLYESTLR IUEE	PO2	.68	-0				STHUCTUEAL	
HEATER KAETON TS E-9485	STS	. 58	-01				scauciubal	
HIGEK-707-L-9	GEC	-07	. 00				Heaich	
INSULA TION BLANKET MULTILAYER	NMC	. 61	-03				DLALCTELC	
	224	-37	-00				CAMLAATE	
LIGNEATE REXIELITE S200 AGO-1016	2 zz	- 88	. 00				Ladi datE	
MLCROLITEFELT AA C.6\#/CU FT W/SILICUNE BIND-CENTET	JOM	$\begin{array}{r}\text { + } \\ \hline .24\end{array}$. 07				Gag huiod dund	
				4	200 330	$\begin{aligned} & \text { A } 1 / \mathbb{K} \\ & \text { A } \end{aligned}$	LASULATION	
MLN-K 130i	J0M	- 20	. 00				LMSULATICN	
MYM TARE ALIM/HYLAF/ALUM/ACRYLIC ADH/E (Y-9360)	MMM	- 79	. 06				Lid SjLaticon	
AS 224 MH5 YOLD EELEASEON FOIL	HSI	.37	-08				Paps	
NICKEL BLACK/ELEECTFOLESS PLATED ALUMINUM	GSC	-32	. 04				Culu kelease	
NICKEL DULL PLATEL ALUMINUM	GSC	- 15	. 03				cuatimit	
NICKLE B GLOSSY PLATED ALUMINUM	GSC	- 12	. 05				cuatiag	
RTV $602 / \mathrm{SACC} 05$ AS 0.25% CAT DEYOI BATCH 10	GSC	- 28	. 05				cuailag	
ETV 602/SRC O5 AS 0.25\% CAT DEVOL BATCH 10	GSC	- 33	- 01	7 D	25	A I*	YuPram	
RTV 602/SiC 05 AS C. 25% CAT DEVOL BATCH 20	GSC	-39	.02	7 D	25	Aİ	purtias	
RTV $602 / S R C 05$ AS 0.25% CAT DEVOL BATCH 25	GSC	. 57	-0	7 7	25	AIk	POREAM	
SA H SILICONE RESIN RIGIDIZED W/SILICARIBERS	GEV	- 20	. 02	16 H	204	AIR	Puticim	
SCOTCHMATE POLYESTEE FASTENER HOOK/NAP	MM	-39	.03	16H	204	AIE	ABLATA S	
Sioz D 10-10 FASZENEE GLAY ANODIZE	GEC	-10	. 02	3 H	204	A IR	SHACUNE	

section 18 -- miscellandous

nin
121

APPENDIX

CODE LIST OF MANUFACTURERS

CODE LIST OF MANUFACTURERS

\(\left.$$
\begin{array}{ll}\text { AAC } & \begin{array}{l}\text { Ablestick Adhesive Company } \\
\text { Abletech Division } \\
\text { Gardena, California }\end{array} \\
\text { AAI } & \begin{array}{l}\text { Anchor Alloys, Incorporated } \\
\text { Brooklyn, New York }\end{array} \\
\text { AAP } & \begin{array}{l}\text { Advanced Absorber Products } \\
\text { Amesbury, Massachusetts }\end{array} \\
\text { AAT } & \begin{array}{l}\text { Arno Adhesive Tapes, Incorporated } \\
\text { Michigan City, Indiana }\end{array} \\
\text { ABC } & \begin{array}{l}\text { Andrew Brown Company } \\
\text { Los Angeles, California }\end{array} \\
\text { ABR } & \begin{array}{l}\text { Airborn, Incorporated } \\
\text { Addison, Texas }\end{array} \\
\text { ACA } & \begin{array}{l}\text { Amphenol Corporation } \\
\text { Division Bunker Ramo } \\
\text { Scarborough, Ontario, Canada }\end{array} \\
\text { ACC } & \begin{array}{l}\text { American Chain \& Cable Company } \\
\text { Waterbury, Connecticut }\end{array} \\
\text { ACD } & \begin{array}{l}\text { American Cyanamid Company }\end{array} \\
& \begin{array}{l}\text { Bloomingdale Department } \\
\text { Havre de Grace, Maryland }\end{array} \\
& \begin{array}{l}\text { Formica Corp. } \\
\text { Cincinnati, Ohio }\end{array}
$$

Allied Chemical \& Dye Company

Edgewater, New Jersey

(Celetex Division)

Acheson Colloids Huron, Michigan

(Division of Acheson Industries, Incorporated)\end{array}\right\}\)| Plastics \& Resin Division |
| :--- |
| Wallingford, Connecticut |

ACL	Armstrong Cork Company Lancaster, Pennsylvania
ACM	Allied Chemical Corporation Mesa Products Los Angeles, California
ACO	Advanced Coatings \& Chemicals Temple City, California
ACP	ACPO Incorporated Florham Park, New Jersey
ACR	ACME Resin Corporation Forest Park, Illinois
ACT	Acton Research Company Acton, Massachusetts
ADC	Applied Design Company, Incorporated Tanawanda, New York
ADF	American Durafilm Company, Incorporated Newton Lower Falls, Massachusetts
ADL	Arthur D. Little, Incorporated Cambridge, Massachusetts
AEC	Adhesive Engineering Company San Carlos, California
AEL	Appleton Electric Company Chicago, Illinois
AEW	Alpha Wire Corporation Linden, New Jersey
AFP	Applied Fibers \& Plastics Morristown, New Jersey
AGI	AGI Rubber Company Bridgeport, Connecticut
AIR	Atlantic India Rubber Works Chicago, Illinois
ALL	Allaco Products, Incorporated Westbury, New York

