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ABSTRACT 

A new approach to validation of the Poisson stochastic radiative transfer method is proposed. 

In contrast to other validations of stochastic models, the main parameter of the Poisson model 

responsible for cloud geometrical structure - cloud aspect ratio - is determined entirely by 

matching measurements and calculations of the direct solar radiation. If the measurements of the 

direct solar radiation is unavailable, it was shown that there is a range of the aspect ratios that 

allows the stochastic model to accurately approximate the average measurements of surface 

downward and cloud top upward fluxes. Realizations of the fractionally integrated cascade 

model are taken as a prototype of real measurements. 



1. Background 

Clouds cover significant part of the globe and are the key factor in the Earth radiation budget. 

Unfortunately, available information on cloud macrostructure and cloud microphysical properties 

is not sufficient for a unique determination of the radiation regime in a particular point and a 

given direction. However, it was long recognized (Stephens and Platt 1987) that some important 

conclusions on the dynamics of the radiation regime could be drawn from the averaged over the 

ensemble of realizations statistical characteristics of cloud and radiation fields. This gave an 

impulse to intense development of many stochastic approaches for the description of radiative 

transfer in cloudy atmosphere. Starting from a simple cloud model by Mullamaa et al. (1972), 

several different stochastic models for single-layer broken clouds have been developed (Kargin 

1984; Titov 1990; Malvagi and Pomraning 1992; Barker et al. 1992; Malvagi et al. 1993; Kargin 

and Prigarin 1994; Prigarin and Titov 1996; Marshak et a1 1998; Prigarin et al. 1998, 2001; 

Evans et al. 1999,2000; etc.) 

Though the main criterion of applicability for any stochastic cloud model is its agreement 

with measured statistical characteristics for both cloud and radiation fields, there are yet very few 

examples of model validations. Recently Lane et al. (2002) compared experimental and 

theoretical downwelling shortwave radiation (DWSR) at the surface. They used two models: (i) 

a horizontally homogeneous one-layer cloud model and (ii) the stochastic model developed by 

Byme, Malvagi, Pomraning and Somerville (Malvagi et al. 1993; Malvagi and Pomraning 1993; 

Byrne et al. 1996). Observational data from the Atmospheric Radiation Measurements (ARM) 

Program Southern Great Plains (SGP) site were used to derive the necessary input. The main 

focus of the comparison was on broken cloud conditions characterized by fair-weather cumulus 



and cumulus fractus clouds. The discrepancies between observations and predicted by both 

models radiation fields to a great extent came from the uncertainties in input cloud microphysics. 

The paper showed that in most cases the calculations of DWSR at the surface by the one-layer 

homegeneous model fit observations better (by 30-35 Wm-2) than the stochastic model. It was 

suggested that the main reason for the discrepancies between models is a limited ability of the 

stochastic model to simulate cloud vertical inhomogeneity. Indeed, the stochastic model splits a 

cloud field between consecutive atmospheric layers and since the distribution of clouds between 

adjacent layers is not correlated, all calculations are made assuming “cloud random overlap”; as 

a result, DWSR is substantially underestimated. 

The goal of the present study is to check the validity and applicability of the statistically 

homogeneous Poisson stochastic cloud model proposed by Titov (1990). The earlier attempts to 

apply the Poisson model to experimental data (Titov 1990) showed that, in general, the radiative 

transfer processes in real broken clouds were well approximated by the model. Unfortunately, 

initially there was little data available for validation and even available measurements were 

incomplete. One of the main problems for validation of the Poisson model was the ambiguity in 

accurate estimation of the aspect ratio, one of the most important parameters of the model. Here 

we propose a new validation approach that determines the aspect ratio from measurements of 

direct solar radiation by matching the mean direct radiative fluxes with those calculated from the 

stochastic model. Instead of real data we use realizations of a modified version of the 

fractionally integrated cascade model (Schertzer and Lovejoy 1987) with the modifications 

suggested by Marshak et al. (1998) to simulate broken cloudiness. We assume that realizations 

of the fractionally integrated cascade model represent real measurements. 



The outline of this paper is as follows. Poisson stochastic cloud model and the fractionally 

integrated cascade model are briefly described in Section 2. Section 3 discusses our approach to 

validation and shows some testing results. The conclusions are provided in Section 4. 

2. Stochastic cloud models 

a. Poisson stochastic cloud model 

The detailed description of the one-layer Poisson stochastic model is given by Titov (1990). 

Here we briefly summarize only those points of the model that are relevant to the present 

research. 

