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Diverse evidence shows a direct correlation 
between episodic endogenetic events of the Tharsis 
magmatic complex (TMC)/Superplume [1], flood in-
undations in the northern plains [2], and gla-
cial/lacustrine/ice sheet activity in the south polar 
region, which includes Hellas and Argyre impact ba-
sins (Fig. 1) [3-5], corroborating the MEGAOUTFLO 
hypothesis [6,7]. The TMC encompasses a total sur-
face area of approximately 2 X 107 km2, which is 

slightly larger than the estimated size of the Southern 
Pacific Superplume [8].  These hydrologic events 
include (1) a Noachian to possibly Early Hesperian 
oceanic epoch and related atmospheric and environ-
mental change (a water body covering about 1/3 of 
the planet’s surface area [9]) related to the incipient 
development of Tharsis Superplume and the north-
western sloping valleys (NSVs) [10,11] and possibly 
early circum-Chryse development [12-14], the north-
west and northeast watersheds of Tharsis, respec-
tively, (2) a smaller ocean [6-7; 15-17] inset within the 
former larger ocean related to extensive Late Hespe-
rian to Early Amazonian effusive volcanism at Tharsis 
[18] and Elysium [19-20] and incisement of the 
circum-Chryse outflow system [e.g.,12-13].  During 
this time, magmatic/plume-driven tectonic activity 
transitioned into more centralized volcanism [4,21].  
This Late Hesperian water body may have simply 
diminished into smaller seas and/or lakes [22] during 
the Amazonian Period, or renewed activity at Tharsis 
[21] and Elysium [20,23] resulted in brief perturba-
tions from the prevailing cold and dry climatic condi-
tions to later form minor seas or lakes [2].  All of the 
hydrologic phases transitioned into extensive periods 
of quiescence [1,2].  

Dynamic, pulse-like, magmatic activity, espe-
cially at Tharsis [10] is partly the result of a stagnant-
lid lithospheric regime where the internal heat of the 
planet builds over time to catastrophically erupt 
magmas and volatiles at the martian surface [1,6,7].  
This is not to be unexpected, as pulses of activity are 
also documented for the Southern Pacific Super-
plume on Earth where present plate tectonism is re-
corded [8].  On Mars, the primary releases of the 
stored-up internal heat of the planet occur at domi-
nant vent regions such as at Tharsis and Elysium and 
along pre-existing zones of weaknesses related to 
earlier magmatism and tectonism. This may include 
both impact events and plate tectonism during the 
earlier stages of planetary development [1,24].  Per-
sistent periods of quiescence transpired between 
these violent outbursts sending the planet back into a 

dormant deep freeze [1,25], with the exception of 
areas where elevated geotherms persist and local 
hydrologic activity occurs.   

Following a persistent deep freeze and ever 
thickening cryosphere, an Ontong Java-sized event 
on Mars (especially considering it is unvegetated and 
less than half the size of Earth, allowing a far greater 
impact to the climatic system) would trigger enhanced 
atmospheric conditions and hydrologic dynamics.  A 
prime example of this process is observed during the 
Late Noachian/Early Hesperian; a time when mag-
matic-driven activity included the emplacement of 
older wrinkle ridged materials in the Thaumasia 
Planum region, the formation of the Thaumasia pla-
teau, and major development of the primary centers 
of activity, Syria and central Valles (Stage 2 of Thar-
sis Superplume evolution; see [4,10-11,21]).      

Though variation in the orbital parameters of 
Mars must be considered as a contributing influence 
on environmental change [26], a direct correlation 
between endogenic activity at Tharsis (and to a 
lesser extent Elysium) and global aqueous activity on 
Mars is observed in the geologic and paleohydrologic 
records of Mars (schematically portrayed in Fig. 1), 
including:  (1) inundations in the northern plains and 
relatively short-lived climatic perturbations [1,2,6-
7,25], (2) growth and retreat of the south polar ice 
sheet [5], (3) glacial and lacustrine activity in and 
partly surrounding Hellas [27] and Argyre [3-4], (4)  
outflow channel activity at NSVs [10-11] and circum-
Chryse [e.g.,12-13], (5) formation of the Tharsis Mon-
tes aureole deposits [28], and development of impact 
crater lakes  [29,30].  As such, any theoretic model-
ling of martian atmospheric or surface conditions 
must take into account endogenetic-driven activity as 
distinctly expressed in the geologic record. 
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Figure 1.  Schematic diagram portraying the spatial and temporal occurrence of major geologic and hydrologic         
events in martian history.      

