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Abstract 

Over the last several years researchers at NASA Glenn and 
Ames Research Centers have developed a real-time fault 
detection and isolation system for propulsion subsystems of 
future space vehicles. The Propulsion IVHM Technologv 
Experiment (PITEq, as it is called follows the model-based 
diagnostic methodology and employs Livingstone, developed 
at NASA Ames, as its reasoning engine. The system has been 
t p x t p d  nn,flight-like hardware through a series qf nominal and 

fault scenarios. These scenarios have been developed using a 
highly detailed simulation of the X-34 flight demonstrator 
main propulsion system and include realistic failures 
involving valves, regulators, microswitches, and sensors. This 
paper focuses on one of the recent research and development 
efforts under PITEX - to provide more complete transient 
region coverage. It describes the development of the transient 
monitors, the corresponding modeling methodology, and the 
interface software responsible for coordinating the flow of 
information between the quantitative monitors and the 
qualitative, discrete representatiorin Livings one. -= 

1. Introduction 

The ability to perform meaningful diagnosis during the 
transient period immediately following a command can be 
critical for any diagnostic system: a large percentage of 
failures can occur in that time period, and the capacity to 
quickly detect and isolate a problem can mean the difference 
between a mission remediation and mission failure. In the 
case of complex physical systems, such as a Main Propulsion 
System ( M P S )  for a reusable launch vehicle, performing such 
a diagnosis can be difficult, since there is usually a significant 
period of instability - called a transient - following a 
command This is the inherent lag between the issuance of a 
command and the steady state response of the system, since a 
physical system needs time to settle down in its new state. 

The previous approach used in PITEX was to wait out that 
transient period for a predetermined amount of time, and then 
perform a diagnosis. All components of the same type had 
same timeout period. This period was set to cover the worst 
case scenarios and therefore delayed the diagnostic response 
fkom the PITEX system in most cases. 
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The new approach, reported here, is to dynamically determine 
transient characteristics that would indicate when the system is 
stable and could therefore be diagnosed by the PITEX 
reasoning engine. This capability would improve the 
diagnostic time in the majority of situations. Two additional 
concepts were also pursued as a result of this new approach. 

The first was redefining the way physical systems are modeled 
in PITEX, in order to reduce the complexity of the Real-Time 
Interface (RTI), the software that serves as a conduit between 
the monitors and Livingstone. As the diagnostic coverage 
increased, the RTI became too complex and system specific. 
System information, such as the interactions between 
components of different subsystems, had to be explicitly 
described in the code. A simplified RTI, freed of such 
dependencies, could be adopted for other Livingstone 
applications without significant changes. 

The second concept was the demonstration that Livingstone 
reasoning engine could be applied to any existing constraints 

can now be divided into steady-state and transient regions; sets 
of relevant features can be monitored in such regions and 
constraints applied based on the anticipated response of the 
system to a command. This is an important notion because it 
enables the PITEX diagnostic system to provide complete 
coverage throughout a given time period. 

in the transient period. The reagoning world for Livingstme - - - - *  -- 

While the work described in this paper does not yet constitute 
a complete solution for transient region issues, it is an 
important step in expanding the range of Livingstone 
applications to beyond the discrete steady-state domain. This 
paper provides an overview of the PITEX system and its 
diagnostic domain - the X-34 M P S ,  then goes into the details 
on the previous and current approaches to handling the 
transient regions. Three specific test cases are presented that 
illustrate the potential capability of the new approach and, 
finally, some additional areas that need further investigation 
are reviewed. 

2. PITEX Overview 

This section begins an overview of PITEX with a brief 
historical summary of the project. The summary is followed 
by an overview of the X-34 flight demonstrator that contains 
descriptions of the vehicle, the M P S ,  and the nominal mission 



profile. Next, the diagnostic system is defined in terms of the 
software components and the design reference mission. 

similar propulsion systems. The X-34 M P S ,  being a complete, 
modern, yet not overly complicated propulsion system, 
provided a good development test bed. 

