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MULTIDISCIPLINARY
AERODYNAMIC-STRUCTURAL
SHAPE OPTIMIZATION USING

DEFORMATION (MASSOUD)

Jamshid A. Samareh*
NASA Langley Research Center, Hampton, VA 23681

This paper presents a multidisciplinary shape parameterization approach. The ap-
proach consists of two basic concepts: (1) parameterizing the shape perturbations rather
than the geometry itself and (2) performing the shape deformation by means of the soft
object animation algorithms used in computer graphics. Because the formulation pre-
sented in this paper is independent of grid topology, we can treat computational fluid
dynamics and finite element grids in the same manner. The proposed approach is simple,
compact, and efficient. Also, the analytical sensitivity derivatives are easily computed
for use in a gradient-based optimization. This algorithm is suitable for low-fidelity (e.g.,
linear aerodynamics and equivalent laminated plate structures) and high-fidelity (e.g.,
nonlinear computational fluid dynamics and detailed finite element modeling) analysis
tools. This paper contains the implementation details of parameterizing for planform,
twist, dihedral, thickness, camber, and free-form surface. Results are presented for a
multidisciplinary application consisting of nonlinear computational fluid dynamics, de-

tailed computational structural mechanics, and a simple performance module.

Nomenclature

a angle of attack, deg
A wing area A total deformation
AR wing aspect ratio 4 defjormatlon
B Bernstein polynomial 0 thS.t angle, deg
b wing span A leading edge sweep angle, deg
C chord A wing taper ratio
Cp,Cr coefficients of drag and lift &n,¢ coordinates of deformation object
c camber p twist radius
d degree
€ scale factor for twist and shearing
N B-spline basis function Subsecripts
n normal vector E— .
0 origin of parallelepiped ca  camber .
P coordinates of NURBS control point I, J K total numbers of control points
Q coordinates of the solid elements iJ,k indices for NURBS control point
R coordinates of deformed model Z.d7 jd .de81gn variable indices
T coordinates of baseline model m nner
S shearing vector L wing lower surface
T twist plane le lez.xdi.ng edge
t thickness m midline
u parameter coordinate out outer . . o .
v MASSOUD design variable vector p degree of B-spline basis function in ¢ direction
114 NURBS weights pl planform ' . S
w design variable vector q degree of B-spline basis function in j direction
X,Y,Z Cartesian coordinates of deformed model rh TEOt
x, Y,z Cartesian coordinates of baseline model 8 shear

te trailing edge
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Fig. 1 Internal components of a wing.
Superscripts
T transpose of the matrix

Introduction

ULTIDISCIPLINARY design  optimization

(MDO) methodology seeks to exploit the
synergism of mutually interacting phenomena to
create improved designs. An MDO process commonly
involves sizing, topology, and shape design variables.
Multidisciplinary shape optimization (MSO) finds the
optimum shape for a given structural layout. Perform-
ing MSO for a complete airplane configuration is a
challenging task with high-fidelity analysis tools. The
analysis models, also referred to as grids or meshes,
are based on some or all of the airplane components,
such as skin, ribs, spars, and the stiffeners. The
aerodynamic analysis uses the detailled definition
of the skin, also referred to as the outer mold line
(OML), whereas the computational structural me-
chanics (CSM) models use all components. Generally,
the structural model requires a relatively coarse
grid, but it must handle very complex internal and
external geometries. In contrast, the computational
fluid dynamics (CFD) grid is a very fine one, but
it only needs to model the external geometry. The
MSO of an airplane must treat not only the wing
skin, fuselage, flaps, nacelles, and pylons, but also
the internal structural elements such as spars and
ribs (see Fig. 1). The treatment of internal structural
elements is especially important for detailed finite
element (FE) analysis. For a high-fidelity MSO
process to be successful, the process must be based
on a compact and effective set of design variables
that yields a feasible and enhanced configuration.
For more details, readers are referred to an overview
paper by this author on geometry modeling and grid
generation for design and optimization.'

