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Abstract-Many large distributed system are characterized by 
having a large number of components (eg., agents, neurons) 
whose actions and interactions determine a %orld utility” which 
rates the performance of the overall system. Such “collectives” 
are often subject to communication restrictions, making it difii- 
cult for components which tzy to optimize their own “private” 
utilities, to take actions that also help optimize the world utility. In 
this article we address that coordination problem and derive four 
utility functions which present different compromises between 
how “aligned” a component’s private utility is with the world 
utility and how readily that component can determine the actions 
that optimize its utility. The results show that the utility functions 
specifically derived to operate under communication restrictions 
outperform both traditional methods and previous collective- 
based methods by up to 75%. 

I. INTRODUCTION 

Control and coordination in a large distributed system 
designed that reeds to achieve a collective task is a challenging 
area of research. Many methods exist for coordinating the 
actions of such a system when the components (e.g.. agents, 
neurons) can fully communicate with one another [6 ] ,  [15], 
[21]. In this work we focus on solution to this coordination 
problem based on “collectives” [17], [21]. A collective is 
a large distributed system of interacting agents where there 
is a well-defined “world utility” function rating the possible 
dynamic histories of the full system, and where each agent 
is only concerned with maximizing its own “private utility” 
function [21]. However, in many problems, the presence of 
communication restrictions significantly complicates the co- 
ordination problem[4], [8], 1131. Examples of such problems 
include controlling collections of rovers or constellations of 
satellites, and coordinating data routing across a network 
(because of such examples, we will refer to the components as 
“agents” in this article). In each of those cases, an agent may 
only be able to directly communicate with a small number of 
other agents. In addition, even if there are indirect methods for 
sharing information (e.g., team formation), they may be costly 
and a agent may be unwilling to share, if doing so would hurt 
its private utility (the use of teams to overcome communication 
restrictions in multi-agent systems is discussed in [l]). In all 
of these problems, the system designer faces the difficult task 
of providing the agents with a private utility that: 
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allows agents to work towards the common goal and 
not against one another, Le., the agents’ private utility 
functions are aligned with the “world utility function”; 
and 
does not require access to global information available 
through a broad communication network, i.e., agents can 
determine which actions are beneficial to their private 
utilities with the limited information at their disposal). 

These issues are at odds with each other and in fact in many 
cases it will be impossible for the agents to achieve high values 
of a private utilities which is “aligned” with the world utility.’ 
In addition even if the world utility, computed with global 
information, can be broadcast to all the agents, agents may 
not be able to effectively use this information to select actions 
that will be useful to them and to the overall system. In fact 
many obvious methods of combining local information with 
the world utility can actually cause reduced performance as 
communication increases (Figure 1). This example shows the 
behavior of a system (described in detail in Section IV) where 
the world utility is plotted with respect to the percentage of 
agents with which an agent can communicate. Note that in 
some states of the system (e.g., low communication levels), 
increasing the amount of information to which agents have ac- 
cess has deleterious effects on the performance of the system. 
We will discuss the reasons for this paradox and show how 
some problems stemming from communication restrictions can 
be overcome by providing agents with carefully crafted private 
utility functions. 

The first step in creating a distributed system that can 
effectively maximize world utility is to ensure that the agents 
work together. If the agents are not designed to work well 
with each other, they may not learn their task properly, 
may interfere with each other’s ability to contribute to the 
world utility, or simply perform useless repetitive work. Hand 
tailoring the agents’ private utility functions may offer a 
solution, but generally, such systems: (i) have to be laboriously 
modeled; (ii) provide “brittle” global performance; (iii) are not 

‘By ‘‘aligned” we mean that actions that improve the private utility of an 
agent will also improve the world utility. We will formalize this concept in 
Section ZI. 
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Fig. 1. Sample performance vs. communication level in a system (details 
in Section IV). Increasing the amount of information at low levels of 
communication can hurt performance rather than improve it. Only when the 
communication level reaches a certain threshold does the system performance 
go up with increasing amount of communication between system components. 

“adaptive” to changing environments; and (iv) generally do not 
scale well. 