2.1 iiistoricai Perspective 
2 3  X-34 Main Propulsion System 

The development effort under the PITEX project has 
improved and enhanced the capabilities of the model-based 
diagnostic system that was developed under the NASA IVHM 
Technology Experiment for X-Vehicles (NITEX) project. 
NITEX was a Pathfinder Experiment that was developed by 
Ames Research Center, Glenn Research Center, and Kennedy 
Space Center as a real-time fault detection system of the X-34 
MPS. The main objectives of PITEX became the continued 
enhancement of diagnostic technologies that are relevant to 2"d 
Generation Reusable Launch Vehicle (RLV) subsystems and 
the assessment of the real-time performance of the developed 
diagnostic solution. The program has been funded under the 
Space Launch Initiative and, most recently, by the Next 
Generation Launch Technology effort. 

There have been several development periods that matured the 
PITEX software system into its present form today. During 
each phase of development, the capabilities of the software 
were improved and enhanced by focusing on key expansion 
areas, such as the scalability of the system, its handling of 
sensor noise and sensor failures, among others. One of the 
areas of continuous interest is the improvement of system 
response to failures in order to provide accurate and timely 
diagnostic information. The work presented here falls under 
that area. 

2.2 x-34 

The X-34 program [I ]  was a joint effort by industry and 
gvvernrrient to design, develop, and test a fully reusable 
vehicle that would demonstrate technologies and operating 
concepts applicable to future RLV systems. A nominal X-34 
mission would include five general phases: pre-flight, captive 
carry, powered flight, post-flight, and landing. During pre- 
flight, the necessary ground operations are performed, such as 
propellant loading. In the next mission phase, captive carry, 
the X-34 is carried down the runway and up to the required 
launch altitude attached to an L-1011 carrier aircraft. Once 
captive carry is completed, the X-34 is released from the L- 
1011, its engine is started, and the powered portion of the 
flight begins. The vehicle eventually reaches the cruise 
altitude of 250,000 feet, where it flies at the speed of Mach 8. 
After powered flight is completed, the engine is shut down, 
and any excess propellants are dumped overboard. The X-34 
then flies as a glider before it lands at a conventional runway. 
If a mission is terminated, the X-34 was designed to dump all 
propellants and still land safely. More details about X-34 
operation can be found in [2]. 

The X-34 program was suspended in the spring of 2001. The 
work on developing an advanced diagnostic system for the 
M P S  of the X-34 was continued, however, both in the hopes 
that the flight program will be revived and because a large 
amount of work, including detailed simulations of the M P S ,  
had already been completed and deemed applicable to other 

The M P S  is responsible for providing the thrust that the RLV 
needs to meet the requirements of a mission. It is powered by 
liquid oxygen (LOX) and RP-1 rocket fuel and provides for 
the loading, storing, delivering, and disposing of these 
propellants. Within the M P S ,  there are many subsystems that 
carry out these functions: the propellant tanks, the LOX feed, 
fill and dump system, the RP-1 feed, fill, and dump system, 
the vent system, the pressurization system, and the pneumatic 
and purge system. The main engine for the X-34 vehicles was 
never completely developed and for development purposes is 
treated as a load on the rest of the MPS. For the PITEX 
application, the X-34 MPS was scoped to include only the 
pneumatic system, the pressurization system, the LOX 
subsystem, and the Rp-1 subsystem. Since the purge system 
and the reaction control system were not included, this 
restricted the number of components modeled and monitored 
while still offering unique processing challenges. 

