
Combining Particle Filters and Consistency-based
Approaches for Monitoring and Diagnosis of Stochastic

Hybrid Systems
Sriram Narasimhanl and Richard Dearden and Emmanuel Benazera2

Abstract. Fault detection and isolation are critical tasks to ensure
correct operation of systems. When we consider stochastic hybrid
systems, diagnosis algorithms need to track both the discrete mode
and the continuous state of the system in the presence of noise. De-
terministic techniques like Livingstone cannot deal with the stochas-
ticity in the system and models. Conversely Bayesian belief up-
date techniques such as particle filters may require many computa-
tional resources to get a good approximation of the true belief state.
In this paper we propose a fault detection and isolation architec-
ture for stochastic hybrid systems that combines look-ahead Rao-
Blackwellized Particle Filters (RBPF) with the Livingstone 3 (L3)
diagnosis engine. In this approach RBPF is used to track the nominal
behavior, a novel n-step prediction scheme is used for fault detection
and L3 is used to generate a set of candidates that are consistent with
the discrepant observations which then continue to be tracked by the
RBPF scheme.

1 Introduction

NASA's vision for the twenty first century includes robotic explo-
ration of deep space and human-robotic exploration of Mars and the
moon. Safety is a major priority for all these efforts, for manned as
well as unmanned missions. One key component for autonomous op-
eration of such systems while ensuring safety is fault detection and
isolation. For safety-critical systems, fast and efficient fault detection
and isolation techniques are necessary in order to maintain a high
degree of availability, reliability, and operational safety [IO]. These
systems tend to be hybrid in nature (a mix of discrete and continuous
dynamics), hence both the discrete mode and continuous state of the
system need to be tracked. In addition the systems and any models of
the system are stochastic due to operation in uncertain environments
and the presence of sensor and process noise. As a result diagnosis
algorithms for such systems also need to be stochastic in nature.

Bayesian belief update approaches to stochastic hybrid system di-
agnosis try to maintain an approximation of the true belief state either
by sampling [5,3] or by maintaining limited trajectories [4]. In order
to deal with the continuous dynamics, the problem is broken up into
a discrete mode estimation coupled with continuous state estimation.
Qpically Kalman filters are used to track continuous state and the
estimated state is used as the observation function to update weights
of particles or probabilities of trajectories. In these approaches the

QSS Group Inc., NASA Ames Research Center, Moffett Field, CA, USA,
email:sriram@email.arc.nasa.gov

* RIACS, NASA Ames Research Center, Moffett Field, CA, USA,
email:dearden@ptolemy.arc.nasa.gov, ebenazer@email.arc.nasa.gov

fault is diagnosed by ensuring particles enter the true fault mode and
then the observation function would keep increasing the weight of
these particles. If there are a large number of fault modes then this
requires a lot of computational resources since particles need to be
put in all fault modes to make sure no fault is missed.

On the other hand consistency-based approaches like Livingstone
[12.61 hand use structural and behavioral models (as opposed to tran-
sition models) to diagnose the faults. The system is modeled in ab-
stracted form and the observations are also converted to this form
("monitors" for Livingstone). When the predictions from the model
are not consistent with the observations, then the discrepancies are
used to identify conflicts which are then used to identify possible
fault candidates. These candidates can be tracked by comparing the
predictions under these fault conditions against the observations. In
this approach, rather than blindly guessing the faults, the constraints
in the model are used to limit the candidates to be considered. How-
ever these approaches tend to be deterministic in nature (in some
cases prior probabilities are used) and hence cannot deal with uncer-
tain transitions and noise in the sensors and system.

In this paper, we combine these two approaches in an effort
to reduce the computational complexity associated with proba-
bilistic approaches while extending Livingstone-like approaches to
handle stochasticity. Our approach combines the look-ahead Rao-
Blackwellized Particle Filter (RBPF) [2, 51 and Livingstone 3 (L3)
systems to provide a diagnosis architecture for stochastic hybrid sys-
tems. Section 2 describes the RBPF and L3 algorithms and also de-
scribes the unified modeling framework used by both diagnostic sys-
tems. In Section 3 we present the combined architecture and explain
the different components of this architecture: the nominal observer,
the fault detector, the fault observer and the candidate generator.