ALR	Allied Resin Corporation East Weymouth, Massachusetts
AMA	American Aerosols Incorporated Holland, Michigan
AMC	Amicon Corporation Lexington, Massachusetts
AME	AMETEK Haveg Division Wilmington, Delaware
AMH	American Hoechst Somerville, New Jersey
AMI	American Microwave Industries Waltham, Massachusetts
AMP	AMP Incorporated Harrisburg, Pennsylvania
AMR	AMR Industries Incorporated Canoga Park, California
AMS	American Metaseal Company Carlstadt, New Jersey
ANS	Arthur Ansley Manufacturing Company Perkasi, Pennsylvania
AOC	AMOCO Chemicals Corporation Chicago, Illinois
AOP	American Optical Company Southbridge, Massachusetts
APC	Armstrong Products Company, Incorporated Warsaw, Indiana
APF	Avery International
	Fasson Industrial Division Painesville, Ohio
	Avery Label Monrovia, California

API	AREMCO Products Incorporated Ossining, New York
APL	Applied Physics Laboratory Johns Hopkins University Laurel, Maryland
APP	Applied Plastics Company El Segundo, California
APS	Advanced Process Supply Company Chicago, Illinois
APX	APEX Mills Incorporated New York, New York
ARC	Alloys \& Research Company Cleveland, Ohio
ARM	John L. Armitage \& Company Newark, New Jersey
ARP	American Reinforced Plastics Company Los Angeles, California
ART	Artus Corporation Englewood, New Jersey
AST	Astro Chemical Company Schenectady, New York
ATC	American Thread Company New York, New York
ATL	Atlantis Laminates Franklin, New Hampshire
ATP	Atlas Plastics Buffalo, New York
AUC	Angelica Uniform Company St. Louis, Missouri
AUG	AUGAT Incorporated Attleboro, Massachusetts

AUI	Automation Industries, Incorporated Danbury, Connecticut
AWC	Alpha Wire Company Elizabeth, New Jersey
BAC	Bacon Industries, Incorporated Watertown, Massachusetts
BAI	Barry Isolator Company Watertown, Massachusetts
BAK	Baker Castor Oil Company Bayonne, New Jersey
BAL	Ball Chemical Company Glenshaw, Pennsylvania
BAP	BEL-ART Products Pequannock, New Jersey
BAR	Barry Wright Barry Division Watertown, Massachusetts
BAX	Baxender Chemicals Europe
BAY	Bay Associates Palo Alto, California
BCC	BASF Colors and Chemicals, Incorporated New York, New York
BCI	B \& C Insulation Products Iselin, New Jersey
BCL	Berser Chemicals, Limited New Castle, England
BCM	The Borden Company New York, New York
	The Borden Chemical Company Philadelphia, Pennsylvania
	Mystik Tape Northfield, Illinois

BDC	Brod-Dugan Company St. Louis, Missouri
BEE	Bee Chemical Company Lansing, Illinois
BEH	Berkshire Hathaway, Incorporated New Bedford, Massachusetts
BEL	Balsa Ecuador Lumber Corporation New York, New York
BEN	The Bendix Corporation Teterbord, New Jersey
BER	The Berquist Company Minneapolis, Minnesota
BFG	B. F. Goodrich Chemical Company Cleveland, Ohio
BGG	The Biggs Company Santa Monica, California
BHM	Bentley-Harris Manufacturing Company Lionville, Pennsylvania
BIC	British Insulated Callender's Cables, Limite Liverpool, England
BID	James G. Biddle Company Plymouth Meeting, Pennsylvania
BIS	Bishop Electric Cedar Grove, New Jersey
BIV	BIVAR, Incorporated Santa Ana, California
BIW	Boston Insulated Wire and Cable Company Dorchester, Massachusetts
BLA	H. L. Blachford, Incorporated Troy, Michigan
BLD	Belden Manufacturing, Company Chicago, Illinois

BLH	BLH Electronics Incorporated (Baldwin-Lima-Hamilton) Waltham, Massachusetts
BNL	Bausch \& Lomb Buffalo, New York
BOA	Boeing Aerospace Company Seattle, Washington
BOC	Bray Oil Company, Incorporated Los Angeles, California
	Bostik-Finch is coded FPC
BPS	Bronze \& Plastics Specialties Baltimore, Maryland
	Brady Labels are coded WHB
BRN	BICRON Corporation Newbury, Ohio
BRX	Brand-Rex Company Willimantis, Connecticut
BWC	Borg-Warner Chemicals Parkersburg, West Virginia
CAC	Carroll Products, Incorporated Farmingdale, Long Island, New York
CAF	Cali-Foam Santa Ana, California
CAL	Calabra Plastics Upper Darby, Pennsylvania
CAM	Carmac Company Shawnee, Kansas
CAN	ITT Cannon Electric Los Angeles, California
CAR	Carter's Ink Company Cambridge, Massachusetts

CAS	Castall Incorporated East Weymouth, Massachusetts
CAU	L. D. Caulk Company Milford, Delaware
CBC	CBC Corporation Marathon Shores, Florida
CCC	Chemical Division, Chrysler Corporation Trenton, Michigan
CCD	Colgate Chemical Company East Brunswick, New Jersey
CCE	Chemical Coatings \& Engineering Company Media, Pennsylvania
CCL	C. P. Clare \& Company Chicago, Illinois
CEL	Cellastro Corporation Ypsilanti, Michigan
CFC	Crawford Fitting Company Cleveland, Ohio
CFP	Clark Foam Products Corporation Chicago, Illinois
CHE	Chemplast Incorporated Wayne, New Jersey
CHO	Chomerics Incorporated Woburn, Massachusetts
CHR	Connecticut Hard Rubber Company New Haven, Connecticut
CIB	CIBA Corporation Summit, New Jersey
CIC	Cicoil Corporation Chatsworth, California
CIN	Cinch Connector Division TRW Incorporated Elk Grove, Illinois

