
Commanding Constellations (Pipeline Architecture)

Tim Ray, Jeff Condron
NASNGSFC

Timothy. J.Ray@nasa.gov

Abstract

Providing ground command software for constellations
oj‘spacecraft is a challenging problem. Reliable
coninland delivery requires a feedback loop; for a
constellation there will likely be an independent feedback
loop f o r each constellation member. Each command must
be sent via the proper Ground Station, which may change
from one contact to the next (and may be different for
different members). Dynamic configuration of the ground
command softwure is usually required (e.g. directives to
configure each member’s feedback loop and assign the
appropriate Ground Station). For testing purposes, there
must be a way to irisert command data at any level in the
protocol stack.

The Pipeline architecture described in this paper can
support all these capabilities with a sequence of software
modules (the pipeline), and a single self-identifying
message format (for all types of command data and
configuration directives). The Pipeline architecture is
quite simple, yet it can solve some complex problems.
The resulting solutions are conceptually simple, and
therefore, reliable. They are also modular, and therefore,
e a s ~ to distribute and extend. We first used the Pipeline
urchitecture to design a CCSDS (Consultative Committee
f i i r Space Data Systems) Ground Telecomniand system (to
command one spacecraft at a time with a fixed Ground
Station interfuce). This pipeline was later extended to
include gateways to any of several Ground Stations. The
resulting pipeline was then extended to handle a small
constellation of spacecraft. The use of the Pipeline
urchitecture allowed us to easily handle the increasing
complexity.

This paper will describe the Pipeline architecture,
show how it was used to solve each of the above
commanding situations, and how it can easily he extended
to handle larger constellations.

1. The Pipeline Concept

At its simplest, a pipeline consists of a serial chain of
software modules. For example, a pipeline to implement
a protocol stack might consist of one module for each
protocol layer. Inputs to the pipeline are in the form of
messages, which enter the pipeline at the front end, and
make their way serially through the pipeline. A generic

message format is used, and every module in the pipeline
uses the generic format for both input and output of
messages. The exact message format chosen is not
critical, except that the messages must be self-identifying
(e.g. each directive must be wrapped with a label
indicating the type of content, such as “directive for the
xyz protocol layer”).

Again, messages always enter the pipeline at its front
end. If the message is a directive for the first module, the
first module will “eat” the message and execute the
directive. If the first module does not recognize the
message type, it will forward the message to the second
module. In this way, all messages automatically make
their way serially through the pipeline until they reach
their intended destination. It is also possible that a
module will eat one message and insert another. For
example, a module that implements the framing layer of a
protocol stack may eat all Packet-Data messages and
replace them with Frame-Data messages.

2. First pipeline: Build spacecraft commands

The pipeline concept was conceived during informal
discussions about how to provide a generic CCSDS
commanding system (i.e. capable of commanding any
CCSDS-compliant spacecraft). To test the pipeline
concept, we implemented the ground (sending) end of the
CCSDS Telecommand protocols. These protocols
provide reliable delivery of command data to a spacecraft.
This first pipeline contained these modules:

Framing (puts Packets into Frames)
Coding (puts Frames into Codeblocks)
Synch (puts Codeblocks into Transmission-Units)

2.1. Flow of command data

The source of spacecraft commands builds CCSDS
command Packets; we call this the Message-Source. It
puts each Packet into a Packet message, and sends the
message to the pipeline. Consider what happens when a
Packet message enters the pipeline. First, remember that
all messages enter the pipeline at the front end (for this
pipeline, the Framing module). The Framing module
recognizes a Packet message, and eats it. The Packet
from inside the message is used to build a Frame, and this
Frame is then passed to the Coding module (as a Frame
message). The Coding module recognizes the Frame

message, and eats it. The Frame from inside the message
is used to build Codeblocks, and these Codeblocks are
then passed to the Synch module (as a Codeblocks
message). The Synch module recognizes the Codeblocks
message, and eats it. The Codeblocks from inside the
message are used to build a Transmission-Unit, which is
passed out of the pipeline (as a Transmission-Unit
message).

2.2. Flow of directives

Consider what happens when a directive for the
Framing module enters the pipeline. The Framing
module recognizes the Framing-Directive message, and
eats it. The directive from inside the message is executed.

