
First Experiences Using XACML for Access Control in Distributed Systems

M. Lorch', S. Procto9, R. Lepro3, D. Kafura', S. Shah'

' Department of Computer Science, Virginia Tech
Sun Microsystems Laboratories
NASA Ames Research Center

Abstract

Authorization systems today are increasingly complex. They span domains of
administration, rely on many different authentication sources, and manage
permissions that can be as complex as the system itself. Worse still, while there
are many standards that define authentication mechanisms, the standards that
address authorization are less well defined and tend to work only within
homogeneous systems. This paper presents XACML, a standard access control
language, as one component of a distributed and inter-operable authorization
framework. Several emerging systems which incorporate XACML are discussed.
These discussions illustrate how authorization can be deployed in distributed,
decentralized systems. Finally, some new and future topics are presented to show
where this work is heading and how it will help connect the general components
of an authorization system.

1. Introduction

In modem systems, security is a critical feature. Beyond providing strong protection, security
systems must also be flexible and promote inter-operability between domains of trust. However,
flexibility can come at the price of simplicity and manageability, especially in the complex realm
of authorization. Thus, the authorization components of a secure system must be able to work
together across domains, but must be manageable to maintain their collaborative value.

Authorization determines whether or not a given action, for example reading a file or logging
into a server, is allowed. This is typically, though not always, achieved by authenticating a user
and then using their locally assigned attributes or rights to make access decisions according to
locally defined policies. Unfortunately, most systems use either proprietary policy languages or
formats that apply only to a specific application (like UNIX file access), leading to
interoperability problems. As systems evolve from a central to a distributed model, this limited
ability to interoperate authorization components creates additional administrative requirements
and hinders overall scalability. Further, heterogeneity restricts the development of standard
management tools and toolkits that serve common policy needs, leaving developers and
administrators without a common solution to use when creating policy-driven systems.

Authorization in a distributed system often requires cooperation among separate and
autonomous administrative domains. Maintaining a consistent authorization strategy requires
each system to maintain at least some knowledge of its potential collaborators throughout the
entire system. Further, any authorization decision that spans two or more authorization domains
requires each participant be capable of correctly producing, accepting and interpreting

1

authorization information from a group of potentially heterogeneous peers. This capability
requires agreement on protocol, syntax and semantics for each piece of shared authorization data.
Additionally, existing enforcement mechanisms typically associate authorization data with
identities that are unique to an individual authorization domain. This requires coordination of
local identities between the domains, forcing administrative domains to cede partial control of
local authorizations to a literal or figurative central authority.

In an attempt to help with these and other problems, OASIS ratified XACML [XACML]
(extensible Access Control Markup Language), a standard, general purpose access control policy
language defined using XML. XACML was designed to accommodate most system needs, so it
may serve as a single interface to policies for multiple applications and environments. In addition
to defining a policy language, XACML also specifies a request and response format for
authorization decision requests, semantics for determining policy applicability, and a host of
advanced features that make it well-suited for tying together large-scale authorization systems.
Although XACML does not standardize a complete authorization solution, it provides a
foundation upon which cooperative solutions can emerge.

What follows is a brief discussion of XACML. The full details of the language are discussed
in [XACML]. Sufficient explanation of the new standard is presented to support the following
sections, which discuss early experiences using XACML in current authorization systems and
with existing and emerging protocols. Finally, we present some future directions for XACML and
its use in distributed authorization systems.

2. The extensible Access Control Markup Language - XACML

XACML is a general purpose policy system, designed to support the needs of most
authorization systems. At its core, XACML defines the syntax for a policy language and the
semantics for processing those policies. There is also a request and response format to query the
policy system, and semantics for determining applicability of policies to requests. The request
and response formats represent a standard interface, where the entity that processes policy, called
the Policy Decision Point (PDP) presents standard behavior, while the entities that issue requests
and handle responses, the Policy Enforcement Point (PEP), can be embedded in an application-
specific system (see figure 2-1). This is based on policy framework definitions used in the IETF

XACML policies consist of an arbitrary tree of sub-policies. Each tree represents a target,
while the leaves of the tree contain a collection of rules. The target is a simple set of criteria used
to determine a policy's applicability to a request, while the rules contain more complex logic that
makes XACML extremely expressive, and therefore able to handle myriad policy requirements.
A request consists of attributes associated with the requesting subjects, the resource acted upon,
the action being performed, and the environment. A response contains one of four decisions:
permit, deny, not applicable (no applicable policies or rules could be found), or indeterminate
(some error occurred during processing). In the case of an error, optional information is available
to explain the error. Responses may also include obligations, which are directives from the
applicable policies for the PEP to execute.

The logic within a policy uses an extensible system of datatypes and functions. All attributes
used in XACML are of a well-known type, and all functions have well-known signatures that use
these same datatypes. XACML defines a set of standard datatypes (like string, boolean, integer,
time, email address, set, etc.), and a set of standard functions (like equality and comparisons,
arithmetic, set comparison, etc.). While these standard datatypes and functions can express many
access control policies, XACML also specifies a standard extension mechanism for defining
additional datatypes and functions.

In addition to expressing access control logic within a single policy, policies can include

[RFC2753].

2

1 . * . - -

references to other poli 1 s. In effect, a single policy can consist of any number of decentralized,
distributed rules, each managed by different organizational groups. A key supporting language
feature is XACML's use of combining algorithms, which define how to take results from multiple
rules or policies and derive a single result. As with datatypes and functions, there are a number of
standard combining algorithms defined (first applicable, deny overrides, etc.), as well as a
standard extension mechanism used to define new algorithms.

Two mechanisms are used to resolve attribute values within policy logic:
AttributeDesignators (which reference values by identifier, datatype, and other optional meta-
data), and Attributeselectors (which use m a t h expressions to find values). If the needed values
aren't found in a request during policy processing, the PDP is free to look elsewhere. This means
that XACML can work with existing attribute systems either by including values in a request or
by using some custom retrieval module during evaluation.