To further scope the PITEX demonstration, one specific 
segment of an X-34 flight profile was selected. The captive 
carry portion was selected due to crew safety considerations of 
the piloted L-1011. During this phase of operation, the X-34 
is carried to the required launch altitude of 38,000 feet while it 
is attached to the underside of an L-1011 aircraft. The engine 
is not running, and most of the subsystems of the M P S  are in a 
quasi-static state. The primary functions for those subsystems 
that are operating are the following: 
= the vendrelief system prevents over-pressurization of the 

tanks and provides propellant conditioning for the LOX; 
the LOX and RP-1 feed systems deliver propellant for 
engine bleed and thermal conditioning of engine 
components in the case of LOX. 

The Design Reference Mission [2] for the captive carry phase 
is divided into a set of distinct phases. Throughout the first 
half hour of captive carry, the M P S  is locked-up. During this 
period, thresholds are selected for the vendrelief system and 
the pressurization system so that they are inactive under 
nominal conditions. After this lock-up phase, the vendrelief 
system is activated to provide LOX conditioning. For two 
hours, this process maintains the nominal temperature and 
pressure in the LOX tanks within the predefined thresholds. 
Once the two hours are completed, the pressurization system 
is enabled. The RP-1 tank is pressurized and the RP-1 bleed 
process is performed. This process removes all the air and 
purge gases from the propellant fuel feed lines in preparation 
of engine ignition. Thereafter, the LOX tanks are pressurized 
and the LOX chill-down and bleed process is performed. This 
process introduces the feed line and engine components to the 
LOX propellant, expelling air and purge gases, as well as 
thermally conditioning these components. 

2.4 Diagnostic System Overview 
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System 

Figure 0. Diagnostic System Architecture 

The purpose of PITEX [3] has been to demonstrate the 
successful diagnosis of faults by using a real-time diagnostic 
software system. One key achievement has been the 
iiq!cmentatitiz= of rn ~chifeCt?L~e %ha? c a  qi~i&!y diapnse 
faults in a quantitative, continuous domain, such as the M P S ,  
using a qualitative, discrete inference engine, such as 
Livingstone [4,5]. 

PITEX is an integrated software package that consists of the 
Telemetry Input System, Monitors, Real-Time Interface (RTI), 
Livingstone, Results Output System (ROS), and Ground 
Processing Unit (GPU). The overall architecture of the 
diagnostic system is shown on Figure 0. The virtual 
propulsion system simulates the sensor data associated with a 
particular mission phase and nominal or failure scenario. - 
These data are stored in flat files prior to diagnostic system 
testing. The TIS reads in these data sets and stores the 
information so as to provide access to the modules in the same 
manner and time frame as that experienced by the system 
during real-time operations on an actual test or flight. After 
the TIS stores the data on-line to simulate a data sweep, the 
data are accessed by the Monitor software where pertinent 
features of the propulsion system are extracted and the 
quantitative information of the system is transformed into 
qualitative information. This information is then passed 
through the RTI to Livingstone, where system-level 
diagnostics are performed using a high-level qualitative model 
of the propulsion system. The diagnostic output is collected 
by the ROS and sent to the GPU for display. 

2.5 Diagnostic Modeling 

In model-based diagnosis, there is often a distinction between 
the actual model and the diagnostic engine - the part of the 
program that carries out the reasoning. The Livingstone 
inference engine follows this path and uses a separate model 
of the client system, its controller commands, and sensor 
observations [4, 51. A model consists of a number of 
components, each having a set of n0miMl modes (e.g. “on” 
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and “off‘), and a set of fault modes (e.g. “stuck on”, “stuck 
off”). Transitions between modes are also modeled. 
Transitions between nominal modes are assumed to be a result 
of a controller command and therefore modeled explicitly. 
Transitions to fault modes are assumed to be able to occur at 
anytime, from any nominal mode, and are, therefore, not 
modeled. 