CIP	Crown Industrial Products Hebron, Illinois
CIR	Chicago Ink \& Research Company Antioch, Illinois
CLI	Caig Labs Incorporated Westbury, New York
CLY	Clayborn Labs Incorporated Santa Ana, California
CMC	Circuit Materials Company Princeton, New Jersey
CME	Cal-Metex Corporation Inglewood, California
CMS	Coast Manufacturing \& Supply Company Livermore, California
CMI	Cambridge Thermionic Corporation Cambridge, Massachusetts
CNS	Celanese Corporation New York, New York
COM	Compac Corporation Newark, New Jersey
CON	CONAP, Incorporated Allegany, New York
COT	Cotronics Corporation Brooklyn, New York
COX	Cox \& Company, Incorporated New York, New York
CPC	Crest Products Company Santa Ana, California
	Chemical Products Research is coded UJC
CPT	Coast Pro-Seal Division Essex Chemical Corporation Compton, California

CRE	Care Laboratories, Incorporated Collegeville, Pennsylvania
CPI	Chart-Pak Incorporated Leeds, Massachusetts
CRB	Carborundum Company Plastics \& Adhesives Department Atlanta, Georgia
CRP	California Reinforced Plastics (Address Unknown)
CRY	Cryton Optics Roslyn, New York
CTC	Columbia Chase Corporation Humiseal Division Woodside, New York
CTD	Carlisle Corporation Tensolite Insulated Wire Company, Incorporated Carlisle, Pennsylvania
CTL	Chemical Technology Laboratories Los Angeles, California
CUM	Custom Materials Incorporated Chelmsford, Massachusetts
CWA	Dayton Chemical Company Dayton, Ohio
DAD	Consolidated Vacuum Corporation Rochester, New York
Bronx, New York	

DBP	DB Products Pasadena, California
DCC	Dow Corning Corporation Midland, Michigan
DCI	Danvers Chemical Industries Incorporated Danvers, Massachusetts
DEC	Dow-Elco Company Montibello, California
DEF	Deft Chemical Coatings Torrence, California
DEL	Delron Fastners Santa Ana, California
DES	Desoto Incorporated Des Plains, Illinois
DEU	Deutsch Company Los Angeles, California
DEV	Chemical Development Corporation DEVCON Corporation Danvers, Massachusetts
DEX	Dexter Corporation, Midland Division Hayward, California
DIC	Disogren Industries Corporation Manchester, New Hampshire
DIL	Dilectrix Corporation Farmingdale, Long Island, New York
DIN	Dodge Industries Hoosick Falls, New York
DIS	Dielectric Sciences Woburn, Massachusetts
DIV	Diversified Marine Industries Norwalk, Connecticut
DIX	Dixon Corporation Briston, Rhode Island

DNN	Dennison Manufacturing, Company Framingham, Massachusetts
DNS	Dennis Chemical Company
	St. Louis, Missouri
	John C. Dolph Company is coded JCD
DOU	Douglas Elastomers Akron, Ohio
DOW	Dow Chemical Company Midland, Michigan
DRC	Davol Incorporated Providence, Rhode Island
DRI	Drilube Company Glendale, California
DSC	D. Strauss Company, Incorporated New York, New York
DSL	Dowty Seals Limited Ashcurch, Tewksbury, England
DTC	Devon Tape Corporation Carlstadt, New Jersey
DUN	Dunmore Corporation Newtown, Pennsylvania
DUP	E. I. DuPont de Nemours and Company, Incorporated Wilmington, Delaware
	Elastomer Chemicals Department
	Fabrics and Finishes Department
	Film Department
	Plastics Department
DXN	Joseph Dixon Crucible Company Jersey City, New Jersey
EAC	Eastman Chemical Products Company Kingsport, Tennessee

EAS	Eastman Kodak Company Rochester, New York
ECC	Electronized Chemicals Corporation Burlington, Massachusetts
ECI	Eldre Components Incorporated Rochester, New York
ECP	Eclipse-Pioneer Division Teterbord, New Jersey
EDC	Eldec Corporation Lynnwood, Washington
EDD	Eddington Threat Manufacturing Eddington, Pennsylvania
EFH	Electro-Flex Heat, Incorporated Bloomfield, Connecticut
EFI	Electrofilm Incorporated North Hollywood, California
EHC	Englehard Minerals \& Chemicals Corporation Newark, New Jersey
	Electrical Refractories East Palistine, Ohio
ELR	Englehard Industries Division Newark, New Jersey
ELB Segundo, California	
	Elmhurst Rubber Company Elmhurst, New York
	Minerals \& Chemicals Division Edison, New Jersey
Electroply, Incorporated	

ELS	Electro-Science Laboratories, Incorporated Pennsauken, New Jersey
EMC	Emerson \& Cuming Incorporated Canton, Massachusetts
EML	Electro Mechanisms Limited England
ENJ	Enjay Chemical Company New York, New York
EON	EON Corporation Los Angeles, California
EPC	Epoxylite Corporation South El Monte, California
EPK	Epoxy Technology Incorporated Billerica, Massachusetts
EPO	Epoxy Products Company Irvington, New Jersey
EPP	Eppley Laboratories Incorporated Newport, Rhode Island
EPX	Epoxy Pack Company Los Angeles, California
ERP	Expanded Rubber \& Plastics Gardena, California
ESX	Essex Chemical Corporation Compton, California
EWC	Elco Webster Corporation Watertown, Massachusetts
EXX	Exxon Chemical Company, USA Houston, Texas
FAL	Fenner America Limited Middletown, Connecticut
FAR	Farbenfabriken Bayer AG Germany

	Fasson is coded APF
FBC	Fiber-Resin Corporation Burbank, California
FBR	Fiberfil Division Dart Industries Evansville, Indiana
FCC	Fluorocarbon Company Sunnyvale, California
	Reeves Rubber Division San Clemente, California
FED	Federal Pen Company Jersey City, New Jersey
FEN	Fenwal Industries Ashland, Massachusetts
FER	Ferro Corporation Cleveland, Ohio
FHB	H. B. Fuller Company
	St. Paul, Minnesota
FIB	Fiberite Corporation Winona, Minnesota
FItamford, Connecticut	