’ The statistically homogeneous Poisson model (called here the “Poisson model”) is 

completely determined by only three parameters: cloud fraction M, cloud optical depth z 

(assumed to be constant for all cloud elements); and aspect ratio y = H/D where H is the 

geometrical thickness of a cloud layer and D is the horizontal size of clouds. For statistically 

homogeneous cloud fields, a closed system of equations for mean intensity was obtained, and 

efficient algorithms of its solution by the Monte Carlo method were developed. The accuracy 

and the range of applicability of these equations were estimated by comparison with direct 

numerical simulations. The results of comparison showed that the equations for the mean 

intensity have an acceptable accuracy and, hence, can be used to study the influence of effects of 

random cloud geometry on radiative properties of broken clouds. The main advantage of the 

method of closed equations is that once the radiative transfer equation is analytically averaged 



(using some assumptions concerning probabilistic properties of the cloud field), the calculations 

of the average radiative characteristics of clouds are computationally fast and straightforward. 

At the initial stage of the Poisson model validation (Titov 1990), there was little data and the 

available measurements were not sufficiently integrated, i.e., the radiative properties and optical 

and geometrical parameters of clouds were not simultaneously determined and tied with 

atmospheric and surface characteristics required in calculations. However, since the method of 

closed equations for calculations of statistical characteristics of radiation is computationally 

efficient, the question of validation became critical. 

Validation is especially important since recent efforts to generalize the Poisson model to the 

case of multilayer broken clouds (Titov and Zhuravleva 1999; Prigarin et al. 2002; Kassianov 

2003). First, Titov and Zhuravleva (1999) assumed statistical independence of cloud fields in 

each layer determined by an independent set of parameters (cloud fraction N, cloud optical depth 

5 and aspect ratio y). Then Prigarin et al. (2002) generalized the Poisson model to statistically 

dependent fields with a given correlation function for cloud fields at different vertical layers. 

They also studied the effect of vertical correlation on radiative transfer. Recently, Kassianov 

(2003) using a Marcovian approach derived approximate equations for direct and difhse solar 

radiation in broken cloudiness with an arbitrary horizontal and vertical inhomogeneity. 

Kassianov et al. (2003) estimated the accuracy and robustness of these equations. In contrast to 

the Titov and Zhuravleva's (1999) model, the last two models require a lot of information on 

correlation between cloud fields at different vertical levels. So far this information is very 

limited but the recent increase in interest to complex cloud systems (Wang and Rossow 1995; 

Bergman and Hendon 1998; Wang et a1 1999) gives us a hope that this information will be 

available in the near future. Our approach to test the statistically homogeneous Poisson models 



described in section 3 can be also useful for validation of the stochastic models of multilayer 

broken cloudiness. 

b. Fractionally integrated cascade model 

Each realization of the fractionally integrated cascade model (called here the “cascade 

model”) has four well defined and easily estimated from real data parameters (Schertzer and 

Lovejoy 1987): two of them come from a single-point statistics (mean optical depth, T , , , ~ ,  and 

standard deviation, or rather a direct function of it, p ) ,  one comes from a two-point statistics 

(scaling exponent, p),  and one is a cloud fraction, N (Marshak et al. 1998). The fractionally 

integrated model transforms singular cascades with spectral exponent p 1 into a more realistic 

one with /3 > 1 using a power-law filtering in Fourier space. In physical space, this operation is 

known as “fractional integration”; thus the name of the model. For simplicity, through the whole 

paper p = 5/3,p = 0.35 (Cahalan 1994) were selected. 

STATISTICAL, CHARACTERISTICS OF CLOUDS 

Because for given p and p ,  cloud fraction varies from one realization to another, it is 

reasonable to use cloud fractions in statistical sense with its mean, <IC-, standard deviation, ON, 

minimum, Nmin, and maximum, Nma, as well as the probability density functionJN). (Symbol 

is used for the ensemble-averaged statistics.) 

Cloud fraction statistics can be estimated from a sample of M cloud realizations. Figure 1 

shows that M = lo4 cloud realizations are sufficient to represent adequately the cloud fraction 



statistics. Further increase of the number of realizations does not lead to significant changes in N 

statistics, though substantially increases computer time. Note that while going from one 

realization to another, not only the cloud fraction varies but there are also changes in Zmin and 

hm for a fixed average value Tm-- 

In addition to Fig. 1, Fig. 2 shows examples of statistical characteristics of the cloud fraction. 

As <N> increases the distribution of cloud fraction becomes broader. Indeed, while at <N> = 

0.32 the cloud fraction variability range is Nmm - Nmin=O.O7, at <N> = 0.70 it is almost twice 

larger and is equal to 0.12. 