Policy referencing and retrieval, and attribute value resolution are both specified as arbitrary
operations that the PDP is free to perform in any way it sees fit. All policies and attributes,
however, are handled in a standard manner once within the PDP. This facilitates inter-operation
with legacy systems, and cooperation between different modem attribute and policy management
pieces.

The systems discussed in this paper use the open source XACML implementation
[XACMLSF] originally developed at Sun Microsystems Laboratories. The implementation
supports the complete XACML 1.0 specification, handles all the extension points discussed in
this section, and includes several optional features of the specification as well. It is implemented
in the JavaTM Programming Language, and is available at http://sunxacml.sourceforge.net.

3. XACML and Shibboleth

A part of the middleware suite of tools being defined by the Internet2 group, Shibboleth
[SHIB] provides a web-based authentication and authorization system. The primary use case is
securing interaction between higher education sites, though it is generally useful for any

3

environments that must work across domains of trust. The system will work entirely within the
scope of a web browser, so it's easy to setup a resource at one site (for instance, slides for some
course), and then let a student at another site access the resource through the web. After the
student's browser issues a request for some resource, a series of exchanges between the target site
and the user's site verify the user's identity, gather attributes, and perform the access check.

For the authorization step, the target site must determine attributes associated with the subject.
As a simple web request contains the initial message, no attribute values are available by default.
For security, privacy, and management reasons, an attribute authority at the subject's site
maintains all attributes associated with a subject. Thus, the resource site contacts the subject site
to request attribute values needed by the policy system. Despite this flexible attribute
management system, actual policy decisions are ultimately made using htaccess files in an
Apache module. The limitations of htaccess syntax and the difficulties involved with sharing
them or storing them in arbitrary locations severely reduces access control system flexibility.
These drawbacks also restrict the opportunities to share access control policies among system
components.

Current research at Sun and Brown University focuses on XACML as a solution to these
problems. Specifically, researchers are considering XACML to replace current access control
functionality in Shibboleth, though the work applies to other systems as well. In addition to
adding basic access control, they are also exploring XACML as a language for defining release
policies. This setup provides input into usability and management issues for XACML in general
as well as for each of these specific environments.

3.1 Online Access
A basic PEP library, built in C, and an online PDP, implemented using the open source

SunXACML library, support the access control needs of Shibboleth. Incorporating this
functionality into Shibboleth Apache modules supports more expressiveness than previously
permitted in htaccess syntax. In fact, XACML's policy referencing mechanism allows scenarios
such as incorporating policy from a subject's site into the host site policy. This change required
no modifications to the majority of Shibboleth's features and there is no difference from a user
perspective. Obviously this functionality is generally useful outside of Shibboleth as any
application or web server plugin can use this library to talk to an online PDP. Further, the
simplicity of the PEP library provides an easy way to add XACML support into older systems.
The existing open source project provides a PEP interface in the Java Programming Language,
and PEP interfaces in other languages are being developed.

XACML does not specify a protocol for communication between a PEP and a PDP. As is
discussed in the next section, SAML [SAML] is an ideal candidate for this protocol. Indeed, the
original XACML request and response format came from the S A M L specification. Further, the
current request and response format from XACML may be included directly in the next version
of SAML. One of the current projects this framework is being used for is to investigate different
exchange protocols, like SAML over SOAP or the Common Open Policy Service CRFC27481, to
understand what will work best both for Shibboleth and authorization systems in general.
Different authorization systems may have different performance or bandwidth requirements, so
an online PDP may need to support multiple protocols.

3.2 Release Policy
Another issue that the Shibboleth design raises is the management of attributes and the

circumstances under which an attribute authority should release a user's attributes to another site.
Currently Shibboleth employs a proprietary system using XML configuration files in which a
user defines some simple rules about when and to whom attributes may be revealed. Other people
have explored this same idea in Shibboleth [SPADE] and in other systems CSEA02, WINS02J.

4

1 . .

Unfortunately, no standards address this problem, nor do good tools for managing these
proprietary solutions exist.

To this end a profile of XACML called Web Services Policy Language [WSPL] is being
prototyped to provide this and other functionality. The name implies its original goal, which is to
provide Web Services the ability to publish policy requirements for communication. Since it can
also define release criteria (a similar application), and because it is using a standard language, it is
a good choice for replacing proprietary release languages. Again, this addition doesn't typically
affect the applications or the user experience. The attribute exchange step requires additional
work only if the user wants to add extra levels of protection to their attributes. Early results
suggest that XACML and WSPL can be used effectively to protect the privacy of both the user
and the authorization system at the other end during the attribute exchange process

3.3 Management
Strong support for policy management is integral to the usefulness of these features. More

expressive policies can be very useful, but if they're difficult to write and maintain, they may
cancel the benefits of expressiveness. Worse still, while most access policies are defined by
people with some technical knowledge, policies defining attribute release will typically be
defined by average users. The release policies have to be easy to write and manage or no one will
use them. To this end some initial investigation is being done into fundamental, low-level
management techniques for XACML, especially in reasoning about policies to provide feedback
at a level that most humans can understand.

3.4 Results
Initial investigations have shown that XACML is a good match for Shibboleth. With relative

ease a new access control system has been plugged in, and the resulting infrastructure can be used
by other web plugins and stand-alone applications, which helps pull the authorization components
together. Additionally, policies can now be shared between applications, regardless of whether
they're using Shibboleth, which makes it easier to work across different kinds of authorization
systems in the same network. The next steps for this project are to continue investigating
protocols and their relative efficiencies, support other languages for the PEP (for instance so Per1
modules can use the same features), and continue exploring the usability challenges.

4. Cardea - Combining XACML and SAML to support distributed authorization

Cardea is a distributed authorization system, developed as part of the NASA Information
Power Grid [IPG], which dynamically evaluates authorization requests directly according to a set
of relevant characteristics of the resource and requester rather than considering specific local
identities that represent those characteristics. Potentially accessed resources are protected by local
access control policies, specified with the XACML syntax, in terms of subject and resource
charzc?eristics. -Further, potential u sesa re modeled only by the characteristics that they can
demonstrate. The exact values needed to complete an authorization decision are assessed and
collected during the decision process itself. Once assembled , this information is presented to a
PDP that returns a final authorization together with any relevant details.