FLL	Flormel Company Bayside, New Jersey
FLO	Floquil Products Incorporated Cobleskill, New York
FLX	Flexaust Company Division of Callahan Mining Corporation Amesbury, Massachusetts
FMC	FMC Corporation Industry, California
FOF	Foam Fab Company Franklin, Massachusetts
FOM	Fomo Products Akron, Ohio
	Formica Corporation is coded ACC
FPC	Bostik-Finch, Incorporated (Subsidiary of USM Corporation) Torrance, California
FPI	Furane Plastics Incorporated Los Angeles, California
FPL	Firestone Plastics Company Pottstown, Pennsylvania
FRA	Fralock, Division of Lockwood Industries Van Nuys, California
FRC	Fargo Rubber Corporation (Address Unknown)
FRE	Freeman Chemicals Port Washington, Wisconsin
FRL	Fabric Research Labs Denton, Massachusetts
FUL	Fuller Company (H. B. Fuller Company St. Paul, Minnesota - As Above)

FXC	Flexco Company Dennville, New Jersey
GAC	Goodyear Aerospace Corporation Akron, Ohio
GAR	Garland Manufacturing Company Saco, Maine
GBE	Gudebrod Brothers Silk Company Incorporated Electronics Division New York, New York
GCC	General Cement Rockford, Illinois
GCE	G. C. Electronics Company Rockford, Illinois
GDE	General Dynamics, Convair Division San Diego, California
GEC	General Electric Company
	Plastics Department Pittsfield, Massachusetts
	Silicone Products Department Waterford, New York
	Wire and Cable Department Bridgeport, Connecticut
GEN	General Electronics Incorporated Newark, New Jersey
GEV	General Electric Company Reentry \& Environmental Systems Valley Forge, Pennsylvania
GHI	Grayhill Incorporated La Grange, Illinois
GHT	G \& H Technology Incorporated Santa Monica, California

GLC	General Latex \& Chemical Corporation Cambridge, Massachusetts
GLI	Garlock Incorporated Palmyra, New York
GMB	M. Grumbacher Incorporated New York, New York
GMC	General Mills, Chemical Division Kankakee, Illinois
	W. L. Gore Associates is coded WLG
GOL	Goldenwest Products Cedar Ridge, California
GOR	Gore Company Newark, Delaware
GPM	General Plastics Manufacturing Company Tacoma, Washington
GRC	Goshen Rubber Company Goshen, Indiana
GRE	Greene Rubber Company Cambridge, Massachusetts
GRO	Grow Chemical Corporation Cleveland, Ohio
GRU	Grumman Aerospace Corporation Bethpage, Long Island, New York
GSC	Goddard Space Flight Center Greenbelt, Maryland
GSD	GS Dielectric Communications Littleton, Massachusetts
GTR	General Tire \& Rubber Company Akron, Ohio
GTS	G. T. Schjeldahl Company Northfield, Minnesota

\(\left.$$
\begin{array}{ll}\text { HAB } & \begin{array}{l}\text { Hanline Brothers, Incorporated } \\
\text { Baltimore, Maryland }\end{array} \\
\text { HAC } & \begin{array}{l}\text { Hughes Aircraft Company } \\
\text { Culver City, California }\end{array} \\
\text { HAN } & \begin{array}{l}\text { Handschy Chemical Company } \\
\text { Chicago, Illinois }\end{array} \\
\text { HAR } & \begin{array}{l}\text { Harshaw Chemical Company } \\
\text { Solon, Ohio }\end{array} \\
\text { HAV } & \begin{array}{l}\text { Haveg Industries } \\
\text { Winodski, Vermont }\end{array} \\
\text { HCC } & \begin{array}{l}\text { Hadbar is coded PPH }\end{array} \\
\text { HDM } & \begin{array}{l}\text { Lord Corporation } \\
\text { Erie, Pennsylvania }\end{array} \\
\text { HEM } & \begin{array}{l}\text { Hygienic Dental Manufacturing Company } \\
\text { Akron, Ohio }\end{array} \\
\text { HEQ } & \begin{array}{l}\text { Hettinger, Baldwin \& Messtechnik }\end{array}
$$

Netherlands\end{array}\right\}\)| Herculite Products Incorporated |
| :--- |
| HER |

HOB	Howe \& Bainbridge Incorporated Boston, Massachusetts
HOI	Howe Industries
	N. Hollywood, California
HPC	Hastings Plastics Company
	Santa Monica, California
HSD	Hawker \& Siddeley Dynamics, Limited
	London, England
HSP	High Strength Plastics Corporation
	Chicago, Illinois
HTC	Heath-Tecna Corporation
	Kent, Washington
HTR	Hi-Temp Resins Incorporated
	Stamford, Connecticut
HTW	Hi-Temp Wires Company
	Westburg, Long Island, New York
HUE	Hughes Associates
	Excelsior, Minnesota
HUL	Hulz A. G.
	Germany
	Humiseal is coded CTC
HWC	Hope Webbing Company, Incorporated
	Providence, Rhode Island
HYD	Hydron Laboratories Incorporated
	New Brunswick, New Jersey
HYS	Hysol Division
	The Dexter Corporation
	Olean, New York
IBM	IBM Corporation
	Armonk, New York
ICA	Imperial Chemical
	Ayrshire, Great Britain