Model parameterization is the first step for an
MSO process. Over the past several decades, shape
optimization has been successfully applied for two-
dimensional and simple three-dimensional configura-
tions. Recent advances in computer hardware and
software have made MSO applications more feasible
for complex configurations. An important ingredient
of aerodynamic shape optimization is the availability
of a model parameterized with respect to the aerody-

namic design variables, such as planform, twist, shear,
camber, and thickness. The parameterization tech-
niques can be divided into the following categories:
discrete, polynomial and spline, computer-aided de-
sign (CAD), analytical, and deformation. Readers are
referred to reports by Haftka and Grandhi,? Ding,?
and Samareh* for surveys of shape optimization and
parameterization.

In a multidisciplinary application, the parameter-
ization must be compatible with and adaptable to
various analysis tools ranging from low-fidelity tools,
such as linear aerodynamics and equivalent laminated
plate structures, to high-fidelity tools, such as nonlin-
ear CFD and detailed CSM codes. Creation of CFD
and CSM grids is time-consuming and costly for a full
airplane model: detailed CSM and CFD grids based
on a CAD model take several months to develop. To
fit the MSO process into product development cycle
times, the MSO must rely on parameterizing the anal-
ysis grids. For a multidisciplinary problem, the process
must also use a geometry model and parameterization
consistently across all disciplines. Gradient-based op-
timization requires accurate sensitivity derivatives of
the analysis model with respect to design variables.

This paper presents a shape parameterization ap-
proach suitable for MSO as part of a multidisciplinary
design optimization application. The approach con-
sists of two basic concepts. The first concept i1s based
on parameterizing the shape perturbations rather than
the geometry itself. The second concept is based on
using the soft object animation® (SOA) algorithms
for shape parameterization. The combined algorithm
initially introduced by this author! was successfully
implemented for aerodynamic shape optimization with
analytical sensitivity for structured grid®” and un-
structured grid® CFD codes. This algorithm has also
been used for multidisciplinary application of a high-
speed civil transport (HSCT).? 10

Parameterizing the Shape Perturbations

At first sight, parameterization by splines may seem
to be a viable approach for shape parameterization.
The spline representation uses a set of control points,
which could define any arbitrary shape. These control
points could be used as design variables for optimiza-
tion. Typically, over a hundred control points are
required to define an airfoil section, and over 20 airfoil
sections to define a conventional wing. This require-
ment results in over two thousand control points (i.e.,
six thousand shape design variables) for a simple wing.
The number of control points is even larger for a com-
plete airplane model created with a commercial CAD
system. The large number of control points is needed
more for accuracy than for complexity.

Even if using a large number of design variables were
feasible, the automatic regeneration of analysis models
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(e.g., CSM and CFD grids) is not possible with cur-
rent technology. For example, it takes several months
to create an accurate CSM model of an airplane. Also,
traditional shape parameterization processes parame-
terize only the OML and are ineffective in parameteriz-
ing internal components such as spars, ribs, stiffeners,
and fuel tanks (see Fig. 1).

Tt is possible to use any shape (e.g., a sphere) as
the initial wing definition, allowing the optimizer to
find the optimum wing shape; however, this option is
not commonly practiced. Typically, the optimization
starts with an existing wing design, and the goal is
to improve or redesign the wing performance by us-
ing numerical optimization. The geometry changes
(perturbations) between initial and optimized wing are
very small,'12 but the difference in wing performance
can be substantial. An effective way to reduce the
number of shape design variables is to parameterize
the shape perturbations instead of parameterizing the
shape itself. Throughout the optimization cycles, the
analysis grid can be updated as

R(v) = 7+ AR(9) (1)

For multidisciplinary aerodynamic-structural shape
optimization using deformation (MASSOUD), the
change, AR, is a combination of changes in thickness,
camber, twist, shear, and planform:

AR = 6Rth + 6Rca + 6Rtw + 6Rsh + 6Rpl (2)

Far fewer design variables are required to parameterize
the shape perturbations AR than the baseline shape
7 itself.