Cardea is currently implemented in the Java language as a collection of web service
portTypes. Much of the communication between components follows the XACML and SAML
[SAML] request and response formats. Although XACML and SAML are transport independent,
the initial implementation binds these protocols to SOAP [SOAP] and utilizes the Apache Axis
[AXIS] architecture as a SOAP engine. Custom handlers specified for the request and response
flows within Axis provide common mechanisms to optionally sign and verify, using the XML
Digital Signature [XMLDSig] specification, the content of each generated or received SOAP

5

message. Cardea interacts with each SOAP message directly via the JAXM or JAX-RPC API.
Therefore, no functionality, strictly depends on custom Axis functionality

Cardea addresses several specific unmet needs that emerge when authorization spans multiple
administrative domains. The system reduces reliance on locally defined identities to define
authorizations for each potential user. Therefore, it reduces the system state that must be
replicated at each site. Further, it allows separate administrative domains to coordinate local
authorization decisions while retaining control over access to its local resources.

The remainder of this section examines the way Cardea combines the power of XACML and
SAML to address those needs and identifies distinct gaps that were handled. Then, the ways that
XACML were applied within the system architecture are highlighted, and areas that could benefit
from additional research and future directions are outlined.

4.1 Assumptions and pre-requisites
Although the system minimizes the amount of negotiation and configuration required to

implement distributed authorization, there are several site-specific items that must be defined
according to the standard semantics of XACML and SAML. First, local access control policies
must be defined using the characteristics of pertinent user-resource combinations. Additionally,
authorities must be populated with verified attribute values. Although there is no inherent
restriction on how attributes are maintained or represented internally to its authority, each
attribute value must be available to a qualified requester as a SAML Assertion.

4.2 The authorization decision process
Cardea evaluates each authorization decision according to a general procedure that requires

minimal a priori knowledge of participants. This section illustrates several critical steps in the
authorization process (see figure 4-1). It specifically highlights communication between distinct
system components, how XACML and SAML functionality is leveraged and how the
components work together to complete the authorization process.

4.2.1 Authorization decision request received
Initially, the system receives a SAMLAuthorizationDecisionQuery. There are no mandatory

restrictions on the origin of any accepted request other than what is required to enforce local
access control policy. For example, an authorization domain may require that any request it
processes be authenticated by a trusted source. Any request presenting from an untrusted source
would be discarded, even if it could actually be completely processed by the system. Cardea
processes all requests that are digitally signed by an identity guaranteed by a trusted authority.

4.2.2. Partition search space for locating attribute authorities
All access control requests present a set of identifying credentials to Cardea when requesting

an authorization decision. Cardea extracts the credential authority identities from the
authorizatioc request to locate the desired attribute authority.

4.2.3. Query an information service to locate the authoritative AA and PDP locations
Cardea assumes that a directory service contains the necessary location and binding data for

available attribute authorities. Cardea places no requirements on the security of interaction with
the directory server. Each implementation must directly define and support the appropriate means
to identify and interact with trusted information stores. Currently, Cardea assumes location data
will be in URL format and needs no authority-specific binding data.

6

Figure 4 - 1 The Cardea Architecture

4.2.4. Determine attributes considered by controlling policy
Location information for an attribute authority is used to construct a SOAP endpoint

representing an interface to that authority. To minimize the set of attribute assertions presented to
the PDP for evaluation, a custom interface was built into the PDP to report the attribute identifiers
expected within each request. This interface assumes that the identification of attributes within
the XACML policy corresponds to their identity within the attribute authority. The initial
functionality maps resource identifiers to the set of subject attributes required by the policy
governing that resource. XACML does not specify a format for reporting the set of attributes
required by a PDP. Therefore, this custom hnction formats each required attribute set as SAML
attribute statements, permitting a standard interpretation of each result.

4.2.5. Query appropriate attribute values
Cardea must insert actual attribute values into the final XACML request. XACML does not

address how to collect the values contained within that set. Thus, a SAMLAttributeQuery is
executed for each attribute. Depending on the initial authorization request, this may require
interaction with several distinct attribute authorities. Regardless of the actual attribute authority
contacted, the SAML protocol specifies the semantics of extracting the appropriate attribute
values.

4.2.6. Execute XACML authorization request
Once the complete set of requester attributes is known, all returned values are formatted as

7

XACML subject attributes. Resource and action attributes are handled in a similar fashion Cardea
employs custom functionality to transform collected SAMLAttributeAssertions into a valid
XACML attribute format. This functionality presumes a correspondence between the attribute
identities used in the XACML and SAML representations of each logically equivalent attribute.
After populating the request, it is enclosed in a SOAP message destined for the PDP that controls
the desired resource. The payload of the response received contains the evaluation decision made
by that PDP.

4.2.7. Generate an authorization decision statement for the enforcing PEP
Only an XACML context handler maintains information about the access request. However,

enforcing an authorization decision often requires information from the request context. Thus, the
original SAMLAttributeAssertion contains the identity of a group whereas the XACML
authorization decision specifies membership validity. Therefore, the system bundles the XACML
authorization decision together with all the attribute values from the request context to forward to
the appropriate PEP. Although not currently incorporated into the final SAMLAuthorization-
DecisionStatement, evidence used to evaluate the request and conditions attached to the decision
may also be presented to the PEP.

4.2.8. Report any local identity associate with the authorization decision statement
Once the PEP receives a SAMLAuthorizationDecisionStatement, its verifies the identity of the

PDP that generated the statement. The PEP must define rules that govern how authorization
decision statements will be enforced. Several alternative technologies may be used to implement
the rules. The only constraint placed on enforcement functionality by Cardea design requires a
PEP to report any local identity bound to the authorization decision statement be returned to the
initial PDP in the form of a SAMLAttributeAssertion. This constraint facilitates further
distribution of the authorization process between distinct yet cooperating PDPs.