To sidestep these problems, yet address the design require- 
ments listed above (i.e., utility “alignedness” and “learnabil- 
ity”) one can use the framework of collectives [18], [21]. 
Given this framework, the crucial design problem becomes: 
Assuming the individual agents are able to maximize their 
own utility functions (e.g., through reinforcement learning or 
evolving neural networks), what set of private utilities for the 
individual agents will, when pursued by those agents, result in 
high world utility? The collectives framework has been suc- 
cessfully applied to multiple domains including packet routing 
over a data network [18], congestion games [21], multiple- 
resource job scheduling over a heterogeneous computational 
grid [16], and the coordination of multi-rovers in learning 
sequences of actions [ 151. 

In this article, we extend the question of how to design the 
agents’ private utilities given that centralized communication 
is not possible. Though this question has not been directly 
addressed, there is a large body of work on systems with low 
levels of communication. Issues such as agent communication 
languages and physical implementation of communication 
have received particular attention [7], [14]. At a higher level 
Pynadath and Tambe have formalized many aspects of agent 
communications [ 131, including observability and explicit 
communication. For multi-agent Markov decision processes, 
Xule et al. dealt with the problem of partially hidden states of 
other agents [22]. Furthermore, many researchers have demon- 
strated that often little communication is needed to coordinate 
agents [3], and that in many cases local communication is 
sufficient [8]. However these observations are only true in 
certain specific domains. In this work, we further explore this 
tradeoff of global coordination and local information. 

2The design of a collective problem is related to work in many fields beyond 
multiagent systems, including mechanism design, reinforcement learning for 
adaptive control, computational ecologies, and game theory. See [17] for a 
detailed survey of collectives and related fields. 

In this article, we show how communication restrictions 
in a system can be overcome by modifying the agents’ 
utilities. Based on the work on collectives, we derive four 
different agent utility functions that offer different levels of 
alignedness and learnability for the private utility functions. 
Furthermore, those utilities differ in whether they allow for 
global broadcasts of the world utility (in some domains, though 
the agents will not be able to engage in realtime agent to agent 
communication, some global information can be broadcast at 
various intervals). In Section II, we summarize the theory of 
collectives that is needed for this article. In Section 111, we 
describe the problem domain and derive the collective-based 
solution to this problem. In Section IV, we present and discuss 
the simulation results. 

11. BACKGROUND: COLLECTIVES 
In this section, we summarize the theory collectives neces- 

sary to derive the agent utility functions used in this article. 
Let 2 be an arbitrary vector space whose elements z give the 
joint move of all agents in the system (ie., z specifies the full 
state of the system). The world utility G ( z ) ,  is a function 
of the full state z ,  and the problem we face is to find the z 
that maximizes G(z) .  In addition to G, each agent 71 has a 
private utility function gs. The agents’ goals are to optimize 
their individual private functions, even though, we, as system 
designers are only concerned with the value of the world utility 
G. We will denote the state of agent q by zs, and the state of 
all other than q,  by z-,. In this work we take z ,  zs, and zPs 
to have the same dimensionality (e.g., for 2, all elements of z 
that are not dependent of 71 are replaced with zeros), resulting 
in the notation: z = zs + z-,,. 
A. Factoredness and Learnability 

For high values of G to be achieved, the private utility 
functions need to have two properties, which we will call 
factoredness and learnability. First we want the private utility 
functions of each agent to be aligned with respect to G, 
intuitively meaning that an action taken by an agent that 
improves its private utility also improves the world utility. 
Specifically, for any two states z and z /  which differ only 
on agent 7’s state, an action by agent q that increases gs will 
also increase G. Formally a utility gs is factored with G when: 

gd.) > 97A.4 G(z)  > G(z’) 
vz,z‘ s.t. = ZL, . 

In game theory language, the Nash equilibria of a factored 
system are local maxima of G. In addition to this desirable 
equilibrium behavior, factored systems also automatically pro- 
vide appropriate off-equilibrium incentives to the agents (an 
issue rarely considered in the game theory I mechanism design 
literature). 

Second, we want the agents’ private utility functions to have 
high learnability, intuitively meaning that an agent’s utility 
should be sensitive to its own actions and insensitive to actions 
of others. As a trivial example, any system in which all the 
private utility functions equal G is factored [6]. However such 



systems often suffer from low signal-to-noise, a problem that 
get progressively worse as the size of the system grows. This 
is because for large systems where G sensitively depends on 
all components of the system, each agent may experience 
difficulty discerning the effects of its actions on G. As a 
consequence, each 7 may have difficulty achieving high g,,. 
This signal-to-noise effect, called learnability is the second 
property that is crucial in the design of the agents’ private 
utility functions. Formally we can quantify the learnability of 
a utility g,, by: 

So at a given state z, the higher the learnability, the more g,, ( z )  
depends on the move of agent q, Le., the better the associated 
signal-to-noise ratio for 7. Intuitively then, higher learnability 
means it is easier for 7 to achieve a large values of its utility. 