2 Preliminaries
2.1 The Look-Ahead Rao-Blackwellized Particle

Filter (RBPF)
The look-ahead Rao-Blackwellized particle filter [2] is detailed in
Algorithm 1. It differs from the standard particle filter in two impor-
tant respects. First, it maintains sufficient statistics (in the form of
Gaussian means and covariances) for the continuous part of the sys-
tem state. Thus each particle (sample) can be thought of as consist-
ing of a sampled discrete mode plus a Kalman filter that represents a
distribution over the continuous value the system could have in that
mode. Secondly, the algorithm employs look-ahead to ensure that
low-probability states are properly accounted for. While a standard
particle filter samples new states from the transition prior distribution

P(Ztlz,‘L’,) (the Monte Carlo step in a standard particle filter), look-
ahead allows us to incorporate the new observation to compute the
posterior distribution P(Ztlz,(l),, gt) over states the sample could
end up in, and sample directly from that.

The look-ahead RBPF algorithm operates as follows. Assuming
that we use N samples, first the discrete mode zt’ for each of the
N is sampled from the given prior distribution 20 over the modes
(Step 1 in Algorithm 1). The mean p t) and covariance Et’ for the
initial continuous state for each particle is also assumed to be given.
At each time step three computations are performed which form the
core of look-ahead RBPF. First, a look-ahead is performed for each
sample. All successor modes for the sample are enumerated and the
continuous state in each of these modes at the next time step is com-
puted using a Kalman filter. The observation is then used to compute
the posterior probability Post(i, m) of the sample transitioning to
the successor mode. The weight of the particle is re-calculated as the
sum of these posterior probabilities. Secondly (Step 7), the particles
are resampled as in the regular particle filter algorithm based on their
weights. Thirdly (Steps 9 and lo), a new mode for each new particle
is sampled from the posterior distribution computed in Step 5 , and
the mean and covariance are set to those computed for that mode by
the Kalman filter in Step 4. Note that while look-ahead RBPF is lim-
ited to linear-Gaussian models by the use of a Kalman filter in Step
4, there is no reason why the Gaussian particle filter (GPF) [5] could
not be used, allowing non-linear models to be tracked using the same
algorithm. However, the use of an unscented Kalman filter [111 in
the GPF algorithm complicates the discussion of our fault detection
algorithm in Section 3.2 below.

1: Initialization: for N particles p i , i = 1,. . . , N , sample discret
modes 2:). from the prior P(Z0) and set p:) and E t) to th
prior mean and covariance in state z:). t = 1.

2: forallp(1) = (~j i) , ,p i i)~ ,Cp)~)do
3:
4:

for each possible successor mode m E s u c ~ (z t (i) ~) do
Perform a Kalman update using parameters from mode m

5: Compute posterior probability of mode m as

6: Compute the weight of particle $ j (i) :

m E s u c c (r p l)

7: Resample N new samples p(’) where: P(p(’) = p (k)) a wlk) .
3: for all p (*) do
3:

1:
Sample a new mode m N P(Zt I zt(l?,, yt)

Set 2:’) +- m, pt (I) + pf’,m) and t C y) .

Algorithm 1: The look-ahead RBPF algorithm

Figure 1. Livingstone 3 Diagnostic Architecture

2.2 Livingstone 3 (L3)

The L3 diagnosis architecture ([9]) is illustrated in Figure 1. It con-
sists of three main components. The sysrem model stores the model
of the system and is responsibie for tracking the modes of operation
of the different components and determining the constraints that are
valid at any point in time. The consfrainr system serves the role of
tracking the overall system behavior using constraint pro,gamming
techniques. It receives constraints from the System Model indicative
of the current configuration of the system and propagates these con-
straints to try to assign consistent values to variables in the system.
When inconsistencies are seen (observations are different from prop-
agated values for corresponding components), the candidate mun-
ager is responsible for using the conflicts generated as a result of
these inconsistencies to generate candidates that resolve all the con-
a c t s and that can possibly explain all of the inconsistencies.