In addition to the X-34, several other applications have used 
Livingstone as their diagnosis engine: DS-1 Remote Agent 
Experiment (JPL/ARC) [ 6 ] ,  X-37 Electro-Mechanical 
Actuators [7], an in-situ propellant production testbed (KSC) 
[8], a ship’s cooling system (JHU/APL), Space Shuttle Main 
Engine (Honeywell), Command & Data Handling System of 
the International Space Station (ARC - ongoing) [9]. All of 
these used the stem+ stuate discrete modes (such as “on” or 
“off’) to model the behavior of the system. 

3. Evolution of PITEX Transient Methodology 

The original PITEX software was intended to apply diagnostic 
reasoning on steady-state observations only and was unable to 
infer upon observations that occurred during transient periods. 
To ensure that observations provided to the diagnostic 
software were steady, latency periods were established based 
empirically on simulation data. These latency periods were 
event specific; meaning that for each known event there was a 
specified period of time in which the system would return to a 
steady state. There are several problems with this approach. 
The first one is that it is not entirely reliable; any variation in 
nominal system response would potentially expose the 
diagnostic engine to erroneous inputs. This approach also 
requires that all the events encountered by the system are 
known in advance, including fault events, along with their 
expected settling times. Finally, there are events that require 
latency periods on the order of tens of seconds and during 
these periods the diagnostic system is essentially blinded. 
There are dynamic indicators or signatures available for the 
diagnostic system during these latency periods and 
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incorporating these into the diagnostic process would be 
extremely beneficial. mrtd203t 

PievioiiS PITEX eEoits, in order to iiiiiiiniize the size 2nd 
impact of these latency regions, focused on modifying signal 
processing algorithms used by the Monitors and expanding the 
logic policies of the RTI. The Monitors adopted statistical 
methodologies in order to provide observations faster and with 
a higher degree of confidence. This provided smaller latency 
periods and robustness to normal sensor variations, such as 
noise. The RTI logic policies were modified to allow 
intermediate diagnostic analyses to be performed during the 
latency periods by relaxing the constraints only on those 
sensors that were not expected to have settled yet. To achieve 
this, some of the Livingstone model information, such as the 
relationships among the components and sensors of the 
system, was replicated in the RTI. This allowed the RTI to 
identify and continually monitor the subsystems not impacted 
by the current event, as well as to perform preliminary fault 
analysis using sensors that respond quickly to the event, rather 
than waiting for the entire sensor suite to stabilize. 

While these modifications lessened the impact of the latency 
periods, there were several problems remaining. By 
incorporating subsystem relationships into the RTI, the later 
was becoming very domain specific, which would make 
adaptation of PITEX work to other systems difficult. In 
addition, the approach still required a priori information about 
the latency periods, with all the downsides associated with 
that. Any unexpected but nominal deviation in the response of 
the system to specific events could result in invalid diagnostic 
results. Finally, even though these latency periods were 
reduced, the monitored system was still diagnostically 
inaccessible during them. 

In the spring of 2003, PITEX team focused on redesigning the 
monitors, the Livingstone model, and the RTI in order to deal 
better with the challenges of transient coverage. These new 
modules, combined with the base PITEX code, formed the 
Transient Framework. In the Transient Framework, instead 
of having the RTI un-assigning the sensor observations that 
are expected to transition, the constraints that a component 
places on those sensor observations within the diagnostic 
engine are suspended during the transient period. The sensor 
observations associated with the subsystem are thus allowed to 
fluctuate. However, components in other subsystems are still 
enforcing constrains on their sensor values and may be 
diagnosed. Thus, the Transient Framework retains the 
advantage of diagnosing subsystems that are expected to be in 
a steady state. The corresponding model is now larger, as it 
contains the additional transient modes, however the RTI may 
now be domain-independent since the domain-specific 
subsystem relationships are no longer repeated within it. 
.Furthermore, the transient modes may contain specific 
constraints on the transient period for different components, 
allowing for a diagnosis of the subsystem even while in the 
transient phase. The sections below describe this new 
approach in more detail. 