Figures 2 and 3 depicts the typical MSO and MAS-
SOUD processes. In a typical MSO process (Fig. 2),
a geometry modeler perturbs the baseline geometry
model. Because automatic grid generation tools are
not available for all disciplines, automating this MSO
process would be very difficult. In contrast, the MAS-
SOUD process (Fig. 3) relies on parameterizing the
baseline grids and avoids the grid generation process,
hence automating the entire MSO process.

Soft Object Animation

The field of SOA in computer graphics® provides
algorithms for morphing images'® and deforming mod-
els.'® 15 These algorithms are powerful tools for mod-
ifying the shapes: they use deformation of a high-level
shape, as opposed to manipulation of lower level ge-
ometric entities. Hall presents an algorithm and pro-
vides computer codes for morphing images.!3 The de-
formation algorithms are suitable for deforming mod-
els represented by either a set of polygons or a set of
parametric curves and surfaces. The SOA algorithms
treat the model as rubber that can be twisted, bent,

Baseline
geometry
model

= Optimizer

Geometry modeler

Geometry
model

Grid
generation

Grid Grid

generation

Fig. 2 A typical MSO process.
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Fig. 3 The MASSOUD process.

tapered, compressed, or expanded, but will still retain
its topology. This technique is ideal for parameteriz-
ing airplane models that have external skin as well as
internal components (e.g., see Fig. 1). The SOA al-
gorithms link vertices of an analysis model (grid) to a
small number of design variables. Consequently, the
SOA algorithms can serve as the basis for an efficient
shape parameterization technique.

Barr presented a deformation approach in the con-
text of physically based modeling.!* This approach
uses physical simulation to obtain realistic shape and
motions and is based on operations such as transla-
tion, rotation, and scaling. With Barr’s algorithm,
the deformation is achieved by moving the vertices of
a polygon model or the control points of a paramet-
ric curve and surface. Sederberg and Parry presented
a variant!® of the free-form deformation (FFD) algo-
rithm, which operates on the whole space, regardless of
the representation of the deformed objects embedded
in the space. The algorithm allows a user to manip-
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ulate the control points of trivariate Bezier volumes.
The disadvantage of FFD is that the design variables
may have no physical significance for the design en-
gineers. This drawback makes it difficult to select an
effective and compact set of design variables. This pa-
per presents a set of modifications to the original SOA
algorithms to alleviate this and other drawbacks.

For the modified SOA algorithms presented in the
next several sections, implementation will include the
following common set of steps:

1. Select an appropriate deformation technique and
object. This step defines the forward mapping
from the deformation object coordinate system
(&,1,¢) to the baseline grid coordinate system

(z,y,2).

2. Establish a backward mapping from the baseline
grid coordinate system (z,y,z) to the deforma-
tion object coordinate system (&, 7,(). The &,71,¢
mapping parameters are fixed and are indepen-
dent of the shape perturbations. This preprocess-
ing step is required only once.

3. Perturb the control parameters (design variables)
of the deformation object.

4. Evaluate the grid perturbation (AR) and shape
sensitivity derivatives (OR/0v) with the &, 7, pa-
rameters.

The following sections provide recipes for using SOA
algorithms for parameterizing airplane models for
thickness, camber, twist, shear, and planform changes.

Thickness and Camber

We used a nonuniform rational B-spline (NURBS)
representation as the deformation object for thickness
and camber parameterization. The NURBS represen-
tation combined the desirable properties of National
Advisory Committee for Aeronautics (NACA) defini-
tion'® and spline techniques, and it did not deteriorate
nor destroy the smoothness of the initial geometry.

The changes in thickness and camber were repre-
sented by

SRu(€,n) =

SRl ) = 22 @

i=0 Jj=

Figures 4 and 5 show the NURBS control points in
(&,m) and (z, y, z) coordinate systems, respectively.