Now consider what happens when a directive for the
Synch module enters the pipeline. The Framing module
does not recognize the Synch-Directive message, so the
message is passed through to the Coding module. The
Coding module does not recognize the Synch-Directive
message either, so it also passes the message on (to the
Synch module). The Synch module recognizes the
Synch-Directive message and eats i t . The directive from
inside the message is executed.

2.3. Hierarchical messages

As mentioned earlier, we use a hierarchical message
format in our pipelines. The format specifies an inner
container that we call an envelope (think of a letter to be
mailed) and an outer container that we call a mailbag.
Each “message” is actually a mailbag that may contain
multiple envelopes. The hierarchical message format
provides more power and flexibility, but does not affect
the pipeline concept. Each module reacts to the parts of a
message that it recognizes, and passes any unrecognized
parts on to the next module in the pipeline.

3. Second pipeline: Add Ground Stations

Our first pipeline provided the generic command-
building capabilities that we wanted, and was easy to
implement and operate. However, in order to be useful,
the Transmission-Units need to be delivered to the
spacecraft. This required adding a layer to our pipeline,
which we called the Gateway layer. To operate a
satellite, the Gateway must send the Transmission-Units
to a Ground Station, which has the antennas that transmit
data to the spacecraft. In order to maintain our
philosophy of providing generic solutions, we needed to
provide an interface to all NASA Ground Stations. There
are three families of NASA Ground Stations: the Ground
Network (GN), Space Network (SN), and Deep Space
Network (DSN). Each family has a unique interface, so

we added three different Gateway modules. This is the
resulting pipeline:

Framing
Coding
Synch
Gateway-GN Gateway-SN Gateway-DSN

3.1. Choosing which Gateway module to use

Note that this pipeline is not entirely serial in nature -
there are 3 possible routes through the Gateway layer.
However, the pipeline will appear to be serial - only one
of the Gateways will be used at a time; i.e. each message
will enter the pipeline at the Framing module, then go
through the Coding module, Synch module, and one of
the Gateway modules.

All modules include a directive to choose “which
module is next”. This allows the Message-Source to
decide which Gateway module to use (by sending a
Synch-Directive envelope containing a “which module is
next” directive). If desired, the Message-Source can
change the configuration on-the-fly.

3.2. Configuring the chosen Gateway module

Once a Gateway module is chosen (Le. becomes part of
the current pipeline topology), it can be configured. For
example, suppose the Gateway-DSN module is chosen.
The Message-Source sends messages containing
Gateway-DSN-Directive envelopes to the pipeline. None
of the original pipeline modules recognize the
Gateway-DSN-Directive envelope, so these envelopes are
passed through the pipeline until they reach the
Gateway-DSN module, where they are recognized, eaten,
and executed.

3.3. Flow of command data

Command data flows through the original pipeline
modules just as before; the result is always a
Transmission-Unit envelope. This Transmission-Unit
envelope is passed on to the current Gateway module,
which recognizes it, and eats it. The Transmission-Unit
from inside the envelope is wrapped in the appropriate
header (as required by each Ground Station family), and
sent to the spacecraft via the Ground Station.

3.4. No changes to existing modules & interfaces

This extension to the original pipeline did not require
any changes to the existing modules, nor were any
changes made to the interface between the Message-
Source and the pipeline (i.e. the message format was not
changed).

4. Third pipeline: Small constellation

The multi-mission pipeline was further extended to
support commanding of a small constellation (3
spacecraft). This constellation uses 3 copies of the
Framing module, because each spacecraft requires an
independent feedback loop for reliable delivery of
Frames. A Framing-Routing layer is needed in front of
the Framing layer, so that each incoming message can be
routed to the appropriate Framing module. One copy of
the Coding and Synch modules is sufficient, because all 3
spacecraft use the same setup for these protocol layers.
(and operational constraints ensure that a Transmission-
Unit will never contain commands for more than one
spacecraft). This pipeline contains these modules:

Framing-Router
Framing-] Framing-2 Framing3
Coding
Synch
Gateway-GN Gateway-SN Gateway-DSN

As with the previous pipeline, although the pipeline is not
cntirely serial, any particular message takes a serial path
(visits one module at each layer).

between the pipeline and the Message-Source (the
message format was not changed).