ICI	ICI United States Incorporated Wilmington, Delaware
ICD	Icore Wire \& Cable
	Santa Barbara, California
IDE	Ideas Incorporated
	Beltsville, Maryland
IER	International Electronic Research Corporation Burbank, California
IMI	IMI-Tech Corporation
	Elk Grove Village, Illinois
IMP	Imperial Eastman
	Chicago, Illinois
IND	Independent Ink Incorporated
	Gardena, California
INK	Inks and Specialties
	Irving, Texas
INR	Industrial Electronic Rubber Company
	Twinsburg, Ohio
INS	Insta-Foam Products
	Addison, Illinois
INT	International Harvester
	Chicago, Illinois
INX	INSL-X Company
	Brooklyn, New York
IPI	Impact Plastics Incorporated
	Gastonia, North Carolina
IRC	Isochem Resins Company
	Lincoln, Rhode Island
IST	Insultab Incorporated
	Woburn, Massachusetts
ITR	IIT Research Institute
	Chicago, Illinois

ITT	International Telephone \& Telegraph Corporation
	ITT Aerospace-Optical Division
	Fort Wayne, Indiana
	ITT Industrial Products Division
	San Fernando, California
JAC	Jaco Manufacturing Company
	Berea, Ohio
JAS	Jasper Rubber Company
	Jasper, Indiana
JCD	John C. Dolph Company
	Monmouth Junction, New Jersey
JMC	Jordon Marsh Company
	Boston, Massachusetts
JMM	Johnson Massey Metals Limited
	London, England
JOM	Johns-Manville
	New York, New York
JSC	Johnson Space Center
	Houston, Texas
JSP	Johnston Specialty Coatings
	Huntington Beach, California
KAM	Kamatics Corporation
	Bloomfield, Connecticut
KAS	Kasen Industries
	Newark, New Jersey
KCC	Kimberley-Clark Corporation
	Neenah, Wisconsin
KCF	Keene Corporation
	Chase Foster Division
	Bear, Delaware
KCO	Kenics Corporation
	Danvers, Massachusetts

KCW	Keane Corporation Wheeler Lighting Division Wilmington, Massachusetts
KEE	Keeler \& Long Watertown, Connecticut
KEN	Kendall Company Wellesley Hills, Massachusetts
KEY	Key Polymer Corporation Lawrence, Massachusetts
KMC	Kingsley Machine Company Hollywood, California
KOK	Kokusai Chemicals, Japan
KOL	Kollmorgen Corporation Multiwire Division Northampton, Massachusetts
KOP	Koppers Company Irving, Texas
KRC	Kirkhill Rubber Company Brea, California
KST	King-Seeley Thermos Company Prospect Heights, Illinois
LAM	Lamart Corporation Clifton, New Jersey
LCC	Leffingwell Chemical Company Brea, California
LCR	Leach Corporation, Relay Division Los Angeles, California
LDD	Labarge, Dorflex Division Santa Ana, California
LDV	LDV Electroscience Syracuse, New York

LEC	The Leal Company Camden, New Jersey
LEM	Lem Products Mt. Vernon, New York
LES	Lundy Electronics \& Systems, Incorporated Glen Head, New York
LFM	L. Frank Markel \& Sons Norristown, Pennsylvania
LLS	Lesonal Werke-Lechler \& Sons Stuttgardt, Germany
LNP	Liquid Nitrogen Processing Corporation Malvern, Pennsylvania
LOC	Lockheed Missile \& Space Company Palo Alto, California
LOR	Lord Manufacturing Company Erie, Pennsylvania
LRC	Langley Research Hampton, Virginia
LTC	Loctite Corporation Newington, Connecticut
LUD	Ludlow Corporation Needham Heights, Massachusetts
LUS	Lusol Products El Monte, California
MAG	Magic American Chemical Corporation Cleveland, Ohio
MAQ	Markel, L. Frank \& Sons, Incorporated Norristown, Pennsylvania
MAR	Markel Rubber Products Bronx, New York
MAS	Mar Glass Sherbourne, England

MBI	Master Bond Incorporated Teaneck, New Jersey
MCA	The Mica Corporation Culver City, California
MCC	Micro-Circuits Company New Buffalo, Michigan
MCG	McGhan Nusil Corporation Carpinteria, California
MEI	Micro Electronics, Incorporated (Address Unknown)
MEL	Melrose Nameplate Oakland, California
MEP	Mereco Products Division Metachem Resins Corporation Cranston, Rhode Island
MER	Meridian Laboratory Incorporated Middleton, Wisconsin
MET	Metex Corporation Edison, New Jersey
MIC	Microtech Incorporated Microdot Incorporated Masadena, California
MIF	Folcroft, Pennsylvania
	Midland Industrial Finishes Company Waukegan, Illinois
Meene, New Hampshire	
Microwell Division Bowes Incorporated	
Mtamford, Connecticut	

MMC	Monte-Martini Company Italy
MMF	Morrison Molded Fiberglass Company Bristol, Virginia
MMM	Minnesota Mining \& Manufacturing Company St. Paul, Minnesota
	Adhesives, Coatings and Sealers Division
	Electro-Products Division
	Industrial Tape Division
	Magnetic Products Division
MMS	Mica \& Micanite Supplies Limited Barnsbury Square, London, England
MNC	Morton-Norwich Chemical Company Incorporated Chicago, Illinois
MNR	Minnesota Rubber Minneapolis, Minnesota
MOB	Mobay Chemical Company Pittsburgh, Pennsylvania
MOL	Stevens Molded Products Division Easthampton, Massachusetts
MON	Monsanto Company St. Louis, Missouri
MOR	Morgan Adhesive Company Stow, Ohio
MOS	Mosites Rubber Company Fort Worth, Texas
MOT	Motorola Incorporated Franklin Park, Illinois
MOX	Moxness Products Incorporated Racine, Wisconsin