Fig. 4 Thickness and camber definitions in wing
coordinate system.

Fig. 5
and z coordinate system.

Thickness and camber definitions in z, y,

The control points and weights could be used as design
variables.

The NURBS representation had several important
properties for design and optimization. A NURBS
curve of order p, having no multiple interior knots,
is p — 2 differentiable. As a result, the NURBS rep-
resentation was able to handle a complex deformation
and still maintain smooth surface curvature. Read-
ers are referred to the textbook by Farin for details on
the properties of NURBS representation.'” The control
points were the coefficients of the basis functions, but
the smoothness was controlled by the basis functions,
not by the control points. The NURBS representa-
tion was local in nature, allowing the surface to be
deformed locally, hence leaving the rest of the surface
unchanged. Equations (3-4) served as the forward
mapping between the thickness and camber design
variables and the grid perturbation (6 Rin, 6 Rea)-

The next step was to establish the backward map-
ping from the deformation object (i.e., the NURBS
surface) coordinates (£, 7n) to the baseline model coor-
dinates (z,y,z). The percentage of chord, %C, was
used for £, and the spanwise location, y, was used for

n.

E=%C, n=y (5)

To calculate %C', we needed to determine the wing
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Fig. 6 Curves defining the backward mapping.

chord at each y station. The baseline CAD model
provided the leading edge Rj. (), trailing edge R:.(n),
wing midline R,,(n), and normal vector defining the
airfoil plane T'(5), as shown in Fig. 6. The curve defin-
ing the wing midline did not have to be at the center
of the wing, but needed to be somewhere between the
upper and the lower wing surfaces. The Rj.(n), Ree(n),
and Rm(n) were used to separate points on the upper
surface from points on the lower surface.

Because we knew 7 for each grid point, we were able
to define a plane that passed through the grid point
by means of a normal vector defined by T(U) We then
used the following equations to find the intersection of
this plane and the curves shown in Fig. 6.

T(n)-[F = Rie(n)]" =0 (6)
T(n) - [F = Ree(n)]" =0 (7)
T(n) - [F — Rm(n)]" =0 (8)

Equations (6-8) must be solved for each grid point in
the model. For a high-order NURBS curve, Eqs. (6—
8) are nonlinear and can be solved by the Newton-
Raphson method. The solution to Eqs. (6-8) for each
1 was a set of three points located at the leading edge,
the trailing edge, and the center. The %C was cal-
culated based on the leading and trailing edge points.
Next, we needed to separate the grid points defining
the wing model into upper and lower surfaces. We
connected the three points obtained from Eqgs. (6-
8) to form a curve that separated the upper surface
from the lower surface. This curve need not represent
the camber line accurately, and a wing with drooping
leading edge or with highly cambered airfoil sections
may require more than one R, (n) to define the curve.
With this approach, the deformation may be localized
to a specific design area by setting allowable %Ciyin,
%Cma)(a min, and Nmax-

As the design variables (control points P; ;)
changed, we calculated the contribution to the thick-
ness and camber by Eqgs. (3-4). The advantage of this
process was that the sensitivity of grid point location
with respect to design variables was only a function of

the B-spline basis functions.

OR OR
0Py

Nidap (&) Njd,q(m)Wid,ja
BT 7
. Z% Nip(€) Zof\’j,q(ﬂ)Wi,j
i= i=
(9)

id,jd

Consequently the sensitivity, as shown in Eq. (9), was
independent of the design variables (pid’jd) and the
coordinates (z,y, z). Thus, we needed to calculate the
sensitivity with respect to thickness and camber only

at the beginning of the optimization.