Algorithm 2 details the L3 approach. Each candidate ci is repre-
sented as a triple (F’,(zt, st),Et) where Fi is the set of fault transi-
tions ((fl , t l) , . . . , (fj, t?)) that are hypothesized to have occurred
(with their time of occurrence), zt is the discrete mode of the system
and st is the state of the system at time t (current time) under the fault
conditions and Et is the explanation graph tracing back from values
of variables at time t to values of variables at time t - LT where L is
some truncation limit applied to limit how far back we are willing to
go in order to generate candidates. st includes all variables that have
memory i.e., variables v whose values at time t , vt depend on their
values at time t - 1, vt-I. These may include continuous state vari-
ables I if the quantitative and continuous constraints are included
in the Livingstone 3 models. Initially we only have the emptyhull
candidate in our candidate set C indicating our belief about no fault
in the system. The initial discrete mode zo and the initial state SO
are used as initial mode and state for the empty candidate. At this
point the explanation graph for the empty candidate has only the
variables from the current time step and no edges. At each time step
t, we compute the new system discrete mode zt and instantiate the
constraints q(zt) into a constraint store Q for this mode. Note that
the mode and constraints are actually composed from the modes and
constraints for each component rather then pre-enumeration for all
system modes. The state st is computed from st-1 (incorporating
any transition conditions imposed by transition from zt-1 to zt). We
add edges st-1 -+ st and zt-1 -+ zt in the explanation graph. In ad-
dition if zt--l to zt was a transition based on some decision function
over internal variables (autonomous transition) we add edges from all
st-1 involved in the decision function to zt. Finally we remove all
variables at timet - LT - 1 (including S ~ - L T - I and z ~ - L T - - I) from
the explanation graph. The sensed input values ut = U are added as
constraints q(ut). The resulting set of constraints (constraint store) Q
are propagated to infer values for other variables including the out-
put variables gt. The explanation graph is also updated based on the
propagation of variable values. These are compared against the ob-
servations ot and any discrepancies are used to identify conflicts by
tracing back in the explanantion graph starting from the discrepant
yt . The conflicts are then used to generate faults 4, . . . , Fj. Can-
didate ci is replaced by ci, . . . , ci in candidate set C where cj =
(Fj .(a, st),Et-1).

1: c = c0;c0=($h, (zo, ZO), 4)
2: for each time step t do
3:
4:
5:
6:
7: Propagate Q; Update Et
8: i f y t # ot then
9:
0:
1:

for all ci E C do
zt = Nezt(z t - l) ;s t = Nezt(st-1)
Et = Et-1 U (~ t - 1 4 Zt, S t - 1 4 S t) \ E t - K T - 1

Q = q(zt) ti q(.ut)

Isolate faults fi, . . . , fj

c = c - c' u e,,,
en,, = cl(f : ,Zt ,St ,Et) , . . . , c i (f : , z t , s t ,E t)

Algorithm 2: The L3 algorithm

2.3 Modeling Paradigm and Assumptions

We assume that the stochastic hybrid system is modeled as a network
of hybrid automata in a component connection framework. In other
words, the system is modeled as a set of components and connec-
tions between them. The connections that typically connect variables
across two components constrain the two variables to be equal. If
causality can be established then one variable serves as an output
variable and other serves as an input variable. The behavior of any
component is modeled as a hybrid automaton where the states of
the automaton represent discrete modes of operation of the compo-
nent. Faults are modeled as instantaneous abrupt transitions to fault
modes where the behavior of the component is known beforehand3.
The behavior of the component in each mode is modeled as differen-
tial algebraic equations (for the RBPF) and as constraints from other
constraint systems like Boolean and Enumeration domains (for L3).
The system mode z is computed as the composition of the individ-
ual component modes z(C*), Le., z = z(C') U . . . U z (P) where
C1, . . . , Cn are the components in the system model. The behavior
of the system in any mode z3 can be expressed as a union of the
set of constraints enforced by each component plus the set of global
constraints (constraints that do not depend on the mode of any com-
ponent), i.e., ~ (z j) = M (z ~ (c ~)) u . . . u M (z ~ (c ~)) u M ~ .