B. Difference Utilities 
Consider difference utilities. which are of the form: 

DUv E G(z) - G(z - .z., + v,,) (2) 

where v,, is a constant vector. In the second term of DU, all 
states depending on 7 are replaced by a constant, creating a 
virtual state. Difference utilities are factored no matter the 
choice of w,, precisely because the second term does not 
depend on 7’s state [21]. Furthermore, they usually have far 
better learnability than does setting g,, to G because the second 
term of DU removes a lot of the effect of other agents (i-e., 
noise) from q’s utility. In this work we set ‘u,, to the “null” 
vector, (e.g.. ‘u,, = G). Note, that when z,, is set to the null 
state, DU is closely related to the economics technique of “en- 
dogenizing a player’s (agent’s) externalities” [ 121. Indeed, DU 
has conceptual similarities to Vickrey tolls [19]. and Groves’ 
mechanism [lo], though the Groves mechanism results in a 
team game. 

Intuitively, one can look at DU from the perspective of a hu- 
man company, with G, the ‘%bottom line” of the company, the 
agents 7, the employees of that company, and the associated 
g,,, the employees’ performance-based compensation pack- 
ages. For a “factored company”, each employee’s compensa- 
tion package contains incentives designed such that the better 
the bottom line of the company, the greater the employee’s 
compensation. For example the board of a company wishing 
to have the private utilities of the employees be factored with 
G may give stock options to the employees. The net effect of 
this action is to ensure that what is good for the employee is 
also good for the company. In addition, if the compensation 
packages have “high learnability”, the employees will have a 
relatively easy time discerning the relationship between their 
behavior and their compensation. In such a case the employees 
will both have the incentive to help the company and be 
able to determine how best to do so. Note that in practice, 
providing stock options is generally more effective in small 
companies than in large ones. This makes perfect sense in 

TABLE I 
COMPARISON OF UTILITY TRADEOFFS 

Utility Factoredness Learnability Required Communication 
DU Full High Global 
BTU Full LOW BroadastLod 
lTU Partial (low) High Local 
BEU Full LOW BroadcastlLocal 
EEU F’artial (high) High Local 

terms of the formalism, since such options generally have 
higher learnability in small companies than they do in large 
companies, in which each employee has a hard time seeing 
how hidher moves affect the company’s stock price. 

C. Communication Restrictions 

In many real world problems the computation of the dif- 
ference utility requires sufficient communication among the 
agents to allow the agents to infer the value of the state of 
the entire system. In some specific domains, using difference 
utilities results in many elements of the system state to cancel 
out, allowing the agents to compute DU without knowing the 
full state. However in general, an agent may not have sufficient 
communication to compute DU, and needs to approximate 
under the constraints of communication restrictions. 

Mathematically we represent the communication restrictions 
for an agent 7 as elements of the system state that are 
not observable. We can can decompose the state z into a 
component observable by agent 7, zoq, and a component 
hidden from agent 7, z h ~  (note z = zoq + zhq). In this paper 
we will define the communication level for agent 7 as: 

(3) 

For a problem with countable state elements, B,, reduces to 
the the number of observable elements in the state divided 
by the total number of elements in the state. Note that B is 
always in the range [O.O, 1.01. 

If the DU for agent 7 depends on any component of zhq then 
7 cannot compute it directly. Instead we introduce different 
approximations to the DU that vary in their balance between 
learnability and factoredness. In the four utilities discussed 
below, the first two letters of the utility represent how the two 
terms of the difference utility get their information. “B” stands 
for “broadcast” meaning that the world utility is broadcast 
to the system, “T” stands for “truncated” meaning that the 
hidden values are ignored, and “ E  stands for “estimated” 
meaning that the hidden variable is estimated from the ob- 
served variables. Table I shows the factoredness, learnability 
and communication level trade-offs for DU and each of the 
four utilities presented below (e.g., BEU is fully factored, has 
low learnability and uses local communications as well as 
global broadcasts, whereas EEU is partially factored, has high 
learnability and only uses local communications). 