2) STATISTICAL CHARACTERISTICS OF RADIATION 

Let us first discuss how can we effectively calculate the radiative characteristics <R> 

averaged over a number of realizations of the cascade model. Here by R we mean either direct 

transmitted radiation S, diffuse transmitted radiation Qs, or albedo A .  

The simplest way to calculate <R> would be a sequential generating of realizations of a 

cloud field, “accurate” solution of the three-dimensional (3D) radiative transfer equation for each 

realization and finally statistical averaging over the ensemble of radiation fields. However, this 

way is at best inefficient; it requires tremendous amount of computer time since every cloud 

realization represents a complex inhomogeneous 3D medium. 

To get efficiently the radiative characteristics averaged over a number of realizations we use 

the randomization procedure (Mikhailov 1986) that is based on introduction of an additional 

randomness. According to this approach, statistical characteristics of radiation can be obtained 

by estimating randomly chosen m independent trajectories of photons. The optimum number of 



photon trajectories for each realization is usually selected from special numerical tests. Our 

preliminary calculations showed that for estimation of average fluxes the optimal m =1 while for 

standard deviation we need m = 10000. To calculate the radiative characteristics for each cloud 

realization, the Monte Carlo “maximal cross section” method (Marchuk et al. 1981) has been 

used. 

Let a unit solar flux be incident at the top of the cloud layer in direction && = (80,qo) where 

80 and po are zenith and azimuth solar angles, respectively. For simplicity, we assume here an 

absorbing surface and conservative cloud droplet scattering with the C1 scattering phase function 

(Deirmendjian 1969). In this case, S + Qs + A = 1. No aerosols are taken into account. Pixel 

sizes are chosen to be 0.1 kmx0.1 km (with 6 cascades, a modeled cloud field is 6.4 kmx6.4 km) 

and periodic boundary conditions are assumed. 

The stochastic nature of a radiative field comes from a random choice of the cloud fraction N 

and differences in cloud realizations that correspond to equal cloud fraction values. As an 

example, Fig. 3 shows two realizations of the cloud optical depth distribution with Nl = N2 = 

<Ab = 0.515. Note that the realization in Fig. 3b contains a large fragment of a clear sky. The 

geometry of the scene is such that for an oblique solar zenith angle and po = 0 , the fraction of 

the direct radiation S will be much larger than of its Fig. 3a counterpart. Indeed, going from 

realization 1 to realization 2, S almost doubles, while the diffise radiation, Qs, decreases by 

~20%.  The least sensitive to a cloud field realization is the albedo A ;  its variations do not exceed 

=lo% in this example. In general, the radiative properties of the cascade model are characterized 

by strong variations. 

To obtain the statistical characteristics of solar radiation for the realizations of the cloud 

model, we calculate the mean values <R> and the root-mean-square deviations ISR of radiative 



fluxes. (Here again R stands for S, Qs or A) .  The probability density functions fTR) and 

variability ranges (Rmh,R,,) of radiative fluxes are also of interest; however, because it 

requires much higher accuracy and thus more labor-intensive calculations than mean and 

standard deviation, we calculatedf(R), %in, and R, only for some selected cases. An example 

of these calculations is shown in Fig. 4. 

3. Validation of the Poisson broken cloud model 

The main methodological aspect here is the development of a reasonable approach to specify 

the Poisson model parameters for validation of the mean radiative fluxes against realizations of 

the cascade model, which are taken as a prototype of real measurements. In contrast to Lane at 

al. (2002) and as the first approximation, we limit ourselves to a monochromatic case because 

broadband fluxes require integration over wavelength spectrum and have more uncertainties in 

parameterization of cloud optical characteristics, water vapor profiles, etc. - the complications 

we wanted to escape. There are two main methodological points determining our approach. 

First, the Titov’s (1 990) approach permits the efficient calculation of the ensemble-averaged 

radiative characteristics ( R ( T ) ) ~ ,  assuming that the cloud optical depth ‘I: is a constant and does 

not change from one realization to another. In reality, cloud optical depth substantially varies 

horizontally inside a cloud field. To combine the Titov’s model efficiency with the horizontal 

variability of cloud optical depth, we follow Barker et al. (1996) and assume that the distribution 

of cloud optical depth is well approximated (at least for marine low-level cumulus) by the 

gamma distribution 



2 
Here parameter v =( F) where T,,, and 0, are the average and the standard deviation of 

the cloud optical depth distribution, respectively. Averaging ( R ( T ) ) ~ ~ ~  over the set of optical 

depth values yields: 

Symbol )R( pOis indicates that the radiative characteristics are averaged both over a set of cloud 

realizations and over a set of cloud optical depths. 