5 Privilege and Policy Management in the PRIMA System

In this section the use of XACML in an access control mechanism for grid computing systems
is described. The access control mechanism is unique in that it allows users to act authoritatively
for resources they control by directly creating, delegating, and combining access privileges
among themselves without the intervention of resource administrators. An interesting issue is
how XACML can be used to express privileges and how these XACML-expressed privileges
relate to XACML-expressed policies. What is evolving from this research is the concept of a
dynamic policy based on privileges that complements the more static access policy traditionally
associated with XACML.

5.1 The PRIMA model
A grid computing system, like many other distributed systems, has multiple entities that are

authoritative for a resource at different levels of granularity. For example, a site authority may be
responsible for a site wide acceptable use policy. An authority for a specific hardware resource
may define which individuals will have access to the resource itself and which services are hosted
on that machine. An authority for a specific service may want to define the access rules for the
service and associated data. In addition to these resource and service oriented authorities there are
entities that want to exercise control over data they own and define who may have access to @arts
of) their data. Individual users would like to be authoritative for resources they control and be
empowered to delegate access to these resources to other users directly and efficiently. On top of
this there are authorities for virtual organizations that describe collaborative groups which may
incorporate resources from multiple physical organizations.

8

PRIMA [LOR03, LOR021, a system for distributed access control in grid computing
environments, supports multiple authorities by allowing users as well as administrative personnel
to delegate access to resources for which they are authoritative. The scope of such access can be
as fine grained as access to individual data files or as encompassing as access to a whole set of
compute resources. Subjects (users) can possess and delegate to other subjects fine-grained
privileges to resources for which they are authoritative. Resource authorities can use the same
mechanisms to grant privileges to users and to issue policy statements for their resources.

In addition to the definition of individual, delegated privileges, PRIMA allows for the
definition of privilege management policies (PMPs) that are used to define the permissible
actions with regard to the creation and delegation of individual privileges. Resource based access
control policies (ACPs) are used to abridge or extend the set of actions allowed based on
privileges held by subjects. This provides for additional flexibility in the definition of access
control rules, allows for the combination of a variety of rules from different authorities and also
enables the timely and uncomplicated revocation of delegated privileges.

Recently, XACML was introduced into PRIMA. XACML is used to express three different
types of statements used in the PRIMA system:
1.

2.

3.

Privilege Attributes (individual access control rules)
Privilege attributes are created by ordinary users, group leaders and managers and convey
individual access rights to the recipient. Privilege attributes have a lifetime and may be
relatively short lived. Privilege attributes supplied with a specific access request are complied
into a dynamic policy document which is used as a unique context by the resource PDP in
conjunction with the more static resource's access control policies to determine access.

Privilege management policies define the authorities for a resource and the delegation and
privilege management rules. PMPs are relatively static and typically created and maintained
by system administrators.
Access Control Policies

Traditional access control policies are used to complement the dynamic policies created from
privilege statements. The combination of these two mechanisms not only provides for added
flexibility in the specification of access control rules but also urovides a mechanism to limit or

Privilege Management Policies

revoke rights that were issued or delegated using privilege statements.
The definition and management of access control policies in a platform independent format such
as XACML is a complex task requiring high level tools. In traditional systems, this task is often
left to administrators. For ordinary users, group leaders and managers with little or no system
administration background, advanced graphical user interfaces and appropriate abstractions are
required to enable such users to exert their authority. Two such tools developed for PRIMA are
described later in this section. One tool, the Privilege Creator, facilitates the creation of privilege
attributes and their secure association with an issuer and holder. A second tool is being developed
that allows for the creation and maintenance of access control as well as privilege management
policies without requiring knowledge of the policy language syntax.

5.2 The PRIMA system components
Figure 5-1 shows an overview of the PRIMA system architecture. The three principal entities

in an authorization system are subjects, which initiate requests, authorities, which provide access
rules (e.g. via policies) and resources which provide services and enforce access rules. In Figure
5-1 two different types of authorities are shown, the attribute authorities that issue privilege
statements to subjects, and the more traditional policy authorities that create access-control and
privilege management policies and provision them to the resources. The resource is split into
three logical components, a policy enforcement point (gatekeeper PEP), a policy decision point
(the PRIMA PDP) and the service. The interaction between the components can be characterized

9

as a traditional authorization pull model [RFC2904]. The inclusion of privilege attributes with a
request (attribute push, see [RFC3281]) which state specific access permissions in the form of
rule statements bound to the specific individual is a distinct feature of PRIMA. The decision on
which of a subject's attributes will be provided with a specific request lies with the subject and
thus provides the basis for a least privilege access scheme.

The PRIMA system has been implemented specifically to complement the security
mechanisms present in the Globus Toolkit TM [FOS99]. The PRIMA PDP is located on the Globus
resource itself and communicates with the PEP through a direct, local communication channel.
Originally PRIMA used proprietary formats to define privilege attributes, resource access control
policies, and privilege management policies. A proprietary API was used for communication
between the PEP and PDP. XACML was selected as a possible replacement for these proprietary
formats and has been implemented in the current prototype of the system for evaluation.

5.2.1 Flow of Access Control Information
Access control information (ACI) encompasses all the data provided to make access control

decisions. In PFUMA, ACI consists primarily of the privilege statements (in the form of privilege
attributes), the ACPs, and the PMPs. Information about the requested action and environmental
data is also taken into consideration by the PDP. Privilege statements are provided by attribute
authorities to subjects at admin time, i.e. de-coupled from the point in time where a request is
made to a resource (access time). Access control policies and privilege management policies are
provided to the PDPs by the respective administrative entities, also at admin time.

The sequence of actions at request time (as indicated in Figure 5-1) is as follows: (1) a subject
contacts a resource (it's PEP), mutually authenticates and provides a resource request along with
privileges of the subject's choosing. The PEP in turn compiles all provided privileges into a
rjltumic poZicy, which will provide the individual, least-privilege policy context for the specific
access. During creation of the dynamic policy, the PEP checks that each included privilege is
applicable and valid through queries to the PDP, which bases its answers on compliance with the
PMP. Once the dynamic policy has been assembled it is provisioned to the PDP. (2) The PEP
contacts the PDP to determine if the actual request is permissible with respect to all applicable
access-control policies and with respect to the dynamic policy. (3) The PDP provides a response
to the PEP. (4) If the authorization was successful the PEP will permit the subject's request to
pass through to the service and the service response (5) will be provided to the subject (6).