4. Transient Model 
A 

f orwardLO2 

suo3 

Figure 0. Transient Model 

The model used in the transient coverage work was created 
using Stanley, a Livingstone modeling environment developed 
at NASA Ames. For the first iteration, a fragment of the 
PITEX X-34 M P S  model was used. Its schematic is shown on 
Figure 0. The hgment covers the forward liquid oxygen tank 
(forwardLO2) and parts of its pressurization and vent systems. 
Solenoid Valve #3 (SV03) introduces helium into the tank to 
keep the pressure in it constant while the oxygen is be-g 
consumed by the engine. The line from SV03 to the tank is 
monitored by a pressure sensor MPREIMP. A venvrelief 
valve, VROl, releases the excess gaseous oxygen which boils 
off during the captive carry MPS lockup. This action is 
designed to prevent a potentially catastrophic tank explosion. 
A smaller solenoid valve, SV3 1, operates the pneumatic V R O l  
with the help of the helium from the pressurization system. 
For the reasons of simplicity, in the model used by the 
Transient Framework the two valves are combined into a 
single component, SV3 1-VROI . This design decision 
removed some failure modes that will need to be addressed in 
a more comprehensive model, but otherwise left the behavior 
ofthe vent system unchanged. 

- . 

Figure 0 goes into more detail on SV3I-VR01 component. 
The schematic on the left shows how this valve was 
implemented in Livingstone previously, the one on the right 
shows the transient representation. As mentioned earlier, the 
valve model now contains the transient “opening” and 
“closing” states in addition to the usual “open” and “close”. 
These transient states were left largely unconstrained for now; 
they only include the constraints stipulating that the transient 
period needs to complete successfully. If the transient monitor 
reports that the transient is not occurring or is abnormal, it will 
conflict with the nominal transient mode and trigger a fault 
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Figure 0. Base PITEX 
diagnosis. Otherwise, the steady-state constraints associated 
with the “open“ and “closed” modes will be suspended, 
allowing the sensor values to fluctuate during the transition. 
The steady-state constraints are reinstated when the transient 
is detected to be over. 

5. Transient Monitor 

The initial task of this monitor during the transient period is to 
categorize the system response as “expected”, “absent” or 
“anomalous” by monitoring a sensor or group of sensors 
which should reflect dynamic behavior whenever a related 
command is issued. A follow-up task is to determine when 
the transient period has completed by deciding when dynamtc 
behavior in the same set of sensors has sufficiently subsided. 

For the purposes of this first study, one of the three redundant 
pressure sensors on the vent line, MpRE202P, was selected to 
monitor transient behavior for open commands to VRO1. 
Monitoring of the transient behavior for the open command 
was selected because the sensor behavior is very distinct 
during that time. 

When VROl is commanded open, MPRE202P senses a 
pressure drop, which then settles out. At the time of the 
command, the transient monitor calculates the average value 
of MPRE202P over the data frame when the command was 
issued. A 0.5 second delay is then introduced. This delay was 
empirically derived based on the observed time required to see 
a significant change in MPRE202P. At the end of the delay, 
an average of the current data frame is again calculated and 
compared to the previous value. If the delta between the 
values surpasses a threshold, then the RTI is notified that the 
system is responding. Otherwise, the RTI is told that the 
transient has completed. 

If the system is responding, the monitor continues to calculate 
averages over successive data frames and compares the 
current average with a value calculated, nominally, 250 
milliseconds earlier. These two values are at the endpoints of 
a moving window of data. The transient is considered to be 
over when the absolute value of this new delta falls below a 

and Transient Valve Models 
steady state value. At this time the RTI is notified that steady 
state has been achieved. 

While this algorithm is relatively simple, the concept could be 
extended to use multiple sensors to detect both “system 
responding” and “transient over” events. In addition, 
detection of different features, such as a drift or spike, could 

the sensors selected for the task. The extension of the 
algorithm would need to be balanced against the real-time 
requirements of the system. 
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6. Transient Real-Time Interface 

The new Transient RTI has two main modes of operation - 
steady state and commanded transition. In the steady state, the 
RTI buffers incoming observations and checks whether any of 
them are for components that already have previous 
observations stored. If that is the case, the new observation 
replaces the old one. This cycle continues until a command 
arrives. 