Second, the main geometrical input parameter in Poisson model is the aspect ratio y; to 

define it the information on cloud vertical thickness Nand its horizontal sizes D is required. The 

most accurate but perhaps the most difficult way to estimate joint& H (or rather cloud base 

height and cloud top height) and D is to have a set of complex measurements as it was done by 

Lane et al. (2002). In case of a lack of direct measurements, the distribution of geometrical 

characteristics of a certain type of clouds is usually taken from the literature. For example, Plank 

(1 969) found that for Florida cumulus clouds, the number density increased exponentially with 

decreasing cloud size. Cahalan and Joseph (1989) argued that for California marine Sc cloud 

sizes follow a power-law distribution. Hozumi et al. (1982), Wielicki and Welch (1986), Benner 

and Curry (1998) among others characterized the dimensions and spatial distribution of cumulus 

clouds. A thorough statistical discussion on an exponential versa a power-law distribution of 

cloud sizes can be found in Astin and Latter (1 998). However, because vertical and geometrical 



cloud sizes strongly depend on the region of observation, season, type of clouds, their altitude, 

etc., the climatological approach to the choice of aspect ratio is often a source of large 

uncertainties and in many cases is inappropriate for the validation of stochastic models. 

Based on the above, in addition to the average cloud optical depth T , , , ~ ~  and standard 

deviation o,, we propose to determine the other two parameters of the Poisson model as follows: 

( i )  cloud fraction N to be equal to <I\n and (i i)  the aspect ratio y to be chosen in such a way that 

for N = <N>, 

P(rYNYeoXpois = (S(NYeo)L (3) 

Le., the average direct radiation for the Poisson model, )S(y, N,80 x,, coincides with the direct 

radiation averaged over all realizations of the cascade model, (S(N,OO)). 

Next we take the statistical approach first stating and then verifying the following two 

hypotheses . 

Hypothesis 1. If for a given oblique solar zenith angle 80 > O  and a cloud fraction 

N = ( N )  , the aspect ratio ~ ( 0 0 )  is determined from Eq. (3) then the calculated average albedo 

)A(y(Bo ), N y 8 ,  xpois and transmittance )Q, (y(e0 ), N,80 xpois will be within the confidence 

intervals defined by the standard deviations of the cascade model, 

Assume that eo is fixed. Since the mean flux of the direct radiation in the Poisson model for 

80 = 0 does not depend on y, we will compare the mean values of the albedo and diffuse 

transmittance only for the oblique solar angles 10" l e o  5 7 5 " .  Our intense numerical 



calculations summarized in Table 1 confirm that, when y is specified by (3), Eq. (4) is valid. 

Note that here, for given <Nj, z,,,,, and o,, the yvalue depends on 80, Le., y = y(80). 

Hypothesis 2. For a fixed cloud fraction N=<N>, there is a range of the aspect ratios 

y E [ymin, ymax ] that for any solar zenith angle in the range 0 I 80 5 75' : 

and fixed solar zenith angle 10" 580 I75", we first calculate the mean direct radiation, 

(S (N,80) ) ,  and its root-mean-square deviation, os ( N , 8 0 ) .  Next, for the Poisson models, we 

select yfin (80 ) and ymax (80 ) in such a way that 

(6) 
)S(ymin (00 X ~ 3 8 0  X,js = ( s ( N , ~ o  1) + US ( ~ 9 8 0  X 

)S(ymax (00 X N ~ ~ O  X,, = ( s ( N , ~ o  ) ) - O S  (N,~o 

Finally, for chosen yfin (80 ) and ym (60 ) we calculate the mean values of A and Qs. 

Figure 5 shows yrnh (80) and ym(80) for varying in the range 10" e80 I 75". 

Evidently, there is a common region of the aspect ratios (ymb, ymax ) for the entire angular 

range 10" coo 575". Moreover, because of weak dependence of the direct radiation in the 

Poisson model on parameter y for eo = 0, it can be extended to 0" I 8 0  I 75". This means that 

with respect to y, Eq. (4) will be valid for all solar zenith angles 0" 580 I 75". For <Ab=0.515 

and z,,, =13, ymin and ymax correspond approximately to the aspect ratio for 80 =30" and 

are found to be 1.33 and 1.93, respectively. 