1)  Broackasflruncated UtiLig (BTU): BTU is a variant of 
DU, where the communication restrictions force agent q to 



not only set its own state, but also the states of all agents that 
it cannot observe to the null state: 

BTU,(z) = G ( z )  - G(z - zh7 - z,,) (4) 

Note that BTU,  as well as BEU (discussed below), assume 
that the true world utility can be broadcast despite the commu- 
nication restriction. In many applications, this is a reasonable 
assumption since the world utility can often be computed once 
and broadcast throughout the environment [9]. More complex 
forms of broadcasting are often used for distributed multi- 
agent systems [ 5 ] ,  but in this paper we will assume a very 
simple global broadcast of a single number. 

Despite creating a virtual state by setting more than 7 to 
the null state, BTU is still factored since it is in the form 
of the difference utility (e.g., the second term of Equation 4 
does not depend on q). However, this utility generally has 
significantly more noise than a pure DU since the difference 
removes not only 7’s contribution, but all states hidden from 
q. Accordingly, in situations where a large number of agents 
are hidden from q, BTU suffers from poor signal to noise 
problems, e.g., at the limit of agent 7 observing only its own 
actions, the second term becomes G(6). 

2) TruncatedTruncated Utility (ITU): The second private 
utility is conceptually similar to BTU except that both terms 
are computed under the communication restrictions: 

TTU,,(z)  = G(z  - zhq) - G(z - zhq - z,,). (5) 

Essentially, TTU is DU where z is approximated by z - zhq. 
Because of this, TTU is not factored with respect to the world 
utility G(z) .  While not being factored with world utility, T T U  
generally has higher learnability than BTU [20]. 

Again, consider the case where a large number of agents, 
not interacting with q, are hidden from 7. The contribution of 
those agents will not be included in either term of T T U ,  since 
both terms are computed with the communication restriction. 
Therefore this utility will have less noise. However, if the 
assumption that G(z  - zhq) is close to G ( z )  does not hold 
(e.g, some hidden agents are crucial to the system’s behavior) 
then T T U  will not produce good system performance. 

3)  BroadcasiYEstimated Utility (BEU): The third utility 
is similar to B T U ,  except that instead of truncating the 
components of zhq (e.g., setting them to zero), their values 
are estimated given the values of zoq: 

. BEU,(z) = G(z )  - G(zo7 + E[zhqIz0q] - z,,) (6 )  

where E[zhqlzoq] gives the expected hidden state given the 
states observable to 7. As long as this estimate is not influ- 
enced by the actions of q beyond z,,, this utility is factored, 
since the first term of the difference equation is still G(7). 
While both BTU and BEU are factored, BEU may have 
less noise, depending on how good the estimate for zhq is. 

Again, consider a system where a large number of agents 
that do not interact with q that are hidden from q’s state, 
but that their values can be approximated from the visible 
components of the state. In this case the first term of BEU will 
contain the agents’ contribution to G(z ) ,  but the second term 

will subtract out their inferred contribution. Even if effects of 
the hidden elements cannot be perfectly estimated, significant 
amounts of noise can be eliminated from the system. Note 
however that if the estimate is particularly poor, noise can 
also be introduced into the system. 

4)  EstimatedEstimated Utility (EEU): The fourth utility is 
similar to T T U ,  except that instead of truncating the hidden 
elements, the value of zhq is estimated in both terms: 

EEU,,(z) = G(toq + E [ z h ~  I z O “ ] )  - 

G(zoq + E [ z h ~ I z o ~ ]  - zv). (7) 

Essentially, EEU is a DU where z is approximated by 
zoq - E[zhq I z O q ] .  As was the case with T T U  this utility is not 
factored with respect to the world utility G. However, with a 
good estimate of zhq, the value G(zo9 - E[zhqlzoq]) will be 
much closer to G ( z )  than G(zo.), so this utility can be much 
closer to being factored with respect to G ( z )  than can T T U .  