When that happens, the commanded transition mode is entered 
and a software timer is set. In the case of the Transient RTI, 
this timer serves as a backup mechanism in case the transient 
monitor fails to provide an indication that the system has 
reached a steady state. Livingstone is then informed of the 
command, which puts the commanded component into a less 
constrained, intermediate state (for a valve that would be 
“closing” or “opening”). Next, the observations are collected 
as they were before the command, until the transient monitor 
indicates that the transient period has indeed begun. That 
indication usually comes about 0.5 seconds after the 
command. The RTI then issues a Livingstone diagnostic 
request to check that the component has entered the 
intermediate, transient mode correctly. The observations are 
continued to be buffered until the transient period ends due to 
one of the following reasons: 

Transient over 
This is the nominal way to end a transient period. The 
transient monitor detects that a sensor has reached a steady 
state and the transient period has most likely ended. 
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Therefore, it sends a “transient over” observation. Once the 
RTI receives this observation, it commands the component to 
assume its final state, uploads all the observations from the 
buffer to Livingstone, and then requests a diagnosis. 

Abnormal transient 
When the transient detector notices a problem with one of the 
transient conditions monitored, such as a sudden, unexpected 
rise or fall in value, it issues an “abnormal transient” 
observation. That prompts the RTI to end the transient period 
early by sending the appropriate command to Livingstone. It 
then uploads all the accumulated observations and requests a 
diagnosis. 

Timeout 
If the transient monitor fails to send either a “transient over” 
or an ‘‘abnormal transient” message within a predetermined 
period of time, the timer task issues a timeout notice, and the 
RTI ends the transient period in a manner similar to the 
“Transient Over” and “Abnormal Transient” cases. 

7. Relevant Execution Scenarios 

This section summarizes the cases where using the adopted 
transient approach can prove beneficial: 

System does not respond to a command or an event 
In this case the transient detector does not notice any change 
in the behavior of the system after the mandatory 0.5 second 
wait, so it informs the RTI that the transient is complete. The 
RTI can then proceed to send Livingstone all the observations 
received up to that point and request a diagnosis. This request 
happens much sooner than if it were to wait for the predefined 
timeout period to elapse. 

An anomaly occurs during the transientperiod 
The transient period starts out nominally and the RTI is 
informed to that effect. However, at some point prior to 
steady state, the monitors detect an anomaly in sensor 
telemetry. The observed anomaly could be as simple as the 
absolute pressures exceeding a predefined or controlled 
threshold value. The monitors then issue a spontaneous 
observation to that effect and Livingstone can provide 
diagnostic analysis even during the transient regions, thereby 
eliminating, or at least reducing, the blind regions of the 
diagnostic system. 

The transient period ends successjidly, but sooner than usual. 
The transient period ends successfully, but sooner than 

anticipated, and this is detected by the transient monitor. The 
RTI sends observations accumulated up to that point to 
Livingstone and the latter then requests a diagnosis without 
waiting for the latency period to end. This eliminates the 
often unreliable dependency on a priory information about the 
length of transient periods. 

8. Testing 

The test cases, presented in Table 1 are based on the existing 
NITENPITEX fault scenarios adapted for testing of the 
Transient Framework. They were selected to correspond to 
the execution scenarios described in the previous section. No 
changes to the original fault scenarios were required, except 
for the second test case, where NITEXPITEX did not have a 
direct equivalent. To produce it, a transient anomaly was 
injected at 6186 seconds into the execution of the nominal 
scenario. 