10

5.2.2 The Privilege Creator

to create privilege statements that will be embedded in an X.509 Attribute Certificate (AC)
[RFC3281] as the payload. A single attribute certificate may contain a set of privileges and can
also be bound to a set of entities. The “Issuer” and “Holder” entities of the AC are filled with the
respective X.500 distinguished names (DN), and the AC structure is signed with the issuer’s
private key. The holder DN can either be acquired by searching an LDAP server or entered
manually. The privilege statement itself is an individual XACML rule. The rule specifies the
subject to which the attribute is bound (holder), the resource to which it applies, the permitted
action, and, optional conditions. Appendix A1 shows such a rule that grants access to a specific
file. Currently supported are privileges that define system access (the right to a local user
account), file access and network access.

The Privilege Creator, ACGen, is a graphical user tool implemented in Java. It allows the user

5.2.3 Policy Creator
The policy creator also is a Java GUI tool that aids the user in creating XACML ACPs. While

the current implementation only supports the creation of very limited policies for grid resources,
it allows an authoritative party to define basic, predefined access rules with relative ease. Policy
creation and enactment may be done remotely, without the need to edit proprietary access control
lists at the resource through shell access. The tool mainly aids with the syntactical complexity of
XACML but eventually will also provide semantic support, possibly through policy templates.
Embedding the ACPs in X.509 ACs and provisioning them to the PDPs using grid middleware
file staging performs secure movement and issuer verification. A small utility at the PDP verifies
received policies for issuer authority and integrity (leveraging the PDP to query the PMPs) and
configures them into the PDP’s policy store.

5.2.4 The PRIMA Policy Decision Point
The policy decision point accepts XACML requests for access control and privilege

management decisions. If provides answers based on three different policies, the (set of) ACPs,
the dynamic policies and the PMPs. ACPs are provided to the PDP by the respective policy
authority via our policy creator. PMPs, due to their crucial role in defining the sources of
authority and thus bootstrapping the PDPs operation, have to be manually made available to the
PDP by a traditional system administrator.

The initial version of our PDP uses the C++ implementation of XACML by JiffySoftware
[JIFFY] which is currently in alpha release. We plan to switch to use the open source XACML
library in Java for future releases, as it provides richer functionality.

6. Implementation considerations

The initial implementations presented in this paper needed to address several challenges
common to distributed authorization systems that are not addressed directly within XACML.
Several of the subjects fall outside the scope of the XACML, such as management and retrieval of
authorization attributes, or the location of applicable policy decision points. Complimentary
technologies are required to provide the needed functionality. Other issues arise when extending
XACML functionality, either for expressiveness or manageability, such as management of actual
policy files. The remainder of this section presents a number of such issues that require careful
consideration when incorporating XACML into a distributed authorization system and some of
the approaches adopted by these initial implementations.

11

6.1 Creation and management of access control policies
XACML provides a mechanism independent representation of access rules that vary in

granularity via a standard yet flexible language. This flexibility permits the combination of
multiple policies (e.g. from different authoritative parties) into a single applicable policy set to
use when making access control decisions for resources in a widely distributed system with
overlapping competencies. Further, this mechanism-independent representation of access rules
allows a single policy to be applied to heterogeneous resources throughout and across
administrative domains. This common representation greatly reduces errors, discrepancies, and
auditing complexity.

However, creation of actual XACML policies is not a simple task. Further, supporting
XACML in heterogeneous environment calls for h l ly specified data type and function definitions
that produce a highly verbose document even if the actual policy rules are trivial. Manual creation
of such policies by ordinary users, as required in the PRIMA distributed authority model (see 3
5.2), or by resource administrators, as required in the Cardea system (see §4.2), is not reasonable.
Therefore, additional management tools, such as the introduced PRIMA policy creator, to support
policy file management and administration are required.

6.2 Encoding of Privilege Management Policies in XACML
The flexibility of the XACML language allows its application to emerging scenarios without

modification to the existing vocabulary. XACML is not directly targeted at specifying sources of
authority and privilege management rules. However, we have found that the flexibility of
XACML allows us to encode such policies without changes to the XACML vocabulary. A
sample privilege management policy in XACML is shown in appendix A2. This policy states that
“Markus Lorch” and “Sumit Shah” can grant access rights (action: “delegate GRAM access”) for
gram://zuni.cs.vt.edu (a Globus resource) to all the users belonging to the Virginia Tech domain
(OU=Virginia Tech User). Current work in prototyping attribute release policies through the Web
Services Policy Language (an XACML profile) underlines the versatility and flexibility of
XACML with respect to new applications of the language.

6.3 Locating the correct PDP
Before an authorization decision can be obtained, an authoritative PDP must be located. This

boot strapping problem is common to any distributed system and not specific to authorization
systems based on XACML. Thus, XACML does not provide a standard mechanism to resolve
this issue but relies on individual implementations to handle it appropriately to their environment.
Initial system implementations either assume that PDP locations are fixed and policy file
discovery depends on the requested resource or that each PDP may be located via an information
service query to a trusted source. For example, Cardea assumes that a directory service contains
the necessary location and binding data for the appropriate PDP. Once a PDP is identified,
XACML hnctionality provides for the location of applicable policy files, including policies to be
retrieved from a remote location.

6.4 XACML request preparation and request context management
XACML considers the collection and encoding of attributes used in an authorization system to

lie outside its core focus. Further, XACML views attributes as an external form of access control
information that must be converted from their native form to be included in an XACML
authorization decision request in the form of a request context by a context manager component.
XACML does not standardize interactions to retrieve this data for an authorization request. Two
distinct approaches have been implemented within the introduced systems to share subject data
used for authorization. The first provides a framework by which this information is shared via
SAML. The second uses privilege attributes managed by subjects to directly influence the context

12

. .

creation.
The XACML model is based on the authorization pull sequence [RFC2904] and requires the

context manager to maintain state information to associate requests that it created with received
responses. If another authorization sequence such as the push or the agent sequence [also
RFC29041 are desired, the contextual information necessary for a PEP to enforce an access
decision response from a PDP has to be supplied to the PEP through a supplementary mechanism.
Current work on SAML 2.0 proposes to include the original authorization decision request
context with an authorization decision response, which would address this issue.

6.4.1 Encoding of descriptive attributes in Cardea
Cardea employs SAMLAttributeAssertions to collect and encode attribute data for an

authorization decision request. Custom functionality transforms the collected
SAMLAttributeAssertions into a valid XACML attribute format. Although specific mappings
need not be predefined, the functionality presumes a correspondence between the attribute
identities used in the XACML and SAML representations of each logically equivalent attribute.
By supporting such transformations, these attributes are available both within the decision and
enforcement phases of authorization. Therefore, Cardea augments XACML functionality with
SAML functionality to provide this data to all participants in an authorization decision.

6.4.2 Encoding of privilege attributes in PRIMA
In PRIMA, individual XACML rule statements are used to represent individual privilege

attributes. A secure container provides issuer and validity information outside of the attribute
definition. The attribute itself consists of a “rule” construct within which the holder of the
privilege and the resource for which the right is targeted are specified in a “target” construct. The
rule has a “permit” effect if matched and specifies request and details in the “action” construct,
while a “condition” construct may optionally be used to provide for more complex rules. The
container (X.509 Attribute Certificate) provides the information on authority (issuer identifier,
signature) and validity (time frame), which are not defined in a standard XACML rule. This
separation of the validity and authority information from the actual access control rules is not a
drawback and actually promotes the separation of concerns in the system. The validity and
authority information is used when a request context and dynamic policy is built by the PEP,
whereas the access control rules will provide the content for the dynamic policy that later will be
used by the PDP.

7. Related Work and Ongoing Work

This section provides general descriptions of systems that provide similar features to those
found in XACML and the systems described in this paper. Following that is a brief introduction
to other work being done to use XACML in future systems.

7.1 Related Work
There are several other projects that deal with distributed authorization. Although each of

these systems takes a unique approach to the authorization problem, the features of XACML
directly benefits or improves the existing functionality.

The Community Authorization Service (CAS) [PEA021 reduces administrative overhead by
separating resource administration from community specific administration. Resource
administrators grant bulk rights to a specific community (e.g. a Virtual Organization (VO)
[FOSOl]) while community administrators manage membership and privileges associated with
members without resource administrator intervention. Group members authenticate to grid
resources with a group credential (limited proxy credential) that limits the individual’s rights to a

13

subset of the rights the community has at the resource. To promote scalability, CAS requires only
a shared group account per community rather than an individual account for each member. The
CAS system is independent of the policy language used to define restrictions in proxy credentials.
XACML is being evaluated as an alternative to the proprietary policy statement format currently
used in restricted proxy credentials.

Akenti [THO991 addresses issues raised when multiple authorities (stakeholders) control
access to resources. Akenti provides a policy language to define, as well as infrastructure
components to enforce, flexible access control policies. Akenti leverages a collection of
proprietary XML-based certificates to encapsulate policy, use-condition and attribute statements.
For a flat set of resources there is only one policy certificate. For hierarchical resources there
may be multiple policy certificates, one for each level of the hierarchy. Akenti allows the
certificates to be stored in remote repositories and provides mechanisms to ensure that all
applicable use-conditions (from possibly a group of stakeholders) are combined when making an
access control decision. The Akenti team will investigate the use of XACML for the
representation of distributed policies and the applicability and effectiveness of the policy
combining mechanism.

Like Akenti, PERMIS [CHA02] provides a Privilege Management Infrastructure (PMI).
PERMIS uses X.509 Attribute Certificates [WC3281] to specify subject attributes such as roles
and permissions. Each permission represents the right to access a target in a particular mode.
PERMIS defines a hierarchical role based access control (MAC) policy language in terms of
those roles and permissions. The RBAC policy (in XML format) is used to control access to all
the targets within the policy domain and is composed of a number of sub-policies. The PERMIS
project is currently investigating the use of XACML as a core language to replace parts of their
proprietary policy language.

7.2 Ongoing Work
The systems discussed in this paper represent current and future work that leverage XACML

for authorization. This paper also discusses several standards that will integrate with XACML to
streamline authorization. However, there are many other systems that already integrate XACML
or are starting to experiment with doing so now. This section provides some small insight into a
few categories of such systems.

One such class of systems is peer-to-peer (P2P) which typically lacks any form of centralized
administration and usually leaves users to manage their own data and policies. P2P projects like
JXTA [JXTA] provide a general framework for building applications. Thus, the underlying
security systems must be flexible enough to handle any application but still be manageable. Work
is currently underway within JXTA projects to explore XACML's role in its authorization
framework and the tools needed for JXTA and P2P environments. Other P2P systems like Sun's
Virsona research project are exploring using XACML to provide personal privacy.

Another class of systems evaluating XACML is Role Based Access Control (RBAC) , an
increasingly important component in distributed systems, but one that is often hard to support in
heterogeneous environments. NIST has a project [NIST] to define flexible RBAC systems, and it
has strong authorization requirements. The XACML Technical Committee is working with NIST
to define this relationship, and a draft [MAC] is available.

Finally, there are several projects that are evaluating XACML as a core policy language within
its authentication engine, like the ebXML Registry [REG]. ebXML Registry includes support for
XACML in its latest specification draft and prototypes [REGSF] using XACML are already
working well. There are also proposals, for example, defining how to use XACML as a
complementary language in systems like the Java Policy framework, though many of these are in
an early discussion stage.

14

8. Summary

Early experiences using XACML in distributed systems have proven positive. The language
is indeed useful for specifying arbitrarily complex policies in a wide variety of (distributed)
applications and environments. While targeted at traditional access control systems, XACML also
proves practical for expressing privilege management policies and defining privilege statements.
The standard format works well in tying together heterogeneous systems, and already fosters
development of common tools. Its open standard status, definition in XML, and availability of
open source projects has already drawn support from diverse applications. XACML's ability to tie
into other authorization systems makes it a natural inter-operability point, even for legacy
systems. Its expressive semantics and extensible nature also make it useful as an intermediary
language. The ability to work with decentralized policies, and the ease with which it integrates
into the systems presented in this paper point to XACML as an excellent choice for distributed
authorization systems.

XACML does have some limitations at present, however. The language's flexibility and
expressiveness comes at the cost of complexity and verbosity. As such, it's hard to work directly
with the language or policy files. Tools are underway, but until there is widespread availability,
it will be hard for average users to work with any XACML-based system. Even with good tools
in place, there is an inherent semantic complexity that's separate from the syntactic complications.
This too will need to be addressed, and tools are needed that help people understand the meaning
of policies. Finally, there are remaining issues in how XACML presently works with other
standards, some of which are fairly critical, such as online protocols and storage systems. Again,
these issues are currently being addressed, but until they are resolved, it will remain difficult to
leverage the full power of XACML.

In conclusion, XACML is an important and useful component for a distributed system's
authorization needs. Missing pieces have been identified and are being addressed. As has been
illustrated in this paper, XACML will work well with real systems today, and it has the features
required to help tie authorization systems together in the future.

Acknowledgments

This work was supported in part by the Virginia Commonwealth Information Security

The authors would like to thank the following people for their efforts in the work described in
Center (CISC).

this paper: Anne Anderson, Steve Carmody, Tom Doeppner, Yassir Eiley, Tracy Hadden, Steve
Hanna, Radia Perlman, Roberto Tamassia, Bill Thigpen, and Danfeng Yao.

15

References

[AXIS] http://xml.apache.org/axis, visited 2003-07-14

[CHAO2] D. Chadwick and A. Otenko, “The Permis X.509 Role Based Privilege Management
Infrastructure”, SACMAT 2002 Conference Proceedings, ACM Press, NY, pp. 135 - 140

[FOS99] I. Foster and C. Kesselman, “Globus: A Toolkit-Based Grid Architecture”, The Grid,
Blueprint for a Future Computing Infrastructure, Morgan Kaufmann, San Francisco, 1999, pp.

[FOSOl] I. Foster, C. Kesselman, and S. Tuecke, “The Anatomy of the Grid: Enabling Scalable
Virtual Organizations”, International Journal of Supercomputer Applications, 2001.

[HP98] Cheh Goh, “Policy Management Requirements”, Hewlett Packard Laboratories Technical
Report, HPL-98-64, April 1998, http://www.hpl.hp.com/techreports/98/HPL-98-64.html

[IPG] http://www.ipg.nasa.gov, visited 2003-07-14

[JIFFY] http://www.jiffysoftware.com/, visited 2003-06-1 0

[JXTA] http://www.jxta.org, visited 2003-07-14

[LOR021 Markus Lorch and Dennis Kafura, “Supporting Secure Ad-hoc User Collaboration in
Grid Environments”, Proc. 3rd Int. Workshop on Grid Computing - Grid 2002, Pages 181 - 193,
Baltimore, USA, November 18th, 2002

[LOR031 Markus Lorch, David Adams, Dennis Kafura, Madhu Koneni, Anand Rathi, Sumit Shah
“The PRIMA System for Privilege Management, Authorization and Enforcement in Grid
Environments”, communicated to the 41h Ind. Workshop on Grid Computing - Grid 2003

[NIST] Information Technology Industry Council, “Role Based Access Control”, Proposed ANSI
Standard, April 4th, 2003

[PEA021 L. Pearlman et al, “A Community Authorization Service for Group Collaboration”,
2002 IEEE Workshop on Policies for Distributed Systems and Networks

[RBAC] Anne Anderson, “XACML RBAC Profile”, OASIS TC Working Draft, June 5th, 2003

[REG] OASIS Registry Technial Committee, “OASIS/ebXML Registry Services Specification
v2.0”, OASIS Standard, April 2002

[REGSF] http://ebxmlrr.sourceforge.net/
[RFC2748] D Durham et al, “The COPS (Common Open Policy Service) Protocol”, IETF
Proposed Standard, RFC 2748, January 2000

[RFC2753] R Yavatkar, D Pendarakis, and R Guerin, “A Framework for Policy-based Admission
Control”, IETF Informational Standard, RFC 2753, January 2000

[RFC2904] J. Vollbrecht et al, “AAA Framework”, IETF RFC, August 2000

[RFC3281] S. Farrell, R. Housley, “An Internet Attribute Certificate Profile for Authorization“,
IETF RFC, April 2002

[SAML] Phillip Hallam-Baker, Eve Maler, et al, “Assertions and Protocol for the OASIS Security
Assertion Markup Language (SAML), Oasis Standard, November 5th, 2002

[SEA021 K E Seamons et al, “Protecting Privacy during On-line Trust Negotiation”, Second
Workshop on Privacy Enhancing Technologies, April 2002

259-278

16

[SHIB] Marlena Erdos and Scott Cantor, “Shibboleth Architecture v5”, Internet2/MACE, May
2002

[SOAP] Don Box et a1 “Simple Object Access Protocol (SOAP) 1.1” World Wide Web
Consortium Note, May 2000

[SPADE] Sidharth Nazareth, “SPADE: SPKVSDSI for Attribute Release Policies in a Distributed
Environment”, Dept of Computer Science, Dartmouth College Technical Report TR2003-453,
May 30,2003

[THO031 M. Thompson, A. Essiari, S. Mudumbai, “Certificate-based Authorization Policy in a
PKI Environment,” ACM Transactions on Information and System Security, to appear, August
2003

[WINSSO21 William Winsborough and Ninghui Li “Protecting Sensitive Attributes in Automated
Trust Negotiation”, WPES, November 2002