Twist and Shear

The twist angle is defined as the difference between
the airfoil section incident angle at the root and each
airfoil section incident angle. Similarly, the shear (di-
hedral) is defined as the difference between the airfoil
leading edge z coordinate for the root and the z co-
ordinate at each airfoil section. If the twist angle at
the tip is less than the twist at the root, the wing is
said to have a washout, which could delay the stall at
the wing tip. Also, as the wing washout increases, the
wing load shifts from outboard to inboard. As a re-
sult, the spanwise distribution of the twist angle plays
an important role in the wing performance.

The SOA algorithms are used to modify the wing
twist and shear distribution. Alan Barr presented a
series of SOA algorithms for twisting, bending, and
tapering an object.!* Watt and Watt referred to these
algorithms as nonlinear global deformation.® Seder-
berg and Greenwood extended Barr’s ideas to handle
complex shapes.'® Modified versions of these algo-
rithms are presented in this paper.

To modify the twist and shear distributions, the
wing was embedded in a nonlinear deformation ob-
ject referred to as a twist cylinder, shown in Fig. 7.
The center of the cylinder was defined by a NURBS
curve, Ry (n). The effect of deformation was confined
to a section of a wing by limiting the parameter 75 to
vary between nmin and fmax. The 7min could be ex-
tended to the wing root, and the 7,,x went beyond the
wing tip. The cylinder could be twisted and sheared
only in a plane (twist plane) defined by a point along
R (n) with a normal vector of T'(n). The pi,(n) and
Pous (1) were the radii of the inner and outer cylinders,
respectively (see Fig. 7). The deformation had no ef-
fect on grid points located outside the outer cylinder,
and the effect of deformation was scaled linearly from
the outer cylinder to the inner cylinder. This linear
blending allowed us to blend the deformed region with
the undeformed region in a continuous manner.

The 6(n) and S(n) variables are defined by the
NURBS representations:
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5 Nip () Wit

o = = (10)
Z:ONLP(W)VVZ

7 > Noy () Wi,

) = (1)

=[5
= .

ip(MWi
Similarly to thickness and camber algorithms, we used

T(n) = (0,,0)" (12)

The second step for twist and shear deformation was

n=1y,

to establish the forward mapping from the deformation
object (twist cylinder) coordinate system (7) to the
model coordinate system (z,y, z). We used Eq. (8) to
determine . Once n was determined, we calculated
the local p(n), pin(n), pout(n), T(n), 6(n), and S(n).
The point 7 was rotated 6(n) deg about R, (n) and
sheared S(n).

e(p)p(n)lsin 6(n), 0, cos 6(n)" (13)
e(p)S(n) (14)

where e(n) was a scale factor that diminished the effect
of deformation as we approached the outer cylinder.

M?tw(’?) =
6Ren(n) =

0 if p(n) > pout (1)
e(n) = ppaz—_ppo::t if pin < p(n) < pour (1) (15)

The sensitivity of a grid point with respect to the
twist and shear design variables was

g_g = c(p)p(n) ag((;z) [cos 6(n), 0, —sin 6(n)]{16)
R 95 (n)
95 «(p) a5; "

The term 960(n)/d0; was independent of the twist de-
sign variables 6; (see Eq. (10). However, sinf(n) and

Fig. 8 Twist definition for a transport.

Fig. 9 Result of 45 deg twist on a transport wing

tip.

Fig. 10 Planform of a generic HSCT.

cosfl(n) depended on the twist design variables and
were updated for every cycle of the optimization. In
contrast, the term 85 (n)/dS; was independent of shear
design variables S; (see Eq. (11)).

Figure 8 shows the inner twist cylinder for a com-
mercial transport. Figure 9 shows the result of twist-
ing the wing 45 deg at the tip. This amount of twist is
large and unrealistic, but demonstrates the effective-

ness of the SOA.