In addition this utility retains TTU’s desirable property that 
both terms are using the same version of the state. Since both 
terms are estimating the values of zhq in the same way, any 
contribution that the non-7 terms of zhq make on the fmt term 
will be subtracted out in the second term. Note that unlike with 
B E U ,  even if the estimate of the hidden components is very 
poor, noise will not be added to the system since both terms 
of the utility use the same estimate. Instead, the quality of the 
estimate only affects how close this utility is to being factored 
with respect to G(z ) .  

111. CONGESTION GAMES 
Congestion games are characterized by having the world 

utility depend on the agents use of a particular resource (e.g., 
quality of an agent’s action depends on the number of other 
agents selecting the same action) [2], [ll]. This type of prob- 
lem arises in many domains, ranging from telecommunications 
(e.g., response of a link depends on the number of users), 
transportation (e.g., value of a highway lane depends on the 
number of cars), powerkomputer grids (e.g., performance 
of a server depends on the number of scheduled jobs), and 
public good distribution (e.g., enjoyment of a parurestaurant 
depends on the number of people using it). In each instance 
of the problem, at each time step, each agent q has to decide 
whether to participate ( e g ,  use server, drive on a lane, attend 
restaurant) in the use of that resource or not. The nature of the 
problem produces a “congestion” (e.g., if most agents believe 
the resource will be under-used, they will use it and cause it 
to be over-used, and vice-versa). 

In this work, we focus on the following instantiation of the 
congestion game: There are N agents, each picking one out 
of K actions each time step. Those actions result in a world 
utility, G, given by: 

IC= 1 

where z k ( z )  is the number of agents choosing action I C ;  zv is 
q’s choice at that t h e  step; and c k  is the optimal “capacity” of 



resource k. At the end of the time step, the associated private 
utilities for each agent are communicated to that agent, and 
the process is repeated. 

Since we wish to concentrate on the effects of the utilities 

simple learning algorithm, though a number of learning meth- 
ods (e.g., neural networks, Q-learning) can be used. In this 
simple algorithm each agent 7 keeps a Kdimensional vector 
giving its estimates of the utility it would receive for choosing 
that action. The decisions are made using the vector, with an E- 
greedy learner with E set to 0.05. All of the vectors are initially 
set to zero and there is a learning rate decay is 0.99. 

A. Communication Restrictions 

fact, rather than subtracting out noise, the second term adds 
noise. 

1 

0.9 

0.8 

0.7 

rather than on the algorithms that use them, we use a very 

CI 0.6 

0.5 

0.4 

0.3 

0.2 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Canmunicatim Level 
We model communication restrictions in this problem by 

controlling how many other agents one agent can "talk" to. 
mthout this communication the agent cannot what the 
other agents have done. We define a communication level B in 

Fig. 2. Performance of four utility functions for a range of communication 
levels. For moderate communication levels EEU perfom best. For very low 
communication B T U  performs best since, it uses information from world 

the range [O.O, 1.01 representing the fraction of all the agents 
to which an agent can talk. When B = 1.0 an agent can talk 
to the all other agents, whereas when B = 0.0 an agent has no 
communication, and thus is only aware of its own action. In 
this problem, communication restrictions result in variations 
on how Xk(z) is computed. For truncated versions of the DU, 
(BTU and TTU), 77 uses Xk(Zo') which provides the number 
of observable agents that have selected action k. (note since 
in BTU the first term is broadcast, the agent does not need to 
compute it). For utilities using an estimate of the state (BEU 
and EEU), zk(zo") is scaled, and $zk(zo') represents agent 
7's estimate of how many agents selected action k. Note this 
is an extremely simple estimation procedure and does not take 
any information an agent collects to modify how it forms this 
estimate. 

IV. EXPERIMENTAL RESULTS 
We tested the performance of the four versions of the 

DU with varying levels of communication. The test were 
conducted in a congestion game with 100 agents and with 
Ck = 5 for all IC.  All of the trials were conducted for 1000 
episodes, and were run 25 times. 

Figure 2 shows the performance of the four utilities with 
different levels of communication. When the communication 
level is high, the utilities converge to DU. When commu- 
nication is very low, the BTU and BEU have the best 
performance because their first term, G, is not affected by 
the communication restriction. They essentially are reduced 
to a team game, and give moderately good performance. Note 
that the performance of BTU is worse at 50% communication 
than at 5%. This counterintuitive result is explained by how the 
utility is computed in this problem. With little communication, 
the total number of agents that can be seen is small, and the 
contribution of the second term is small. With 50% communi- 
cation on the other hand, the second term will be large enough 
to have an impact on the utility. However, because both at 
5% and 50% communication levels xk(zo") is significantly 
different than xk(z), neither provide a usable second term. In 

Utility. 