The transitions between the discrete modes include a transition
conditions and a probability (constant) value. The transition condi-
tion determines when the component may switch modes of behav-
ior. The probability value then stochastically determines the chances
of the transition actually being fired. Transitions can be of three
types Commanded, Autonomous, and Faulty. Commanded transi-
tions are changes in modes as a result of external commands while
autonomous transitions are changes in component modes as a result
of internal conditions. Commanded transitions are modeled with the
sensing of the issuance of an external command event as the tran-
sition condition and a probability indicating the chance of rhe com-
mand actually being executed. Autonomous transitions are modeled
by a transition conditions that is a boolean valued function of inter-
nal variables and a probability that indicates the chances of the tran-
sition being fired when the function evaluates to TRUE. However
autonomous transitions may involve additional uncertainties due to
the fact in some cases we can only estimate distributions for values
of the variables involved in the decision function. Faulty transitions
(transitions to fault modes) are modeled with unobserved events as
transition conditions (we want to determine the occurrence of ex-
actly these events) with an associated probability that indicates the
prior probability of that fault.

~~~ ~ 

Unknown modes may be used to represent faults for which the behavior of 
the component is not known before hand. 

Figure 2. Combined Diagnostic Architecture 

3 Combined Architecture 

Our diagnosis architecture illustrated in Figure 2 consists of four 
main components, a nominal observer, a fault detector, a candidate 
generator and a fault observer. The nominal observer tracks the evo- 
!.;~=c ~f sys:e=: t.ehsxyicr el! 3 f~u!: i: &&ct.d at +irh nnint the 

candidate generator is used to generate a set of candidates that are 
then tracked by the fault observer. 

Before presenting our architecture we list some of the assumptions 
that we need 

r---- -- 

1. The modes of the components can be separated into a set of nom- 
inal modes and a set of fault modes. This also implies that the 
transitions may be divided into a set of nominal transitions (tran- 
sitions into nominal modes) and faulty transitions (transitions into 
fault modes). In general, this assumption may be relaxed as long as 
we make a separation between the modes we want track with the 
particle filter and the modes that we want to track using the Liv- 
ingstone framework. For example, the separation may be based on 
the probability associated with the transitions. 

2. Faults can be detected within K time steps of occurrence and this 
K is known beforehand. 

3. Multiple faults do not occur with K time steps of each other. 

3.1 Nominal Observer 

The nominal observer is used to track the evolution of the nomi- 
nal behavior of the system. The discrete modes of the system are 
tracked by sampling from a posterior probability whereas the distri- 
bution over the continuous state is estimated by an unscented Kalman 
filter. Obviously there is uncertainty in the state estimates which is 
captured as a distribution. However there is also uncertainty about 
the discrete modes. In the case of commanded transitions (where the 
commands are sensed) the actual execution of the command may not 
be certain and there might a small chance that the command is not 
executed. Also since autonomous transition conditions are based on 
the continuous state, the uncertainty about the estimated continuous 
state leads to an uncertainty in evaluation of the autonomous transi- 
tion conditions. 

The nominal observer uses the look-ahead RBPF algorithm (Al- 
gorithm l )  to track the discrete modes and continuous state of the 
system as a set of particles p(') , .  . . P ( ~ ) ,  where N is the number 
of particles used. However instead of pre-computing the state space 
equations of the system in each system mode, we use a lazy approach. 
We maintain a cache of visited modes and the state space equations in 
these modes (21 c f ( z i ) }  where f is a possibly non-linear function 
representing the state space equations. Initially this cache is empty. 
When a particle changes its discrete mode from zt to zt+l during the 
