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Abstract - Differential Evolution (DE) is a simple, fast, and 

mining the global optimum for several difficult single-objective 
optimization problems. The DE algorithm has been recently 
extended to multiobjective optimization problem by using a 
Pareto-based approach. In this paper, a Pareto DE algorithm is 
applied to multiobjective aerodynamic shape optimization prob- 
lems that are characterized by computationally expensive objec- 
Llv e fiifi~titicii~ evatilaiions. To iniprove compuiatiionai eiiiciencg 
the algorithm is coupled with generalized response surface meta- 
models based on artificial neural networks. Results are presented 
for some test optimization problems from the literature to dem- 
onstrate the capabilities of the method. 
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I. INTRODUCTION 

Aerodynamic shape optimization refers to the process of 
determining the shapes of airfoils, wings, or other aerody- 
namic surfaces that are optimal with regard to certain (one or 
many) desired characteristics. Major advances in the field of 
aerodynamic shape optimization have been achieved in recent 
years by combining improved methods for the simulation of 
complicated flow fields with efficient numerical optimization 
techniques and by exploiting the powerful capabilities of 
modern computers. Both Euler and high-fidelity Navier- 
Stokes solvers have been combined with various optimization 
techniques (gradient-based methods, adjoint methods, 
response surfaces, genetic algorithms, neural networks, etc.) 
to obtain optimal aerodynamic shapes and designs. 

Multiobjective aerodynamic shape optimization is part of a 
class of optimization problems characterized by the presence 
of multiple conflicting objectives that must be optimized 
simultaneously and allow multiple optimal solutions. These 
multiple solutions are referred to collectively as the non-infe- 
rior or non-dominated Pareto-optimal set. They are all optimal 
in the sense that there are no other solutions in the entire solu- 
tion domain or search space that are superior to them when all 
objectives are considered simultaneously. Multiobjective evo- 
lutionary algorithms (MOEAs) are population-based methods 
developed in recent years for solving such problems. These 
algorithms guide the search process toward the global Pareto- 
optimal region while maintaining adequate population diver- 
sity to capture as many solutions in the Pareto set as possible. 

tions are combined into a single function allowing single- 

based on aggregating approaches, such as weighted sum, goal 
attainment, etc., require multiple single-objective optimization 
runs with different weights for the various objectives in order 
to find multiple Pareto-optimal solutions. On the other hand, 
Pareto-based approaches offer the advantage of generating 
mn!tip!e Pareto so!utions simu!iar?~c?us!y. These methods me 
nondominated ranking and selection to evolve a population of 
solutions toward the Pareto set. 
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This paper considers the evolutionary strategy (ES) known 
as Differential Evolution (DE) [l] that has been applied suc- 
cessfully to a wide range of single-optimization problems. 
Recently, efforts to extend the DE algorithm to multiobjective 
problems have been reported. In 121 a Pareto DE method is 
described that modifies the selection procedure in the basic 
DE algorithm by incorporating a nondominated sorting and 
ranking selection scheme Alternative approaches have also 
been suggested by others. 

In aerodynamic shape optimization the objective function 
evaluations are performed typically using compute-intensive 
Euler and Navier-Stokes analysis codes. In such applications, 
the routine use of population-based MOEA approaches is 
impeded by the fact that they often require large numbers of 
expensive objective function evaluations. However, metamod- 
eling techniques based on the use of approximate models as 
surrogates for the actual objective functions can be incorpo- 
rated to reduce the number of calls to the expensive analysis 
codes. One metamodeling approach that has received much 
attention is the response surface method (RSM). While tradi- 
tional RSM uses low-order polynomials for function approxi- 
mation, generalized response surface methods (GRSM) allow 
for the inclusion of a wide range of approximations, including 
polynomials, neural networks, kriging, multivariate adaptive 
regression splines, radial basis functions, and multiquadrics. 
Both global and local GRSM approaches have been estab- 
lished for single-objective optimization. In the global 
approach a GRSM metamodel for the entire design space is 
used and gradually refined as the optimization progresses. 
Since developing good global metamodels with validity over 