9. Results and Discussion 

It is, of course, difficult to compare the results obtained for the 
Transient Framework to the previous PITEX results, even 
given the similarity of the scenarios. The model used in the 
Transient Framework is significantly smaller than the latest 
PITEX model used. This theoretically reduces the search time 
needed by Livingstone. PITEX was tested on 25 scenarios 
compared to Transient Framework’s three. Still, a side-by- 
side look at the two result sets does present a promising trend 
for the transient approach: 

Test Case 1 - Nominal: 
Two criteria were considered to compare performance in this 
case. The first one is absence of false positive errors in 
diagnosis. If diagnosis is performed prematurely, before the 
critical observations have settled, Livingstone may detect 
inconsistencies with the expected state and report a fault (or 
faults). Both the base PITEX system and the Transient 
Framework satisfied this criterion. The second criterion is 
how soon the diagnostic system was able to confirm the 
nominal state after a command. Only the open commands for 
SV31NROl were reviewed, since these are the commands 
currently monitored by the transient detector. There are 7 
such commands issued in the 9000 seconds of the nominal 
scenario. The base version of PITEX required an average of 
3.13 seconds after the command was issued to confirm that it 
was successful (the minimum was 3.08 seconds, maximum - 
3.17 seconds). For the Transient Framework the numbers 
were 2.51 seconds average diagnostic time, 2.10 minimum, 

Transient Execution Scenario 

Test Case 1. The transient period ends 
successfully, but sooner than anticij ated 

Test Case 2. An anomaly occurs dlri 
a transient period 

- -  
introduced afier a command at 6 186.0 seconds 

Test Case 3. System does not elief LOX tank vent relief servo valve SV31 

NITEXA’ITEX Description 

Captive carry portion of an X-34 flight 

Transient anomalv 

I to a command or an event valve stuck closed I closed at 5 167.4 seconds I 
c; 



and 3.1 7 seconds maximum. 

This demonstrates the ability of the diagnostic system to 
dy-nmicd:y ionchide when the system had steady state. The 
PITEX solution at 3+ seconds only involves rapid responding 
observations, microswitches, with the remaining observations 
being incorporated much later. This is due to the a priori 
uncertainty required by the PITEX system to ensure system 
stability. The Transient Framework diagnosis involves all 
available observations immediately because it has determined 
that the system has achieved steadiness directly. 

Test Case 2 - Transient Anomaly: 
This scenario did not have an exact equivalent in the 
NITEXPITEX set and thus could not be directly compared to 
the previous results. However, the diagnostic response time 
obtained was less or equal to the smallest time measurable by 
PITEX - 0.08 seconds - which is as good as can be expected. 
The test case demonstrated the enhanced capability of the 
diagnostic system to accept and process dynamic features and 
apply those features to dynamic constraints during the 
transient period. Previous PITEX models would have 
completely ignored this type of information and would have 
been incapable of providing any diagnostic reasoning during 
ihe transient periods. 

Test Case 3 - LOXtank vent relief valve stuck closed: 
This was the easiest scenario to compare against the previous 
results since it remained unchanged and did not contain an 
injected fault. The base PITEX code took 3.08 seconds to 
detect and diagnose the fault; the Transient Framework code 
needed only 0.52 seconds. In this test case, the failure is a 
non-event; the system was commanded to perform, but there 
was no response. Because the current Transient Framework 
constantly evaluates the system after 0.5 seconds to determine 
if it has achieved steadiness, the diagnostic inference engine is 
able to evaluate the entire suite of observations sooner than the 
earlier PITEX version, which based its diagnosis at 3.08 
seconds on only a partial set of observations. 

While the above test scenarios cover a significant portion of 
situations occurring during transient periods, in order to 
provide a more complete coverage for physical systems such 
as M P S ,  failure scenarios which are rarer, yet frequently more 
difficult to diagnose must be considered. While extending the 
software to accommodate such cases was outside the scope of 
this effort, some preliminary discussions to identify the 
problems and possible solutions have already been held. 
These cases include the handling of rapid commanding 
sequences, overlapping command, and spontaneous failures. 