re-sampling step (including the initial sampling step), if zt # zt+i 
we look in the cache for zt+l. If it is found then the corresponding 
model f ( z t+ l )  is used for the unscented Kalman filter update. If it is 
not found then we instantiate the constraints in the system M(zt+i) 
(equation 1) and then symbolically derive f ( z t+ l )  from M(zt+l) 
[8] and add it to the cache. 



3.2 Fault Detector 

Since we are not tracking the fault modes we need a fault detector 
to indicate that a fault has occurred in the system. In our case, a 
fault in the system is detected only if the fault detectors in all the 
particles indicate the presence of the fault. When the fault detector in 
a single particle raises a flag this may be because of an actual fault in 
the system or because the trajectory that the particle is tracking does 
not match the true trajectory of the system. As a result we do not 
start isolating the fault until all particles indicate a discrepancy in the 

locally in each particle. Then we describe what happens when a fault 
is detected locally (by some particles) but that globally the fault has 
not been detected (there exist some particles that are tracking ok). 

Since each particle is using a Kalman filter to track the system 
behavior, the fault detection has to take this into consideration. A 
number of fault detection schemes that work in conjunction with a 
Kalman filter tracking approach have been proposed (see for exam- 
ple [l ,  71). However, these fault detection schemes use only a single 
step prediction for fault detection: the likelihood of the estimate is 
assessed through the likelihood of the observation yt given the one- 
step prediction $ = N(fi:, 6:)4 (this is the Kalman filter from 
step t - 1 with the Kalman gain equation applied, but before con- 
ditioning on the observation). This can run into problems in certain 
situations. We h o w  that the mean of 5, = N(fit, 6,) is always 
between yt and fii. We distinguish three different cases (assuming 
y 5 fi:, << indicating significant difference and < indicating close 
to): (i) yt << Gt < fit', (ii) yt << fit << f i j ,  (iii) yt < fit << fit. The 
one-step prediction approach will not work in case (iii) and may not 
work in case (ii) because the difference between the prediction and 
the measurement may not be large enough given the process noise. 
Moreover, in a model with significant noise, the Kalman filter will 
tend to closely track the observation at every step due to the K a h n  
update, and will therefore reduce the chance of future detection of 
the fault. 

One solution is to collect statistics over the difference between 6 
and y over time, and to detect model bias by looking at whether that 
difference is consistently positive or negative (Le. if it is random, 
then it may be considered as noise, if it is always positive or always 
negative, that is a bad model). The drawback of this approach is that 
it is usually not clear when to stop collecting data to take a decision. 

In [71 is presented an approach based on a discrete wavelet trans- 
form in combination with a statistical decision function. Unfortu- 
nately it requires the precise setting of several parameters and thresh- 
olds either by hand or (fault) simulations, that precludes its use with 
complex hybrid systems with exponential (fault) mode combinations. 

We overcome these problems by extending the prediction to n- 
steps besides the standard estimate computation, and use an approach 
based on decision theory. Two derivable decision functions are built, 
to assess for the nominal and faulty behaviors respectively whose 
equality at each time step defines a sharp non-faultylfaulty decision 
threshold. Furthermore, their variations are studied to adapt the win- 
dow size n. 

We write $ = N(fiF, 6;) for the-n-step prediction of the ob- 
servation as before, and 5; = N(p;, E:) for the n-step prediction 
of the process. The n-step predicted state 5; is calculated by tak- 
ing &--n and then predicting the state forward without the Kalman 
updates, up to current time t. Similarly, the n-steps covariance Cy in- 

h.-,-Gnr. TXIn G-t rlnr,-<Ln +ha C,..lt rlntn,+nr marha-;,- thn+ :- -..- YYu-Y6. . v u  U I a L  uu,,.,II"I U U  ' Y Y I L  LLULUUL"1 LI.IUIL'..LALLII -'A. IJ I Y U  