I ,  I 

0 

0.8 
BTU --t. 
BEU - -Q-*  

0.7 

c -  
11 

0.9 1 1  - u  

0.8 k' EEU --E- 4 

1 0.7 I BTU 
BEU --Q-* 

0.5 ' I 
0 100 200 -3JO 400 rn 600 700 Boo 900 lo00 

Learning Time 

Fig. 3. Learning rates of four utility functions at 40% communication. EEU 
learns far more quickly than the others, because it provides a cleaner signal. 
Note that even though T T U  is highly learnable, it is not close to being 
factored with respect to G, so it has a flat learning curve. Both BEU and 
BTU leam because they are factored, but because they have low learnability 
(too much noise in the signal) their learning curve is extremely slow. 

For most levels of communication restriction, the EEU per- 
forms the best and performs up to 75% closer to optimal than 
utilities which use the same information. Recall that EEU and 
TTU are not factored, whereas BTU and BEU are. What 
helps EEU in this case is that though it is not factored, as 
long as the estimate for G in the first term is sufficiently close 
to G, it is close to being factored. Furthermore, because both 
the first and second terms use the same estimate for the state, 
the subtraction does remove noise, as intended. The utility 
TTU performs the worst even though there may not be much 
noise in the utility. This is caused by TTU being far from 
factored due to the truncation of the hidden state components. 

Figures 3 and 4 give a clearer view of the performances 
at a ked level of communication restriction (40% and 70% 
respectively). EEU is clearly superior at 40% communication. 
it is close to being factored and because of it's high learnability 
it rapidly converges to a good solution. Both BTU and BEU 
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Fig. 4. Learning rates of four utility functions at 70% communication. The 
difference between the factored EEU and non-factored T T U  is more explicit 
in this case. T T U  does well initially, but as the agent continue to learn its 
performance suffers. This is because this system is nonfactored. This means 
the agents doing well on their own utilities can (and in this case, do) hurt 
system performance. Furthermore, because T T U  has high learnability, agents 
succesfully learn to do the wrong thing. Both BEU and BTU performance 
improves with learning because both are factored, but because they have low 
learnability (too much noise in the signal) their learning curve is extremely 
slow and flattens out before reaching a good performance level. 

are factored, but suffer from significantly low learnability. Ai 
70% communication TTU displays the problem with utilities 
that are not factored: the more the agents learn the worse 
the system performance becomes. Because this system is not 
factored (or in this case, not close to being factored) the agents 
optimizing their private utilities do not optimize the world 
utility. Ironically, because TTU has good learnability @e., the 
slope of TTU shows no sign of flattening out at t = 1000) 
the agents learn to do the wrong thing successfully. BTU and 
BEU on the other hand are factored so G does not decrease. 
However, because of learnability issues, after an initial period 
of improvement, the agents encounter a difficult signal to noise 
problem and the system performance stops improving. 

V. DISCUSSION 
In this work we focus on the problem of designing a 

collective of autonomous agents in the presence of significant 
communication restrictions. In such cases, private utilities that 
rely on agents having access to a fully connected communica- 
tion network may break down. We presented four different 
utility functions that each make different tradeoff among 
what communication is available to an agent and how that 
information is used. We showed that in an instance of a 
congestion game, one of the utilities, EEU, does significantly 
better than all the others. Agents using this utility learn faster 
and achieve better results in our experiments. Furthermore this 
analysis shows a tradeoff between using world utility broadcast 
or not. For very low levels of communication (e.g., under 10%) 
using the global broadcast is beneficial (e.g, BTU). For all 
other cases, balancing the way in which the utility is computed 
by using the same state estimates in both terms of the DU 
provides the best solutions (EEU). 

We are also currently exploring the benefits of team for- 
mation in helping overcome communication restrictions in a 

collective [l]. Future work in this area includes investigating 
new utility functions for the agents, dynamic team formation 
where agents may join and/or leave teams in an adaptive fash- 
ion, and incurring a cost for sharing information. Furthermore, 
we are deterining the effectiveness of using the utilities as 
fitness evaluation functions for evolutionary computation with 
neural networks. 
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