Planform Parameterization

The wing planform is typically modeled with a set of
two-dimensional trapezoids in the z-y plane. Figure 10
shows the planform of a generic HSCT that uses two
trapezoids. As shown in Fig. 11, each trapezoid is
defined by the root chord (C,), tip chord (C}), span
(b), and sweep angle (A). From these values, other
planform parameters such as area (A), aspect ratio

(AR), and taper ratio (), are defined:

b2 Cy

— A= — 1

T o (8
The FFD algorithm described by Sederberg and

Parry'® is ideal for deforming the polygonal models.

b
A: §(Cr+ct), AR:
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Leadingedge |
sweep angle, A

Root chord, C,

Tip chord, Cy

Planform definition.

Fig. 11

Fig. 12 Parallelepiped volume for FFD.

n €

Fig. 13 NURBS volume for FFD.

Like other SOA algorithms, this algorithm maintains
the polygon connectivity, and the deformation is ap-
plied only to the vertices of the model. The FFD
process is similar to embedding the grid inside a block
of clear, flexible plastic (deformation object) so that,
as the plastic is deformed, the grid is deformed as well.
Deformation of complex shapes may require several
deformation objects. The shapes of these deformation
objects are not arbitrary. In fact, the shapes must be
three-dimensional parametric volumes and could range
from a parallelepiped as shown in Fig. 12 to a general
NURBS volume as shown in Fig. 13. The block is
deformed by perturbing the vertices that control the
shape of the deformation block (e.g., corners of the
parallelepiped). For parametric volume blocks, param-
eters controlling the deformation are related through
the mapping coordinates (&,7,{). These coordinates
are used in both forward and backward mapping.

Figure 12 shows a general parallelepiped defined by
a set of control points forming three primary edges
or directions along ¢, n, and (. The relation for a
parallelepiped is defined as

F(&,1,C) = O+ ngé + nyn + 0 (19)

where O is the origin of the parallelepiped, and Ng, Ay,
and n¢ are the unit vectors along the parallelepiped
primary edges in the &, 5, and { directions, respec-
tively. Equation (19) defines a mapping between
the deformation object (parallelepiped) and the grid
points. The grid points, 7, are mapped to the coordi-
nates of the parallelepiped, &, n, and (, as

ny % nc - (7 — Po)
fip X g - (7g)

ﬁ&Xﬁg~(f—Pg)
fig X ng - (7in)

fig X Ay - (F— Po)

g X My - (1)

A grid point is inside the parallelepiped if 0 < &, 7,( <
1.

The FFD technique based on the parallelepiped is
very efficient and easy to implement. This technique
is suitable for local and global deformation. The only
disadvantage is that the use of the parallelepiped lim-
its the topology of deformation. To alleviate this
disadvantage, Sederberg and Parry proposed to use
nonparallelepiped objects.!® They also noted that the
inverse mapping would be nonlinear and would require
significant computations.

Another popular method to define FFD is to use
trivariate parametric volumes. Sederberg and Parry
used a Bezier volume.'> Coquillart at INRIA ex-
tended the Bezier parallelepiped to nonparallelepiped
cubic Bezier volume.'®> This idea has been fur-
ther generalized to NURBS volume by Lamousin and
Waggenspack.2? The NURBS blocks are defined as

™~

K _
Nip1(€) )2 Nj,p2(n)kz_:ONk,pS(C)VVi,j,kPi,j,k

=0 7=0

7€, n,¢) =

7 K
Nipi(8) > Nj,p?(n)kz_:oNk,pS(C)VVi,j,k

=0 7j=0
(21)

-

Lamousin and Waggenspack?? used multiple blocks to
model complex shapes. This technique has been used
for design and optimization by Yeh and Vance?' and
also by Perry and Balling.??

The common solid elements used in FE analysis
(Fig. 14) can be used as deformation objects as well.
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Tetrahedron Pentahedron Hexahedron

Linear

Quadratic

Fig. 14 FE analysis solid elements.

The mapping from the solid element coordinates is de-

fined? by

7€, n,¢) =

ZQZ

where N; are the FE basis functions and Ql are the
nodal coordinates of deformation objects, which are
related to the design variables. The equations for in-
verse mapping are nonlinear for all solid elements with
the exception of tetrahedron solid elements. The solid
elements provide a flexible environment in which to de-
form any shape. Complex shapes may require the use
of several solid elements to cover the entire domain.