MPC	Metal Photo Corporation Cleveland, Ohio
MPD	MPD Technology Corporation Ergenics Division Waldwick, New Jersey
MRC	The Marblette Corporation Long Island City, New York
MRG	Midland-Ross Corporation Grimes Division Urbana, Ohio
MSF	Marshall Space Flight Center Huntsville, Alabama
MSH	Micro Switch Division of Honeywell Freeport, Illinois
MSI	Miller-Stephenson Chemical Company Incorporated Danbury, Connecticut
MSL	Midland Silicones Limited England
MSY	Moore Systems Sunnyvale, California
MTC	Mark-Tex Corporation Englewood, New Jersey
MUH	Mullard House London, England
MUP	Mupak Brocton, Massachusetts
MWS	MWS Precision Wire Chatsworth, California
MYC	Mycalex Corporation Division Spaulding Fibre Company Incorporated Clifton, New Jersey
NAL	Nalgene Company Rochester, New York

NBC	National Beryllia Corporation Haskell, New Jersey
	NARMCO is coded WCN
NCI	NCI Incorporated West Palm Beach, Florida
NCO	New England Laminates Company, Incorporated Frazer, Pennsylvania
NDC	Naval Air Development Center Warminster, Pennsylvania
NEL	Nuclear Enterprises Limited Winnipeg Canada and San Carlos, California
NEO	Neosid Limited England
NEW	M. M. Newman Corporation Marblehead, Massachusetts
NLC	National Lead Company New York, New York
NMC	National Metallizing Division Standard Packaging Corporation Cranbury, New Jersey
NOC	Norton Company Worchester, Massachusetts
	Nortronics Chemical Company is coded SRW
	Norplex is coded UOP
NOI	NOPI Incorporated Hackensack, New Jersey
NOP	NOPCO Chemical Company Newark, New Jersey
NOR	Norland Products, Incorporated New Brunswick, New Jersey

NPC	Norton Plastics Akron, Ohio
NRL	Naval Research Laboratory Washington, D.C.
NSC	National Starch \& Chemical Company New York, New York
NSE	National Semiconductors Corporation Santa Clara, California
NTI	NT Industries Englewood Cliffs, New Jersey
NVF	NVF Company Yorklyn, Delaware
NYE	$\dot{\text { Wंm. P. Nye Incorporated }}$ New Bedford, Massachusetts
NYL	Nylok-Detroit Corporation Troy, Michigan
OAK	The Oakland Corporation Troy, Michigan
OCC	Orchard Company (Address Unknown)
OII	Owens Illinois Incorporated Toledo, Ohio
OLI	Olin Mathieson Chemical Corporation New York, New York
OMG	Oak Materials Group, Incorporated Fluorglas Division Hoosick Falls, New York
OPC	Organic Products Company Irving, Texas
ORC	Orcon Corporation Union City, California
ORT	Ortec Incorporated Oak Ridge, Tennessee

OXI	Oxford Instruments Columbia, Maryland
PAC	Pacific Resins \& Chemicals Incorporated Seattle, Washington
PAL	Palflex Products Corporation Putnam, Connecticut
PAN	Panduit Corporation Tinley Park, Illinois
PAR	Parsons of California Stockton, California
PCC	Pennsalt Chemicals Corporation New York, New York
PCE	Peterson Chemical Company Sheboygan, Wisconsin
PCK	PCK Technology Melville, New York
PCR	Polychrome Film Corporation Yonkers, New York
PDC	Phelps Dodge Copper Products Corporation New York, New York
PEL	Pelmor Laboratories, Incorporated Newtown, Pennsylvania
PEP	Port Erie Plastics Incorporated Harborcreek, Pennsylvania
PER	Permacel New Brunswick, New Jersey
PFC	Penntube Plastics Company Clifton Heights, Pennsylvania
PFI	Perma Foam Incorporated Irvington, New Jersey
PFP	Precision Fiberglass Products San Pedro, California

PHG	Philips Geldrop Netherlands
PHI	Poly-Hi Incorporated Fort Wayne, Indiana
PHP	Phillips 66 Petroleum Company Bartlesville, Oklahoma
PIC	Permabond International Corporation Englewood, New Jersey
PIE	Pierson Industries Palmer, Massachusetts
PIR	Pirelli Cable Corporation Union, New Jersey
PKA	Park Avenue (Address Unknown)
PLA	Precision Labs Cincinnati, Ohio
PLI	Permali Incorporated Mt. Pleasant, Pennsylvania
PLK	Plasti-Kote Division Medina, Ohio
PLL	Poly-Lok Fastners Corporation Cincinnati, Ohio
PLM	Palmer Products New York, New York
PMC	Plessey Manufacturing Company, Limited Kingsthorpe, Northampton, UK
POC	Polaroid Corporation Cambridge, Massachusetts
POL	Polygon Company Walkerton, Indiana
POR	Porex Incorporated Fairburn, Georgia

POT	Potomac Rubber Company Washington, D.C.
PPC	The Polymer Corporation Reading, Pennsylvania (Foreign Subsidiaries are Polypenco)
PPG	PPG Industries Adhesive Products Bloomfield, New Jersey
PPH	Purolator Products Incorporated Hadbar Division Alhambra, California
PRC	Products Research \& Chemical Corporation Burbank, California
PRD	Physics Research \& Development Incorporated Boulder, Colorado
PRG	Proctor \& Gamble Company Cincinnati, Ohio
PRP	Plastics \& Rubber Products Company Ontario, California
PSC	Parker Seal Company Culver City, California
PSL	Permagile-Salmon Limited Plainview, New York
PTI	Products Techniques Incorporated Los Angeles, California
PUT	Putnam Mills Corporation New York, New York
PVL	Pervel Industries Plainfield, Connecticut
QUA	Quantum Incorporated Wallington, Connecticut
QUE	Q-Max Corporation Marlboro, New Jersey
RAD	Radiation Incorporated Melbourne, Florida