 
References.  [1] Baker, V.R., et al. (2002). A theory for the geological evolution of Mars and related synthesis 

(GEOMARS). Lunar Planet. Sci. Conf., XXXIII, #1586 (abstract) [CD-ROM]. [2] Fairén, A.G., et al. (2003). Episodic flood inun-
dations of the northern plains of Mars. Icarus, in press. [3] Kargel, J.S., and Strom, R.G. (1992). Ancient glaciation on Mars. 
Geology, 20, 3-7. [4] Dohm, J.M., et al., (2001a). Geologic, paleotectonic, and paleoerosional maps of the Thaumasia region of 
Mars: USGS Misc. Inv. Ser. Map I-2650, scale 1:5,000,000. [5] Milkovich, S.M., et al. (2002). Meltback of Hesperian-aged ice-
rich deposits near the south pole of Mars: evidence for drainage channels and lakes. J. Geophys. Res., 107, 2001JE001802. 
[6] Baker, V.R., et al. (1991). Ancient oceans, ice sheets and the hydrological cycle on Mars. Nature, 352, 589-594. [7] Baker, 
V.R., et al.  (2000). Mars’ Oceanus Borealis, ancient glaciers, and the MEGAOUTFLO hypothesis. Lunar Planet. Sci. Conf., 
XXXI, #1863 (abstract) [CD-ROM].  [8] Maruyama, Shigenori, 1994. Plume tectonics, J. Geol. Soc. of Japan, 100, 24-49. [9] 
Clifford, S. M., and Parker, T. J. (2001). The evolution of the Martian hydrosphere: Implications for the fate of a primordial ocean 
and the current state of the northern plains. Icarus, 154, 40–79. [10] Dohm, J.M., et al. (2001b). Ancient drainage basin of the 
Tharsis region, Mars: Potential source for outflow channel systems and putative oceans or paleolakes. J. Geophys. Res., 106, 
32,943-32,958. [11] Dohm, J.M., et al. (2001c). Latent outflow activity for western Tharsis, Mars: Significant flood record ex-
posed. J. Geophys. Res., 106, 12,301-12,314. [12] Rotto, S.L., and Tanaka K.L. (1995). Geologic/geomorphologic map of the 
Chryse Planitia region of Mars. U.S. Geol. Surv. Misc. Invest. Ser. Map I-2441. [13] Nelson, D. M., and Greeley, R. (1999). 
Geology of Xanthe Terra outflow channels and the Mars Pathfinder landing site. J. Geophys. Res., 104, 8653-8669. [14] Zuber, 
M.T., et al. (2000). Internal structure and early thermal evolution of Mars from Mars Global Surveyor topography and gravity. 
Science, 287, 1788-1793. [15] Parker, T. J., et al. (1987). Geomorphic evidence for ancient seas on Mars. In Symposium on 
Mars: Evolution of its Climate and Atmosphere, LPI Tech. Rept. 87-01, 96-98, 1987. [16] Parker, T.J., et al. (1993). Coastal 
geomorphology of the Martian northern plains. J. Geophys. Res., 98, 11061-11078. [17] Head, J.W., et al. (1999). Possible 
ancient oceans on Mars: Evidence from Mars Orbiter laser altimeter data.  Science, 286, 2134-2137. [18] Scott, D.H., and Ta-
naka, K.L. 1986. Geologic map of the western equatorial region of Mars, USGS Misc. Inv. Ser. Map I-1802-A (1:15,000,000).  
[19] Greeley, R, and Guest, J. E. 1987. Geologic map of the eastern equatorial region of Mars, USGS Misc. Inv. Ser. Map I-
1802B (1:15,000,000). [20] Tanaka, K.L., et al. (2003).  Resurfacing history of the northern plains of Mars based on geologic 
mapping of Mars Global Surveyor data. J. Geophys. Res., 108, 8043, doi: 10.1029/2002JE001908. [21] Anderson, R.C., et al. 
(2001). Primary centers and secondary concentrations of tectonic activity through time in western hemisphere of Mars. J. Geo-
phys. Res., 106, 20,563-20,585. [22] Scott, D.H., et al. (1995). Map of Mars showing channels and possible paleolake basins. 
U.S. Geol. Surv. Misc. Invest. Ser. MAP I-2461. [23] Skinner, J. A., and Tanaka, K. L. (2001). Long-lived hydrovolcanism of 
Elysium. Eos. Trans. AGU 82, Fall Meet. Suppl., Abstract P31B-07. [24] Fairén, A.G., et al. (2002). An origin for the linear mag-
netic anomalies on Mars through accretion of terranes: implications for dynamo timing. Icarus, 160, 220-223. [25] Baker, VR. 
(2001). Water and the Martian landscape. Nature, 412, 228-236. [26] Touma, J., and Wisdom, J. 1993. The chaotic obliquity of 
Mars. Science, 259, 1294-1296. [27] Moore, J. M., and Wilhelms, D. E. 2001. Hellas as a possible site of ancient ice-covered 
lakes on Mars. Icarus, 154, 258-276. [28] Scott, D.H., et al. (1998). Geologic map of the Pavonis Mons volcano, Mars:  USGS 
Misc. Inv. Ser. Map I-2561 (1;2,000,000 scale).  [29] Cabrol, N. A., and Grin, E. A. (1999). Distribution, classification and ages 
of Martian impact crater lakes. Icarus, 142, 160-172. [30] Cabrol, N. A., and Grin, E. A. (2001). The evolution of lacustrine envi-
ronments on Mars: is Mars only hydrologically dormant? Icarus, 149, 291-328. [31] Schubert, G., and Spohn, T. 1990.  Thermal 
history of Mars and the sulfur content of its core. J. Geophys. Res. 95, 14,095-14,104.  [32] Hartmann, W. K., and Neukum, G. 
2001. Cratering chronology and the evolution of Mars. Space Sci. Rew., 96, 165-194. 

 

Third Mars Polar Science Conference (2003) 8059.pdf