4.4. Multi-mission support

This pipeline is currently being used to operate three
different NASA missions. With the addition of one more
Gateway module (to send data to the spacecraft via an
RS422 card) the pipeline became capable of supporting
spacecraft integration & test. The resulting Command
system has been, is, or will be used in 25 different NASA
facilities spanning 5 different missions. The system is
used throughout the mission lifetime (flight
hardwarehoftware development, spacecraft integration &
test, spacecraft operations, and flight software
maintenance).

Each facility uses the same Message-Source and the
same pipeline (an identical set of programs built from the
same source code). The Message-Source dynamically
configures the pipeline to match each spacecraft’s setup
(e.g. Spacecraft-ID, maximum Frame size, which
Gateway to use, etc).

5. Commanding larger constellations
4.1. Framing-Router module

The hierarchical message format is beneficial here.
For this mission, each mailbag from the Message-Source
includes an envelope with the label “Spacecraft-ID”,
along with the usual data or directive envelope. This
Spacecraft-ID envelope is recognized by the Framing-
Router module, which uses it to route each incoming
message to the appropriate Framing module.

4.2. Flow of command data

The Message-Source sends messages that contain both
a Packet envelope and a Spacecraft-ID envelope. Each
message enters the pipeline at the front end (in this case,
the Framing-Router module). The Framing-Router
module doesn’t recognize the Packet envelope, so it
leaves this envelope in the message. It does recognize the
Spacecraft-ID envelope, and uses i t to decide which
module is next in the pipeline (Le. which of the Framing
modules). Once the Packet envelope reaches a Framing
module, i t flows through the remainder of the modules in
the usual way. The result is that a Transmission-Unit is
sent to the spacecraft via the chosen Gateway module.

4.3. No changes to existing modules & interfaces

As with the first extension of the pipeline, this
extension did not require any changes to the existing
modules. Nor were any changes made to the interface

The commanding of larger constellations can easily be
handled by the pipeline architecture. Let’s consider some
additional extensions to the existing pipeline.

As the constellation grows in size, additional Framing
modules must be added (so that each spacecraft has an
independent feedback loop for reliable delivery of
commands). These modules would be copies of the
generic Framing module, and be configured in the same
way as those in our existing pipeline. The Framing-
Router module would continue to choose which Framing
module to use for each incoming message.

If the constellation requires the use of several Ground
Stations concurrently, a Gateway-Router layer can be
inserted in front of the Gateway layer. This layer would
be similar to the Framing-Router layer - it would use the
“Spacecraft-ID’ envelope to decide which of the available
Gateways to route the message to. As in the Framing-
Router, there would be a table that specifies a route (i.e.
module name) for each possible Spacecraft-ID value. ’
Dynamic configuration of the Gateway-Router could be
accommodated with a Gateway-Router directive - the
directive would modify one entry in the table (e.g.
“Spacecraft-ID 23 will now use the Gateway-GN
module”).

As the pipeline grows, there may be a need to
distribute it across multiple machines. This is easily
accommodated, and is discussed in the next section.

. t

6. Summary

As we have seen, a pipeline can easily be extended,
without changing any of the existing modules, nor the
interface between the pipeline and the Message-Source.
One type of extension involves adding modules to the
front, middle, or end of the pipeline. The use of one
generic message format for all module interfaces makes it
is easy to insert or delete modules as needed. Another
type of extension involves expanding a particular layer
(e.g. the multiple Framing-layer modules needed by our
small constellation). This is easily handled through the
use of multiple copies of the layer’s module, and the
insertion of a Router module. The Router module
chooses which of the available modules to use.

Pipelines can easily be dynamically configured. The
topology of the pipeline can be modified on-the-fly by
sending directives to each module specifying “which
module is next”. Each module within the pipeline can
then be configured individually by sending directives.
Changes in the pipeline’s topology do not require any
changes to the Message-Source - its only interface is to
the front end of the pipeline.

A pipeline can easily be distributed across multiple
machines if desired. Changes in how the modules are
distributed do not require any changes to the Message-
Source - again, its only interface is to the front end of the
pipeline.

The pipeline concept is not tied to any particular
programming language; pipelines can easily be
implemented in C, C++, C#, Java, Python, etc.

Although the Pipeline Architecture is simple in
concept, it is powerful. Our Telecommand pipeline
supports both individual spacecraft and constellations,
and is working reliably in many NASA facilities.