\(\left.$$
\begin{array}{ll}\text { RAM } & \begin{array}{l}\text { RAM Chemicals } \\
\text { Gardena, California }\end{array} \\
\text { RAN } & \begin{array}{l}\text { Randolph Products Company } \\
\text { Carlstadt, New Jersey }\end{array} \\
\text { RAY } & \begin{array}{l}\text { Rayclad Tubes Incorporated } \\
\text { Menlo Park, California }\end{array} \\
\text { RCA } & \begin{array}{l}\text { Radio Corporation of America } \\
\text { Harrison, New Jersey }\end{array} \\
\text { RCC } & \begin{array}{l}\text { Raychem Corporation } \\
\text { Menlo Park, California }\end{array} \\
\text { RCI } & \begin{array}{l}\text { Rechmond Corporation } \\
\text { Redlands, California }\end{array} \\
\text { REA } & \begin{array}{l}\text { REA Magnet Wire Company } \\
\text { Fort Wayne, Indiana }\end{array}
$$

RED E. Darling Company, Incorporated

Gaithersburg, Maryland\end{array}\right\}\)| Reeves Brothers Incorporated |
| :--- |
| REE |

RLC	Royal Lubricants Company East Hanover, New Jersey
RMC	Reliable Manufacturing Company Fountain Valley, California
RMI	Raybestos-Manhattan Incorporated Passaic, New Jersey
ROG	Rogers Corporation Rogers, Connecticut
ROH	Rohm and Haas Company Philadelphia, Pennsylvania
ROS	Milton Ross Company South Hampton, Pennsylvania
RPC	Regel Paper Corporation New York, New York
RRC	Ronthor Reiss Corporation Little Falls, New Jersey
RTC	Remtek Corporation Sunnyvale, California
RVM	Scientific Enterprises Bloomfield, Colorado
Sisdon Vacuum Metallizing Company	
San Nuys, California	

\(\left.$$
\begin{array}{ll}\text { SCG } & \begin{array}{l}\text { Scott Graphics Incorporated } \\
\text { Holyoke, Massachusetts }\end{array} \\
\text { SCH } & \begin{array}{l}\text { Schenectady Chemicals Incorporated } \\
\text { Schenectady, New York }\end{array} \\
\text { SCI } & \begin{array}{l}\text { Schjeldahl is coded GTS }\end{array} \\
\text { SCT } & \begin{array}{l}\text { Structural Composites Industries } \\
\text { Azusa, California }\end{array} \\
\text { SEL } & \begin{array}{l}\text { Scott Paper, Industrial Foam } \\
\text { Chester, Pennsylvania }\end{array} \\
\text { SFR } & \begin{array}{l}\text { Soulder, Colorado }\end{array}
$$

SHA Envarata Fe Rubber Products, Incorporated

Shittier, California\end{array}\right\}\)| W. S. Shamban Company |
| :--- |
| SHC |

SIP	Sigma Plastronics
	Dearborn, Michigan
SIS	Sargent Industries
	Stillman Rubber Division
	Culver City, California
SLK	SCI Systems Incorporated
	Huntsville, Alabama
SLM	Shannon Luminous Materials Company
	Los Angeles, California
SMC	Spira Manufacturing Corporation
	Burbank, California
SNZ	Sandoz Chemical Company
	Hanover, New Jersey
SOM	Smooth-On Manufacturing Company
	Gillette, New York
SPA	DALCO Industries (Shurlok)
	Hawthorne, California
SPC	Specialty Coatings Company
	Elk Grove Village, Illinois
SPE	Spectrum Control Incorporated
	Fairview, Pennsylvania
SPK	Spencer Kellogg Division
	Buffalo, New York
SPI	Stevens Products Incorporated
	Stevens Tubing Corporation
	East Orange, New Jersey
SPL	Spraylat Corporation
	New York, New York
SPR	Specialty Products Company
	Jersey City, New Jersey
SPT	Stone Industrial Corporation
	Washington, D.C.

SPX	Sperex Corporation Gardena, California
SRC	Stockwell Rubber Company Philadelphia, Pennsylvania
SRP	Schultz Rubber Products (Address Unknown)
SRW	Nortronics Chemical Company Costa Mesa, California
SSC	Spectra-Strip Corporation Garden Grove, California
SST	Stern \& Stern Textiles Incorporated New York, New York
STA	Stanley Chemical East Berlin, Connecticut
STC	Super Temp Wire Division Winooski, Vermont
STE	J. P. Stevens \& Company, Incorporated New York, New York
	Stevens Molded Products is coded MOL
STI	Stillman Rubber Division Sargent Industries Culver City, California
STR	Stranco Products Incorporated Chicago, Illinois
STS	Sierracin/Thermal Systems Los Angeles, California
STV	Sterling Varnish Sewickley, Pennsylvania
SUM	Summers Laboratories, Incorporated Fort Washington, Pennsylvania
SWC	Sequoia Wire Company Redwood City, California

SWS	SWS Silicones Corporation Adrian, Michigan
SYL	Sylvania Electric Products Incorporated New York, New York
	Electronic Systems Division
	Buffalo, New York
	Chemical \& Metallurigical Division
	Towanda, Pennsylvania
	Semiconductor Division
	Woburn, Massachusetts
SYN	Synthane Taylor Incorporated
	Valley Forge, Pennsylvania
TAM	TA Manufacturing Corporation
	Glendale, California
TAY	Taylor Corporation
	Valley Forge, Pennsylvania
TBT	The Thomas \& Betts Company, Incorporated Elizabeth, New Jersey
TCC	Thiokol Chemical Corporation
	Trenton, New Jersey
TCI	Trans/Circuits Incorporated
	Falls Church, Virginia
TEC	Tecknit
	Cranford, New Jersey
TEE	Teledyne Electro Mechanisms
	Nashua, New Hampshire
TEI	Technic Incorporated
	Providence, Rhode Island
TEK	Teknational, Incorporated
	Rochester, New York
TEL	Thermo Electric Company
	Saddle Brook, New Jersey