. 

We use a non-standard notation for the Kalman filters in this section be- 
cause we want to be very clear about when we are referring to the complete 
distribution (2, etc.) and when we are referring to the mean ( f i  etc.). 

Figure 3. Filter fault detection and adaptive monitoring window. 

cludes the process noise over n-steps but is not minimized. Its value 
is generally large. Since we will be comparing the n-step prediction 
with the Kalman filter, we will work in the process space rather than 
the observation space because it has more dimensions, so our esti- 
mates of the similarity of the two should be more accurate. 

We assess the likelihood o f the  filter estimate as opposed to the 
likelihood of the observation: 

R5 P(Yt I j . ; ? j . t )P ( z ;  I 5 t ) P ( & )  

If this probability is high then we expect the system to be nominal. 
We approximate it by computing a likelihood (L )  of the estimate in 
the form of the nominal (N) indicator L ( N  I yt,?;) 4 L(yt I 
j.;)L(z; I & ) p N .  The u priori n-step likelihood L(yt I 5;) is 
based on the distance between the observation yt and the n-step ob- 
servation prediction $. This is a natural extension to the one-step 
a priori likelihood. Due to the potentially large variance g;, it may 
not be sufficient for quick detection. Then we propose to examine 
the Kullback-Leibler (KL)  divergence between 5; and ?;, which 
measures how different the two distributions are. KL(P;, &) can 
be understood as the average number of bits that are wasted by en- 
coding events from the predicted distribution (over n-steps) with a 
code based on the estimated distribution. Therefore, the less bits are 
wasted, the more it is likely the system behavior is nominal.-We thus 
noteL(5;1&) = KL(C-5;,&), where C = 1/(2n"z/21E;11/2). 
The fault ( F )  indicator follows: L ( F  I yt,i;) 4 (C - L(yt I 
S'))KL(?;,&). PN = CmEsuccN(rt) P(mlzt), S U C C N ( Z ~ )  de- 
notes the nominal successors to the current mode zt, and PF = 

We build a decision function g based on these indicators 
gN(Yt,i;) = l o g ( L ( y t  I 5;)) + L(Z;l?t) + l O g ( p N )  assesses 
for the nominal behavior and gF(yt,5;) = l o g ( C  - L(yt I 
5;)) + KL(5?li+t) + l O g ( p F )  for any faulty behavior. The sign 
ofg(yt,$;) = gN(yt,Z;) - g F ( y t , ? ; )  is studied. Thisvalueisre- 
turned by the filter, besides the current estimate and serves as a fault 
indicator (when < 0). An extension to this filter automatically adapts 
n by considering the decision function g variations, so n increases 
when a fault decision becomes more likely, and decreases otherwise. 
Results are presented on figure 3. The three graphs show: 

1 - p N .  

Middle graph The actual observations that are being tracked, the 
n-step predictor of state, and the Kalman filter estimate of state 
for a system in which a fault occurs. 

Top Graph The number of steps for the n-step predictor growing 
as the likelihood of detecting a fault grows. 

Bottom Graph The value at each step of the decision function. The 
fault is detected approximately 30 steps after it actually occurs 
(when the function becomes negative). 

When the fault detector running inside a particle detects a fault, 
the particle sets a timer for KT (T is the observation sampling rate) 
and goes to sleep. If all other particles detect a fault before this timer 
runs out then the particle wakes up and starts the candidate genera- 
tor algorithm. If the timer expires and there are still some particles 
that have not indicated a fault then the particle wakes up and sets its 



weight to 0 and gets re-sampled. During the time that particles are 
asleep we continue tracking with fewer numbers of particles (total 
particles less the particles that are asleep). 

3.3 Candidate Generator 
The candidate generator is started for each particle when the fault 
detectors of all particles have raised a flag. Let the time when the last 
particle indicates a fault be t f d .  Let the time of fault detection for 
any particle p(')  be t(%). For each particle p(') ,  we run the L3 single 
iault canddate generation algoritfim (from assumption 3j srarting at 

time t(i) and backtracking to time tfd - KT (from assumption 2). 
Note that if t(,) <tfd - KT, then the particle is re-sampled as a new 
particle. 