To model the planform shape, we used hexahedron
solid elements with four opposing edges parallel to the
z coordinate. Then, the planform design variables
were linked to the corners of the hexahedral elements.
Figure 15 shows the initial and deformed models for
a transport configuration. The solid lines represent
the controlling hexahedron solid elements. The base-
line model is on the left-hand side, and the deformed
shape 1s on the right-hand side.

As with the camber and thickness algorithms, the
sensitivity of grid point coordinates was independent
of the design variables (P) and coordinates (z,y,2).
Thus, we needed to calculate the sensitivity only once,
at the beginning of the optimization.

(£,1m,0) (22)

Implementation

Figure 16 shows the implementation diagram for the
combined algorithm. The implementation started with
a CAD model that defined the geometry. The first two
steps were implemented in parallel. The first step was
to determine the number and the locations of the de-
sign variables with the aid of the CAD model. In the
second step, the grids were manually generated for all
involved disciplines. In the third step, the forward and
backward mappings described in the previous sections
were calculated for each grid point. In the fourth step,
the new grid was deformed in response to the new
design variables, and the sensitivity derivatives were

Baseline

Deformed

Fig. 15 Planform deformation of a transport.

—

' Determine the number
‘and locationsof D.V.s |

S

‘Stepl

Geometry model
(CAD)

-

\\ | Step 2:

Number and

locations of D.V.s

! Create baseline
1 analysis models or grids !

,,,,,, e

e

V

i Manual processes

Automatic processes

Deformed analysis
models or grids with
sensitivity

Baseline analysis
models or grids

Step 3:
Calculate grid
point mappings

Y

Parameterized
models and grids

Y

Step 4:
Deform and perform
sengitivity analysis

Design variables

Fig. 16 MASSOUD Implementation diagram.

computed as well.

The third and fourth steps were

completely automated. The first three steps were con-
sidered preprocessing steps and needed to be done only

once.

Parameterizing CSM Models

Parameterizing CFD and CSM models appears to

be similar in nature, but the CSM model parameter-
ization has two additional requirements. First, the
CSM model parameterization must include not only
the OML but also the internal structural elements,
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such as spars and ribs. Second, the deformed CSM
model must be a valid design. For example, the spars
must stay straight during the optimization. The algo-
rithms presented in this paper can easily handle the
first requirement. However, if the planform design
variables are not selected with care, the second re-
quirement could easily be violated. To avoid creating
an invalid CSM model, the model must be parame-
terized with few hexahedron solid elements, and those
used must be aligned with major structural compo-
nents such as spars and ribs.

Sensitivity Analysis

Sensitivity derivatives are defined as the derivatives
of the coordinate locations with respect to the design
variables. The previous sections present a formula-
tion for shape parameterization based on a specific
set of design variables (v;, i = 1,imax). It is pos-
sible to introduce a new set of design variables (w;,
J = 1, jmax). The sensitivity derivatives with respect
to w; were computed based on the chain rule differen-
tiation as

AR OR 9%,
3@j - 0v; 31ij

(23)

The previous sections provide techniques to compute
the first term on the right-hand side. The second term
1s defined in a matrix form where the matrix has #5.x
rows and jmax columns.

Ovy Ouy _Ovy
dwy dwo e QW ok
dug dvg Vg
dwq dwo e W ax
(24)
QEEEL éﬂmﬁi QEEEL
dwq dwo Wk

Design-Variable Sequencing

In a typical optimization problem, the number of
design variables is determined a priori. However, the
NURBS representation algorithms permits the use of
an adaptive algorithm to determine the number of de-
sign variables. The design variables are control points
of a NURBS curve or surface. Optimization of a wing
section could start with as few as three design variables
(see Fig. 17). Then, the number of design variables can
be increased to five by enriching the NURBS curve or
surface. Enrichment is accomplished by inserting ad-
ditional knots into the design NURBS curve or surface.

