

۰,

۰.

١.

	scent 30	
Type of Event	Spacecraft/ Instrument	Notes
Spontaneous Processor Resets	RHESSI	3 events; all recoverable
a Startest	CLUSTER	Seen on some of 4 spacecraft; recoverable
	ChipSAT	S/C tumbled and required ground command to correct
High Bit Error Rates	GOES 9,10	
Magnetic Torquers Disabled	GOES 9, 10, 12	
Star Tracker Errors	MER	Excessive event counts
	MAP	Star Tracker Reset occurred
Read Errors	Stardust	Entered safe mode; recovered
Fallure?	Midori-2	
Memory Errors	GENESIS	19 errors on 19/29
	Many	Increase in correctable error rates on solid-

•

۰.

Type of Event	Spacecraft/	Notes
Instrument Failure	GOES-8 XRS	Under investigation as to cause
	Mars Odyssey/Marie	Under investigation as to cause; power consumption increase noted; S/C also had a safehold event – memory errors
	NOAA-17/AMSU-A1	Lost scanner; under investigation
Excessive Count Rates	ACE, WIND	Plasma observations lost
	GALEX UV Detectors	Excess charge – turned off high voltages; Also Upset noted in instrument
	ACE	Solar Proton Detector saturated
Upset	Integral	Entered Safe mode
	POLAR/TIDE	Instrument reset spontaneously
Hot Pixels	SIRTFARAC	Increase in hot pixels on IR arrays; Proton heating also noted
Sale Mode	Nany	Many instruments were placed in Safe mode prior to or during the solar events for immediate

Single Event Effects Specification (2 of 3)

2. Component SEU Specification

2.1 No SEE may cause permanent damage to a system or subsystem.

2.2 Electronic components shall be designed to be immune to SEE induced performance anomalies, or outages which require ground intervention to correct. Electronic component reliability shall be met in the SEU environment.

2.3 If a device is not immune to SEUs, analysis for SEU rates and effects must take place based on LET_e of the candidate devices as follows:

	Device Threshold	Environment to be Assessed
	LET < 15" MeV"cm ² /mg	Cosmic Ray, Trapped Protons, Solar Proton Events
	LET, = 15*-100 MeV*cm²/mg	Galactic Cosmic Ray Heavy Ions, Solar Heavy Ions
	LET > 190 MeV*cm²/mg	No analysis required
20 JR. 1888 R	transad mentan and managed to be up	ad for analysis is alway in Floures TRD. Both nominal and an
2.5 Th particle 2.6 Th	i trapped proton environment to be us flux rates must be analyzed. e solar event environment to be used i	ed for analysis is given in Figures TBD. Both nominal and pe for analysis is given in Figure TBD.
2.5 Th particle 2.6 Th 2.7 For be add	trapped proton environment to be us flux rates must be analyzed. a solar event environment to be used i any device that is not immune to SEL d to eliminate the possibility of dama	ed for analysis is given in Figures TBD. Both nominal and pa for analysis is given in Figure TBD. . or other potentially destructive conditions, protective circuitr ge and verified by analysis or test.
2.5 Th particle 2.6 Th 2.7 For be add	trapped proton environment to be us flux rates must be analyzed. e solar event environment to be used i any device that is not immune to SEL d to eliminate the possibility of dama "This number is somewhat Some newer device	ed for analysis is given in Figures TBD. Both nominal and pa for analysis is given in Figure TBD. , or other potentially destructive conditions, protective circuitr ge and verified by analysis or test. arbitrary and is applicable to "standard" devices. es may require this number to be higher.

		_
NASA	Single Event Effects Specification	
	(3 of 3)	
2. Compo	ment SEU Specification (Cont.)	
2.8 For S error-critic Effect Crit level.	EU, the criticality of a device in it's specific application must be defined into one of three categories: cal, error-functional, or error-vulnerable. Please refer to the /radhome/papers/seecal.htm Single Event icality Analysis (SEECA) document for details. A SEECA analysis should be performed at the system	
2.9 The in analysis o acceptable correction critical are	nproper operation caused by an SEU shall be reduced to acceptable levels. Systems engineering if circuit design, operating modes, duty cycle, device criticality etc. shall be used to determine a levels for that device. Means of gaining acceptable levels include part selection, error detection and ischemes, redundancy and voting methods, error tolerant coding, or acceptance of errors in non- tes.	
2.10 A de	sign's resistance to SEE for the specified radiation environment must be demonstrated.	
3. SEU G	and a finance	
Wherever LET _e > 10	practical, procure SEE immune devices. SEE immune is defined as a device having an I MoV*cm*img.	
E device to recommen	net data doss not extet, ground testing is required. For commercial components, testing is ded on the Hight procursment lot.	
	EWRINE - Space Rediction Effects presented by Kenneth A. LaBel at Vitard de Lana - Mar 30.2004	and the second

NASA's Living With a Star (LWS) Space NASA Environment Testbed (SET) -A Dual Approach to Flight Validation Data mining Flight experiments Focus on correlating - The use of existing flight technology (semiconductor data to validate or develop to material) performance with improved models and solar-variant space tools environment (radiation, UV, Examples etc.) Model/technology validation and not device validation are - Linear device performance on the goals **Microelectronics and** In-situ environment **Photonics TestBed** monitoring allows for ground (MPTB) test protocol/model correlation Physics-based Solar **Multiple flight opportunities Array Degradation Tool** - Carrier under development (SAVANT) Investigations are selected via NASA Research Announcements (NRAs) or provided under partnering arrangements ce Radiation Effects presented by Kenneth A LaBel at Villard de Lans - Mar 30,200