For each particle p ( * ) ,  we use the Livingstone 3 diagnosis engine in 
the following fashion. First we run L3 in a purely simulation mode 
to get predictions for all observed variables between time t(,) and 
current time t. Then we compare these predictions against the obser- 
vations at the corresponding times to identify a set of discrepancies. 
Thesediscrepanciesareoftheform((v1, t l ) ,  . . . , ( v k , l k ) )  wherevk 
is a variable and t k  is the time at which V k  was discrepant. During 
the simulation we build up the explanation graph from t(,) to time t. 
The explanation graph traces the justifications for assigning values to 
variables (for example propagating a constraint) all the way back to 
the reason for adding a constraint. Some constraints are added based 
on the assumption that components are nominal and we need to fig- 
ure out which of these assumptions are necessary for derivation of 
discrepancies. For each discrepancy ( V k ,  lk), we trace back in the ex- 
planation graph to identify a subset of assumptions that contributed to 
the discrepancy called a conflict Ck. We now generate one single fault 
candidate ( f3, t3 )  that resolves all of the identified conflicts but only 
for t, < t(i).  We "install" this candidate and simulate as before to get 
predictions for all time steps between t j  and current time t (all pre- 
dictions before t j  should be the same as nominal). The comparison 
against observations yields a new set of discrepant observations and 
conflicts (which in this m e  may include fault assumptions) which 
are then added to the conflict set. If there are no discrepant observa- 
tions then this fault candidate is added to the possible fault candidate 
set. Another single fault candidate is generated and the process re- 
peated until we cannot generate anymore single faults (alternately 
we may restrict ourselves to a fixed number of candidates). 

3.4 Fault Observer 
After the L3 candidate generator has isolated faults indicating both 
the fault transition and the time of transition, we need to run a 
fault observer to track the behavior of the system under these fault 
conditions. We use the RBPF to do this job also. Let us assume 
that for each particle p('), L3 has isolated a set of fault candidates 
((fi, t i ) ,  (fi, t z ) ,  . . . , (fj , t 3 ) ) .  We replace p ( i )  with j new particles 
(pl ( 1 )  , . . . , p y ) ) .  Each new particle p y )  sets a timer to t j  indicating 

the time when the particle starts particpating in the RBPF. The initial 
continuous state for this new particle ( ( p i ,  E;,)) is set to the continu- 
ous state ofthe original particle at time t j  ( ( p i J ,  E:, 1) i.e., p i  = pi ,  
and Ci = Et,. This follows since the new particle follows the same 
trajectory as the original particle until the time of fault (t,). Hence 
there is no need to track the behavior of this particle before the fault. 

We now restart the RBPF from time tfd - KT with these newly 
created particles. As mentioned before each particle p' gets added 
to the RBPF scheme only when the time step reaches t, . The fault 
observer runs in this fashion until time tfd. Note that we are still 

using only the nominal transition model to sample the discrete mode 
changes. While the fault observer is running, the fault detector is sup- 
pressed and no new faults are detected (Assumption 3). After time 
tfd we switch to the nominal observer scheme (including the fault 
detector) since the fault is assumed to have occurred before t fd .  The 
candidate generator and fault observer algorithm is presented as Al- 
gorithm 3. 

1: for all p ( i )  do 
2: Run L3 to generate single fault candidates: 

5: Sleep till time t, 
6: Run the RBPF algorithm from time t-KT to t 

Algorithm 3: Candidate Generator and Fault Observer Algorithm 

The complete diagnostic algorithm is illustrated in Algorithm 4. 
The RBPF is used in nominal observer mode to track the evolution 
of the nominal behavior of the system. The fault detector decision 
function gt is used to determine if there is any discrepancy between 
the predictions and observations. If there is such a discrepancy for 
any particle p(')  then the particle goes to sleep for KT time steps at 
the end of which it kills itself by setting its weight to 0 ( ~ t ( e ~ ~ + ~  = 
0). