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Summary 
 

10-mol% yttria-stabilized zirconia (10YSZ)-alumina composites containing 0 to 30 mol% alumina 
were fabricated by hot pressing at 1500 °C in vacuum. Thermal conductivity of the composites, 
determined at various temperatures using a steady-state laser heat flux technique, increased with increase 
in alumina content. Composites containing 0, 5, and 10-mol% alumina did not show any change in 
thermal conductivity with temperature. However, those containing 20 and 30-mol% alumina showed a 
decrease in thermal conductivity with increase in temperature. The measured values of thermal 
conductivity were in good agreement with those calculated from simple rule of mixtures.  

 
 

Introduction 
 
A fuel cell is an electrochemical device where the chemical energy of a fuel such as hydrogen is 

converted into electricity by electrochemical oxidation of the fuel. The only by-products of this process 
are water and heat. Various types of fuel cells (polymer electrolyte fuel cell, alkaline fuel cell, phosphoric 
acid fuel cell, methanol fuel cell, molten carbonate fuel cell, and solid oxide fuel cell) are being developed 
as power sources for a large number of applications. Solid oxide fuel cells1 (SOFC) offer several 
advantages over other types of fuel cells such as high efficiency, low emissions, high power density, fuel 
flexibility, and internal fuel reforming. Yttria-stabilized zirconia (YSZ) is the most commonly used 
electrolyte for high-temperature SOFC because of its high oxide ion conductivity and stability in 
oxidizing and reducing atmospheres. However, like other ceramic materials, zirconia has low fracture 
toughness and poor strength. For aeropropulsion applications, the thin electrolyte membrane (10 to 50 µm 
thick) of the planar anode-supported SOFC needs to be strong and tough as it would be subjected to 
severe vibrations and thermal cycling during take-off and landing. It has been recently demonstrated2–4 

that the additions of alumina to 10YSZ make it stronger, tougher, lighter, and stiffer at room temperature 
as well as at 1000 °C. However, no information is available about the thermal conductivity of these 
composites. The objective of the present study was to investigate the effects of alumina additions on the 
thermal conductivity of 10YSZ in the SOFC operating temperature region.  

 
 

Materials and Experimental Methods 
 
The starting materials used were 10 mol% yttria fully-stabilized zirconia powder (HSY–10, average 

particle size 0.41 µm, specific surface area 5.0 m2/g) from Daiichi Kigenso Kagaku Kogyo 
Company, Japan and alumina powder (Baikalox CR–30, 99.99 percent purity, average particle size  
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0.05 µm, specific surface area 25 m2/g) from Baikowski International Corporation, Charlotte, North 
Carolina. Appropriate quantities of 10YSZ powder and alumina powder were slurry mixed in acetone and 
ball milled for ~24 h using zirconia milling media. Acetone was evaporated and the powder dried in an 
electric oven. The resulting powder was loaded into a graphite die and hot pressed at 1500 °C in vacuum 
under 30 MPa pressure into 1 in. diameter discs using a mini-hot press. Grafoil was used as spacers 
between the specimen and the punches. Load was released before onset of cooling2,4 after an isothermal 
hold at high temperature resulting in dense and crack free ceramic composite samples. Residual grafoil 
from disc surfaces was burned off in air. 

 
 

Thermal Conductivity Measurement 
 
One inch (25.4 mm) diameter hot pressed discs of 10YSZ-alumina composites were used for thermal 

conductivity measurements. Thermal conductivity testing of the ceramic materials was carried out using a 
3.0 kW CO2 laser (wavelength 10.6 µm) high-heat flux rig. A schematic diagram of the test rig, photos of 
the actual test facilities and the general test approach have been described elsewhere.5 In this steady-state 
laser heat flux test method, the specimen surface was heated by a laser beam, and backside air-cooling 
was used to maintain the desired temperature. A uniform laser heat flux was obtained over the 23.9 mm 
diameter aperture region of the specimen surface by using an integrating ZnSe lens combined with the 
specimen rotation. Platinum wire flat coils (wire diameter 0.38 mm) were used to form thin air gaps 
between the top aluminum aperture plate and stainless-steel back plate to minimize the specimen heat 
losses through the fixture. 

Thermal conductivity of ceramic materials, kceramic, can be determined from the pass-through heat flux 
qthru and measured temperature difference ∆Tceramic across the ceramic specimen thickness lceramic under the 
steady-state laser heating conditions5 

 
 kceramic = qthru ⋅ lceramic/∆Tceramic (1) 

 
The actual pass-through heat flux qthru for a given ceramic specimen was obtained by subtracting the 

laser reflection loss (measured by a 10.6 µm reflectometer) and the calculated radiation heat loss (total 
emissivity was taken as 0.50 for the oxides) at the ceramic surface from the laser delivered heat flux  
(i.e., qthru = qdelivered – qreflected – qradiated). Note that the non-reflected laser energy is absorbed at or near the 
specimen surfaces because of the quite high emissivity at the 10.6 µm laser wavelength region for the 
oxides. In some test cases, the pass-through heat flux qthru was verified with an internal heat flux gauge 
incorporated with the substrates (instrumented specimens) via an embedded miniature thermocouple. For 
the hot pressed bulk specimens, the temperature difference ∆Tceramic in the ceramic was directly measured 
by using two 8µm pyrometers at both specimen front heating and back side air cooling surfaces.  
 
 

Results and Discussion 
 
Compositions of various 10YSZ-alumina composites used in this study and their densities, ρ, are 

presented in table I. The specimens are at least 99 percent dense. Density decreased with increase in 
alumina content, as expected. X-ray diffraction patterns from various 10YSZ-alumina composites are 
shown in figure 1. Cubic zirconia and α-alumina were the only phases present indicating the absence of 
any chemical reaction between the constituent materials during hot pressing at elevated temperatures. 
Typical SEM micrographs taken from the polished cross-sections of various YSZ/alumina composites are 
shown in figure 2. Alumina particulates are uniformly dispersed throughout the material. The dark areas 
represent alumina while the light areas indicate the 10YSZ matrix, as confirmed from EDS analysis  
(fig. 3). TEM micrograph and dot maps for various elements for the composite containing 30 mol% 

d)
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alumina are shown in figure 4. The average equiaxed grain size is less than 1.0 µm for either YSZ matrix 
or alumina. The high magnification TEM micrographs showing grain boundaries and triple junctions for 
the 0 and 30 mol% alumina composites are presented in figures 5 and 6, respectively. The grain 
boundaries as well as the triple junctions are clean for either composite, indicating the absence of any 
amorphous phase. No appreciable deformation or microcracks of adjacent grains in the composites, which 
might occur due to thermoelastic mismatches between the YSZ matrix and the alumina particulates, was 
observed from the analysis of TEM micrographs. 

 
 

Table I.—Compositions of 10YSZ-alumina composites 
Composition (mol%) Sample 

No. 10YSZ Al2O3 
Density, ρ 

(g/cm3) 
A2-0 100 0 6.09 ± 0.05 
A2-5 95 5 5.89 ± 0.01 
A2-10 90 10 5.80 ± 0.01 
A2-20 80 20 5.57 ± 0.01 
A2-30 70 30 5.38 ± 0.04 
Al2O3 0 100 3.94 ± 0.03 

 
 
 

 
 



NASA/TM—2003-212896 4

 
 
 
 

 
 
 
 
 
 

 



NASA/TM—2003-212896 5

 
 
 
 

 
 
 
 
 
 
 
 

 



NASA/TM—2003-212896 6

 
 
 

 
 

Thermal conductivities of hot pressed specimens of 10YSZ-alumina composites of various 
compositions, as a function of temperature, are shown in figure 7. Results for 10YSZ and alumina are also 
shown for comparison. Data for alumina shows a large scatter particularly in the low temperature region. As 
alumina has much higher thermal conductivity at low temperatures, the precision of steady-state laser 
technique, used in the current study, is not as good due to small thermal gradient across the test specimen at 
low temperatures. Thicker test specimens of alumina may improve the precision. Thermal conductivity 
increased with increase in alumina content. This is expected, as the thermal conductivity of alumina is much 
higher12 than that of 10YSZ. The increase in thermal conductivity with alumina additions is more significant 
at lower temperatures than at higher temperatures. Thermal conductivity of composites containing 0, 5, and 
10-mol% alumina exhibited slight changes with temperature. However, those containing 20 and 30-mol% 
alumina showed a sharper decrease in thermal conductivity with increase in temperature.  
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Microstructures of composites of various compositions (fig. 2) show that alumina phase is uniformly 
dispersed within the major continuous 10YSZ phase. For materials with such a microstructure, when 
thermal conductivity of the dispersed phase (alumina) is much higher than that of the continuous phase 
(10YSZ), the thermal conductivity of the composite (kc) is given by10  

 
 kc = k10YSZ [(1 + 2VAl2O3)/(1 – VAl2O3)]  (2) 

 
where k represents the thermal conductivity and V the volume fraction. Thermal conductivity of the 
composites was also calculated using the simple rule of mixtures: 

 
 kc = (k10YSZ . V10YSZ) + (kAl2O3 . VAl2O3) (3) 

 
Thermal conductivity of various 10YSZ-alumina composites at 1000 °C were calculated from  

Eqs. (2) and (3) using values of 2.15 and 6.88 W/m-K for thermal conductivity of 10YSZ and alumina, 
respectively, measured in the current study. The calculated and measured values are compared in table II. 
The measured values of thermal conductivity of 10YSZ-alumina mixtures are in much better agreement 
with those calculated from the rule of mixtures Eq. (3), rather than from Eq. (2).  

Thermal conductivity of alumina from various studies is compared in figure 8. Results of the present 
study are in good agreement with those reported by other researchers, particularly at high temperatures. 
However, values reported by Santos and Taylor11 are high compared with other studies. Literature values 
of thermal conductivity of yttria-stabilized zirconia containing various mol% of the stabilizer are shown 
in figure 9, along with the results of the current study for 10 mol% (16.9 wt%) yttria containing zirconia. 
Significant variation is seen in the results for different compositions due to different microstructures 
resulting from various amounts of yttria stabilizer. Thermal conductivity of zirconia decreases with 
increase in yttria content up to 5.12 mol% (9 wt%). However, thermal conductivity increased for 
compositions containing higher yttria content. The 3YSZ consists almost entirely of tetragonal (t) phase.15 
Compositions containing >3 mol% (5.3 wt%) yttria contain a significant amount of the monoclinic (m) 
phase and the microstructure consists of a two-phase mixture of t and m phases. The 10YSZ composition 
of the present study, containing 10 mol% (16.9 wt%) yttria, is fully stabilized and consists of the cubic 
phase of zirconia.  
 

 
 
 

Table II.—Measured and calculated thermal conductivities of 10YSZ-alumina composites at 1000 °C 
Composition (mol%) Thermal conductivity (W/m-K) at 1000 °C Sample 

No. 10YSZ Al2O3 Measured 
(This study) 

Calculated from 
Eq. (2) 

Calculated from 
Eq. (3) 

A2-0 100 0 2.2 -- -- 
A2-5 95 5 2.5 2.5 2.4 
A2-10 90 10 2.7 3.0 2.7 
A2-20 80 20 3.0 4.0 3.2 
A2-30 70 30 3.3 5.3 3.7 
Al2O3 0 100 6.9 -- -- 
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Summary 
 
Thermal conductivity of 10YSZ-alumina composites containing 0 to 30 mol% alumina has been 

determined as a function of temperature. Thermal conductivity increased with an increase in alumina 
content. Thermal conductivity showed slight change with temperature for 0, 5, and 10 mol% alumina 
compositions whereas it decreased with temperature for composites containing 20 and 30 mol% alumina. 
The measured thermal conductivity values are in good agreement with those calculated from simple rule 
of mixtures.  
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