TEM	Tempil Division
	Big Three Industries, Incorporated
	S. Plainfield, New Jersey
TEN	Tenneco Chemicals
	Foam Division
	Paramus, New Jersey
	Tensolite is coded CTD
TER	Teradyne Components, Incorporated
	Lowell, Massachusetts
TEX	Texwipe Company
	Hillsdale, New Jersey
TFE	Technical Fluorocarbons Engineering Incorporated
	Warwick, Rhode Island
TFF	T \& F Fluorocarbon Company
	Holling Meadows, Illinois
THE	Thermalloy Company
	Dallas, Texas
THI	Thermatics Incorporated
	Elm City, North Carolina
THL	Uniglas Industries
	Division of United Merchants \& Manufacturers, Incorporated
	Los Angeles, California
TII	Texas Instruments Incorporated
	Dallas, Texas
TIW	Times Wire \& Cable Company
	Subsidiary Insilco
	Wallingford, Connecticut
TMC	Trak Microwave Corporation
	Tampa, Florida
TME	TME Corporation
	Salem, New Hampshire
TMP	Temp Plate Corporation
	Santa Monica, California

TNC	Transene Company Danvers, Massachusetts
TPI	Thermoset Plastics Incorporated Indianapolis, Indiana
TRA	TRA-CON Incorporated Medford, Massachusetts
TRI	Tridox Products Philadelphia, Pennsylvania
TRO	Troy Mills Incorporated Troy, New Hampshire
TRW	TRW Redondo Beach, California (Thompson-Ramo-Woolrich)
TSI	Thermal Systems Incorporated Los Angeles, California
TTP	Telatemp Fullerton, California
TUF	Tufnol Limited England
TWC	Thermax Wire Corporation New York, New York
TWP	Technical Wire Products Company, Incorporated Cranford, New Jersey
TXI	Texaco Incorporated White Plains, New York
TYC	Tycodure Limited London, England
TYT	Tyton Corporation Milwaukee, Wisconsin
UCC	Union Carbide Corporation New York, New York
UIC	Union Ink Company Ridgefield, New Jersey

UJC	Upjohn Company Kalamazoo, Michigan
UND	Uniroyal Incorporated New York, New York
UNF	United Foam Compton, California
UNI	Uniglass Industries Los Angeles, California
UOP	Universal Oil Products Norplex Division Lacrosse, Wisconsin
USE	Useco Division Litton Industries Van Nuys, California
USP	U. S. Polymeric Incorporated Santa Ana, California
VAC	Vought Aeronautics Company Division LTV Corporation Dallas, Texas
VAL	Nikon Valca Japan
VAR	Varian Associates Vacuum Products Division Palo Alto, California
VEC	Vector Electronic Company, Incorporated Sylmar, California
VEL	Velcro Corporation New York, New York
VIG	Vigor Company (Distributors) New York, New York
VFX	Varflex Corporation Rome, New York
VIS	Vishay Resistive Systems Group Malvern, Pennsylvania

VIS	Vishay Resistive Systems Group Malvern, Pennsylvania
VOL	Voltek Company Lawrence, Maine
VVP	Vita-Var Company New Brunswick, New Jersey
WAC	Wacker Munich, Germany
WAI	Wilco Associates Incorporated Gardena, California
WAK	Wakefield Engineering Company Wakefield, Massachusetts
WCN	Whittaker Corporation NARMCO Materials Division Costa Mesa, California
WEC	Westinghouse Electric Corporation Micarta Division Hampton, South Carolina
WEI	Westinghouse Electric Corporation Industrial Plastics Division West Mifflin, Pennsylvania
WEK	Weckesser Company Chicago, Illinois
WFC	Western Filament Corporation Glendale, California
WGP	Western Gasket \& Packing Company Los Angeles, California
WHB	W. H. Brady Company Milwaukee, Wisconsin
WIL	Wilshire Foam Products Incorporated Torrance, California
WIN	Winchester Electronics Division Litton Industries Oakville, Connecticut

WJR	W. J. Rusco Company Akron, Ohio (Distributor for Interchemical Corporation, Finishes Division)
WLG	W. L. Gore \& Associates, Incorporated Newark, Delaware
WMI	Woolsey Marine Industries New York, New York
WOP	Woodmont Products Huntington Valley, Pennsylvania
WPC	Westlake Plastics Company Lenni, Pennsylvania
WPP	Wornow Process Paint Company Los Angeles, California
WRG	W. R. Grace \& Company Columbia, Maryland
WSA	Waterford Specialty Adhesives Incorporated McKeesport, Pennsylvania
WSL	Western States Lacquer Corporation Los Angeles, California
YTB	William T. Bean Company Detroit, Michigan
	Yarsley Limited United Kingdom
Youngblood Company	
Millbury, Massachusetts	

The charge-out number for this book is:

15. Supplementary Notes
16. Abstract

Outgassing data, derived from tests at $398 \mathrm{~K}\left(125^{\circ} \mathrm{C}\right)$ for 24 hours in vacuum as per ASTM E 595-77, have been compiled for numerous materials for spacecraft use. The data presented are the total mass loss (TML) and the collected volatile condensable materials (CVCM). The various materials are compiled by likely usage and alphabetically.
17. Key Words (Selected by Author(s))

Outgassing data, Spacecraft materials, Total mass loss, Collected volatile condensable materials
18. Distribution Statement

Unclassified-Unlimited

STAR Category 24
19. Security Classif. (of this report) Unclassified
20. Security Classif. (of this page) Unclassified
21. No. of Pages 285
22. Price* A13

[^1]
[^0]:

 \qquad PALON
 ILICONE
 NINSULIION
 YALDE
 NYSUL
 CILON SEAL
 INSUL GEELN
 SERT GSERT

 NERT INSERT
 IC INSERT
 MSEC 40 A
 39509

[^1]: *For sale by the National Technical Information Service, Springfield, Virginia 22161.