MOEAs can be classified broadly as either non-Pareto or 
Pareto-based approaches. Non-Pareto methods are based on 

the entire design space can be difficult, a local approach based 
on local approximations and a sequential strategy for itera- . .  
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optimum is often preferred. Typically, the optimization pro- 
cess is decomposed into a sequence of cycles and an optimiza- 
tion subproblem is defined within a trust region, i.e., a smaller 
part of the design space. where local metamodels are used as 
surrogates for the exact objective functions. The exact objec- 
tive functions are evaluated only at a limited number of points 
in each trust region, thus reducing computational cost. The 
trust regions are resized andlor moved as the optimization 
progresses. Various single-objective optimization frameworks 
based on such trust-region and move-limit methods have been 
developed to strike an appropriate balance between the use of 
exact and approximate function evaluations. In the case of 

mizers and GRSM is not straightforward since we are not 
dealing with one optimum but a set of Pareto-optimal soh- 
tions. Thus, the multiobjective equivalent of the region around 
the optimum is a complex and often nonconnected area of the 
design space; extensions of the sequential search space zoom- 
ing strategy of single-objective optimization are non-trivial. 

In this paper the Pareto DE method is applied for the first 
time to multiobjective aerodynamic shape optimization. 
Efforts to link a neural network-based GRSM to the multiob- 
jective DE algorithm are also described. Radial basis function 
neural networks are used here primarily because of the ease 
with which they can be trained. Results are presented for sam- 
ple optimization problems from the literature. The problems 
considered are the multiobjective optimization of a two- 
dimensional compressor blade, and time permitting, optimiza- 
tion of a two-dimensional turbomachinery cascade. 
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11. DIFFERENTIAL EVOLUTION 

DE uses a population of real-valued parameter vectors of 
design variables that is usually initialized in a random fashion. 
The population size is maintained constant throughout the 
optimization. The key ingredient of DE is mutation. New 
parameter vectors for the subsequent generation are formed 
using weighted differences between two (or more) parameter 
vectors selected randomly from the current population to pro- 
vide appropriately scaled perturbations that modify another 
parameter vector (or, comparison vector) selected from the 
same population. This can be implemented in various forms A 
discrete recombination strategy is also used in addition to the 
mutation operator. The selection scheme is deterministic and 
based on local competition only, with the child trial vector 
competing against one population member and the survivor 
entering the new population. 

11. PARETO-RASED DIFFERENTIAL EVOLUTION 

The Pareto-based Differential Evolution algorithm used in 
this paper differs from the basic algorithm primarily in the 
selection procedure used to pick subsequent generations of the 
population. The nondominated sorting and ranking selection 
procedure [3] that has been shown to be very effective in guid- 
ing the search toward the global Pareto front for several diffi- 
cult optimization problems is adopted. The method in effect 
combines tine robust and effective DE mutation and crossover 

operators with the fast nondominated ranking scheme and 
diversity preservation strategy of the highly successful 
NSGA-I1 algorithm [3]. The result is a simple and powerful 
evolutionary strategy that is self-adaptive, elitist, and can 
maintain diversity in the Pareto set. 

HI. COUPLING DE WITH GRShl METAMODELS 

In the current study radial basis function neural networks 
are used as metamodels to approximate the objective func- 
tions. Both gl~ba! and !oca! approaches weie imp!en;en:ed. In 
the global approach metamodels are not used until the popula- 
tion has evolved for several generations. The network is then 
trained on the exact analyses data and the metamodel is con- 
tinuously refined as the population further evolves. The Imple- 
mentation of the local approach is substantially more 
involved. The updating of the search space is done using the 
sum of n-dimensional hypercubes (n is the number of design 
variables) around the centers of weight of the current Pareto 
set. An auxiliary optimization problem is solved to add new 
points in unexplored areas oE the design space. 

N. RESULTS 

Figure 1 shows results for the well-known two-objective 
function problem of Poloni with two nonconvex Pareto fronts 
that are disconnected in both the objective and decision vari- 
able spaces. The present method is able to predict the two dis- 
connected Pareto fronts that lie on the boundaries of the 
search space. 

Figure 1. Pareto-optimal solutions in objective spance obtained by the present 
method for the Poloni test problem. The dots represent solutions obtained on 
a 200 x 200 grid of uniformly distributed points in parameter space. 

The method has also been applied to the multiobjective 
aerodynamic shape optimization of a compressor blade, 
Results are currently being obtained interfacing the method 
with the GRSM and will also be presented in the final paper. 
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