This method is similar to mesh sequencing and
multigrid methods used in CFD to accelerate the con-
vergence. Multigrid methods exhibit a convergence
rate independent of the number of unknowns in the
discretized system.?* Using MASSOUD for design-
variable sequencing needs to be investigated further.

3DVs

5DVs

9DVs

17DVs

Fig. 17 A sequence of design-variable sets.

Deformed

Baseline

Fig. 18 Baseline and deformed CSM models of an

HSCT.

Results and Conclusions

The algorithms presented in this paper have been
applied for parameterizing a simple wing, a blended
wing body, and several HSCT configurations. Fig-
ure 18 shows the baseline and deformed CSM grids for
an HSCT. The solid lines represent the initial position
of the hexahedron solid elements controlling the plan-
form variation. The parameterization results from this
research have been successfully implemented for aero-
dynamic shape optimization with analytical sensitivity
for structured® and unstructured® CFD grids.

An aerodynamic optimization of an ONERA M6
wing was performed® using a sequential linear pro-
gramming technique. The objective of the optimiza-
tion was to minimize the drag while maintaining the
same lift as the baseline design. Figure 19 shows the
design cycle history for both lift and drag. In this
optimization, the angle of attack is fixed, and it was
found that in order to move away from the current
design, the constraint on the lift coefficient had to be
relaxed temporarily. This is shown clearly in the fig-
ure: for the first 19 design cycles, C, was allowed to
deviate by up to 0.01 from the desired value. After
design cycle 19 the tolerance on the lift constraint was
tightened to 107%. The net result was approximately
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Fig. 19 Design cycle history of ONERA M6 wing
optimization for coefficient of drag.

29 counts of drag reduction at the baseline lift. Fig-
ure 20 shows comparisons of the solutions computed
on the baseline and final designs. The results indicate
a significant reduction in the shock strength at most
spanwise stations.

This approach has also been applied to multidisci-
plinary optimization of a HSCT.? 10 Figure 21 shows
the design cycle history for aircraft drag, as measured
relative to the baseline values. The figure shows the
drag has been reduced by 7.5 % relative to the base-
line. Although the optimizer has not fully converged
for this case, the convergence history from 20 design
cycles suggests that little additional reduction in drag
would be obtained from additional design cycles. Fig-
ure 21 shows a comparison of the baseline and final
surface pressures on both the upper and lower sur-
faces of a HSCT. The planform changes that occurred
between the initial and final design cycles are also rep-

Baseline Design
C, =0.01185

Final Design
€, = 0.00891

Fig. 20 Comparison of the M6 wing final design
and baseline surface pressures.

1.05 T -
£1.00(7 — 1
= G
Qﬂ a, 7.5% reduction
o,
O pes| ooy .
‘:'D.
Dt".l.t_ i
Totods
0.80 . -
0 10 20 30
Design Cycle

Fig. 21 Design cycle history of HSCT optimization
for drag.

resented. The primary effect on the planform has been
to increase the span and aspect ratio slightly and to
move the outer wing leading edge break to a more in-
board spanwise location. Although not evident in the
figure, the wing thickness has been slightly reduced.

The parameterization algorithm presented in this
paper 1s easy to implement for an MDO application
for a complex configuration. The resulting parame-
terization is consistent across all disciplines. Because
the formulation is based on the SOA algorithms, the
analytical sensitivity is also readily computed. The
algorithms are based on parameterizing the shape
perturbations, thus enabling the parameterization of
complex existing analysis models (grids). Another
benefit of parameterizing the shape perturbation is
that the process requires few design variables. Use of
NURBS representation provides strong local control,
and smoothness can easily be controlled.
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Fig. 22 Comparison of the HSCT final design and
baseline surface pressures.
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