Rapid Commanding 
This is the situation when a command for the same component 
comes before a steady state for the previous command is 
achieved. For instance, a valve is still in the transient period 
for the open command, when a close command comes in. One 
possible way to address this problem is to create a model 
where transitions between intermediate states (such as 
“opening” and “closing”) are allowed. This way the model 
can be switched directly from one transient period into 

another, without having to send potentially inconsistent 
observations to Livingstone in the meantime. 

Overlappizg Carnrn~ds 
In this case a command to one subsystem is issued while the 

transient period initiated by a command to another subsystem 
is still in progress. The Transient Framework may be well 
suited for this type of a situation since most of the constraints 
pertaining to the commanded component have already 
disabled for the transient timeout and thus should have no 
influence on a different subsystem. 

Spontaneous failures 
Sometimes failures in a physical system do not happen as a 
result of commanded transitions, but occur in between them, 
during what ordinarily would be tranquil periods. For 
example, a pipe could burst, a sensor can fail, or valve can 
spuriously transition from being open to being closed. In this 
case, only the observations are seen by the Monitors and RTI 
and without an associated cause to the observation changes (a 
particular commanded event), it can be difficult to determine 
how long to wait for system to reach a steady state. In the 
majority of situations, spontaneous observations can be treated 
the same way as a command when performing diagnosis and 
are expected to be handled well by the current design of the 
Transient Framework. A difficulty could arise if a command 
for the same subsystem is received during the transient 
timeout for the spontaneous observation. The system response 
to the command could mask or be masked by the spontaneous 
failure. Monitor observations may become inconsistent and 
result in a false positive fault diagnosis. Out of the problems 
described in this section, this is likely the most complex one to 
resolve. 

From a broader perspective, several areas have been identified - 
as promising for further research. For instance, the transient 
monitors need to evolve to provide more comprehensive and 
precise diagnostic coverage by combining inputs from several 
different sensors, such as pressure, temperature, and 
microswitch readings. Care, however, should be exercised as 
to not shift too much of the diagnostic responsibilities into the 
monitors by explicitly hardcoding some of the algorithms 
there and thus negating certain benefits of the model-based 
diagnostic approach. 

Another research direction that is worth investigating is 
integration of the Transient Framework with BEAM, a signal 
pattern recognition system developed at JPL. Operating 
alongside with PITEX monitors, BEAM can assist with 
accurately identifying the boundaries and anomalies of 
transient periods. In the past BEAM has successfully been 
combined with PITEX to disambiguate diagnosis on a fault 
scenario [IO]. 

Finally, scalability of the Transient Framework must be 
verified by applying it to larger, multiple subsystem models, 
such as the PITEX model of the entire X-34 M P S .  

10. Concluding Remarks 
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The transient modeling approach, where intermediate, loosely 
constrained modes for commanded components are created, & 
a promising way to provide diagnostic coverage for the 
pericds of instability that nsi!ly fs!!o’~’ a coix-anc! in a 
physical system. A diagnostic system for X-34 flight 
demonstrator MPS created using this methodology was both 
simpler in design than the earlier versions and provided faster 
diagnostic times. 

[IO] H. Park, H. Cannon et al, “Hybrid Diagnostic System: Beacon- 
based Exception Analysis for Multimissions - Livingstone 
Integration,” sociely for  Machinety Failure Prevention Technology 
Conference, April 2004. 

Three test cases were developed and used to demonstrate the 
potential of this approach over the previous PITEX software 
design. In each case the transient modeling approach provided 
earlier and more comprehensive diagnostic solution. The new 
approach enables reasoning on features occurring within the 
transient period and is more robust, requiring no assumptions 
concerning system response durations. 

While there are several research topics remaining to be 
investigated to ensure that this approach is viable, the 
expectation of the Transient Framework is very positive. 
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