[WSPL] Tim Moses, Anne Anderson, Seth Proctor, and Simon Godik, “XACML Profile for Web
Services”, OASIS TC Working Draft, May 9th, 2003

[XACML] Simon Godik, Tim Moses, et al, “extensible Access Control Markup Language
(XACML) Version 1.0”, OASIS Standard, February 18th, 2003

[XACMLSF] http://sunxacml.sourceforge.net
[XMLDSig] Mark Bartel et al, “XML Signature Syntax and Processing”, World Wide Web
Consortium Recommendation, February 2002

17

Appendix

A 1 - A File Privilege Encoded as an XACML Rule Component

<Rule RuleId="File-Privilege-Rule" Effect="Permit">
<Target>
<Subjects>
<Subject>
<SubjectMatch MatchId="urn:oasis:names:tc:xacml:l.O:function:string-equal">
<Attributevalue DataType="http://www.w3.org/2OOl/XMLSchema#str~ng">

</Attributevalue>
/CN=Sumit Shah (sshah)/OU=Virginia Tech User/OU=Class P/O=V~/C=US

<SubjectAttributeDesiqnator
AttributeId="urn:oasis:names:tc:xacml:l.O:subject:subject-id"

DataType="http://www.w3.orq/2001/XMLSchema#string" />
</SubjectMatch>
</Subject>
</Subjects>
<Resources>
<Resource>
<ResourceMatch MatchId="urn:oasis:names:tc:xacml:l.O:function:string-equal">
<Attributevalue DataType="http://www.w3.org/2001/XMLSchema#anyURI">

</Attributevalue>
<ResourceAttributeDesignator

gridftp://zuni.cs.vt.edu/data/collaboration/results.dat

AttributeId="urn:oasis:names:tc:xacml:l.O:resource:resource-id"
DataType="http://www.w3.org/2OOl/XMLSchema#anyURI" />

</ResourceMatch>
</Resource>
</Resources>
<Actions>
<Action>
<ActionMatch MatchId="urn:oasis:names:tc:xacml:l.O:function:string-equal">
<Attributevalue DataType="http://www.w3.org/2001/XMLSchema#string">

</Attributevalue>
<ActionAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:l.O:action:action-

Read

id" DataType="http://www.w3.org/2001/XMLSchema#string" />
</ActionMatch>
</Action>
</Actions>
</Target>
</Rule>

A2 - A Simple Privilege Management Policy in XACML

<?xml version="l. 0" encoding="UTF-8" ?>
<Policy xmlns="urn:oasis:names:tc:xacml:l.O:policy"

xsi:schemaLocation="urn:oasis:names:tc:xacml:l.O:policy cs-xacml-schema-policy-01.xsd"
PolicyId="IssuerVerif ication"
RuleCombiningAlqId="urn:oasis:names:tc:xacml:l.O:rule-combininq-alqorithm:deny-overrides">

xmlns:xsi="http://www.w3.orq/2OOl/XMLSchema-instance~'

<Target>
<Subjects>

</Subjects>
<Resources>

</Resources>
<Actions>

</Actions>

<Anysubject />

<AnyResource />

<AnyAction />

</Target>
<Rule RuleId="IssuerVerificationRule" Effect="Pe&t">
<Target>
<Subjects>
<Subject>

18

k - - - ..

<SubjectMatch MatchId="urn:oasis:names:tc:xacml:l.O:function:string-equal">
<Attributevalue DataType="http://www.w3.org/2OOl/XMLSchema#string1'>

</Attributevalue>
<SubjectAttributeDesignator

/CN=Markus Lorch (mlorch)/OU=Virginia Tech User/OU=Class t/O=vt/C=US

AttributeId="urn:oasis:names:tc:xacml:l.O:subject:subject-id"
DataType="http://www.w3.org/2001/XMLSchema#string" />

</SubjectMatch>
</Subject>
<Subject>
<SubjectMatch MatchId="urn:oasis:names:tc:xacml:l.O:function:str~ng-equal">
<Attributevalue DataType="http://www.w3.org/2OOl/XMLSchema#string~'>

</Attributevalue>
<SubjectAttributeDesignator

/CN=Sumit Shah (sshah)/OU=Virginia Tech User/OU=Class P/O=vt/C=US

AttributeId="urn:oasis:names:tc:xacml:l.O:subject:subject-id"
DataType="http://www.w3.org/2OOl/XMLSchema#string~' />

</SubjectMatch>
</Subject>

</Subjects>
<Resources>
<Resource>
<ResourceMatch MatchId="urn:oasis:names:tc:xacml:l.O:function:string-equal">
<Attributevalue DataType="http://www.w3.org/2OOl/XMLSchema#anyURI'~>

</Attributevalue>
<ResourceAttributeDesignator

gram://zuni.cs.vt.edu/

AttributeId="urn:oasis:names:tc:xacml:l.O:resource:resource-id"
DataType="http://www.w3.org/2001/XMLSchema#anyURI" />

</ResourceMatch>
</Resource>

</Resources>
<Actions>
<Action>
<ActionMatch MatchId="urn:oasis:names:tc:xacml:l.O:function:string-equal">
<Attributevalue DataType="http://www.w3.org/2OOl/XMLSchema#string">

</Attributevalue>
<ActionAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:l.O:action:action-

delegate GRAM access

id" DataType="http://www.~3.org/2001/XMLSchema#string" />
</ActionMatch>

</Action>
</Actions>

</Target>
<Condition FunctionId="urn:oasis:names:tc:xacml:l.O:function:string-equal">
<Apply FunctionId="urn:oasis:names:tc:xacml:l.O:function:string-one-and-only">

<SubjectAttributeDesignator DataType="http://www.w3.org/2OOl/XMLSchema#string"
Attribute Id= " holder " / >

</Apply>
<Apply FunctionId="urn:oasis:names:tc:xacml:l.O:function:string-one-and-only">

<Attributevalue DataType="http://www.w3.org/2OOl/XMLSchema#string">

</Attributevalue>
/OW= Virginia Tech User

</Apply>
</Condition>

</Rule>
</Policy>

19