Qualitatively, the above conclusions also apply to other mean cloud fractions and mean 

cloud optical depths (see Tables 2 and 3). It follows from these results that for a wide range of 

model input parameters 0" I eo I 75" , 6 I 26, there is a set of the aspect ratios around 

y* = 5/3  which can be used to calculate mean radiative fluxes in the Poisson cloud model with 

an acceptable accuracy. These values of the aspect ratio are in good agreement with their 

climatological values as well as with the results of complex measurements of horizontal and 

optical sizes of cumulus clouds (Lane et al. 2002; Plank 1969; Cahalan and Joseph 1989; 

Hozumi et al. 1982; Wielicki and Welch 1986; Benner and Cuny 1998). 

4. Summary 

The proposed approach allowed us to validate the stochastic Poisson model of broken clouds 

(Titov 1990) against realizations of the cascade cloud model that served as a prototype of real 

measurements. The results of the validation test suggest that the Poisson cloud model can be 

successfully used to calculate the mean radiative properties of broken clouds. As soon as we 

know the average cloud fraction and mean and variance of the in-cloud optical depth (assumed to 

be gamma distributed), we can estimate the average radiative transfer characteristic by setting the 

aspect ratio in the Poisson stochastic model to 5/3 for any reasonable solar zenith angles. If, in 

addition, we know the direct radiation, the aspect ratio can be determined more accurately from 

the condition of matching the mean direct radiative fluxes with those calculated from the Poisson 

cloud model. 



In this study, the fractionally integrated cascade model determined the input parameters for 

the Poisson model. The next step will be the use of cloud properties retrieved from satellite 

(MODIS and MISR) and ground-based (ARM SGP site) observations: cloud-base and cloud top 

heights, cloud fraction and cloud optical depth. These data will be used to determine the input 

parameters for the Poisson model to validate it against the data from the ARM'S shortwave 

radiometer archive. 
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TABLES 

TABLE 1 .  Mean solar radiation fluxes calculated by the cascade and Poisson models: T,,,, = 13, 

o, =11.9, <N> = 0.5 15. Cloud geometrical thickness H = 1 km. 

eo =60° 

Cascade model 

(S)=0.19,0,y =0.04 

(A)=0.356,0~  =0.015 

(Qs) = 0.454 

Poisson model 

y =1.56, 

D=O.64 km 

)S(@ = 0,191 

)A( . =0.348 
Pols 

)Qs( . =0.461 
POW 

eo =750 

Cascade model 

(S) = 0.047 ,OS = 0.05 

(A)=0.517, OA =0.03 

(Q,) = 0.436 

Poisson model 

y = 2.04, 

D = 0.49 km 

)S( pob = 0.047 

)A(pob = 0.512 



TABLE 2. Parameters ymb and ymax for different mean cloud fractions ( N )  . Here z,,, = 13 

and CT, =11.9. 

( N )  = 0.3 18 

Ymin 1.52 

Ymax 1.93 

( N )  = 0.5 15 ( N )  = 0.701 

1.35 1.25 

1.93 1.93 



TABLE 3. Parameters Ymh and ymax for different values of mean optical depth T,,, and 0,. 

Mean cloud fraction (N) = 0.5 15. 

Ymin 

Ymax 

T,,,, = 6 ,  0 ~ 4 . 4 7  rmean = 13, 0,=l 1.9 

1.15 1.35 1.47 

1.92 1.93 1.75 

T,,,, = 26, 0,=23.7 
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FIG. 1. The influence of the number of cloud realizations M on estimate of the probability 

density functionAN) for a given <N>. 
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FIG. 2. Statistical characteristics of cloud fraction in the modified version of fractionally 
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integrated cascade model for different values of the mean cloud fraction <N, with number of 

cascades L=6,0 = 5 / 3 ,  ~ 4 . 3 5  and the number of cloud realizations M=lOOOO. 
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FIG. 3.. Two realizations of the cascade models that correspond to the same (average) cloud 

fraction <N> = 0.515. Illumination (80=6O0 and cp0=Oo) is the same for both realizations. The 

calculated radiative characteristics for both realizations are also shown. Here S, Qs and A are 

direct transmittance, diffuse transmittance and albedo, respectively. 
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FIG. 4. Statistical characteristics of albedo A ,  direct radiation S and diffise radiation Qs for the 

cascade model with p = 5/3 ,  <Ab=0.515. Mean optical depth zmeon=13, standard deviation 

~ ~ 1 1 . 9 ,  pixel size 0.1 kmx0.1 km, cloud thickness H=l km, and solar zenith angle 80 = 60" . 
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FIG. 5. Variability range of the aspect ratio y in the Poisson cloud model for which Eq. (5) holds. 

The hatched region corresponds to the values of y common for the entire range 0 I 8 0 5  75". 

Mean optical depth ~,,=13, standard deviation 0 ~ 1 1 . 9 ,  cloud fraction N=0.515. 


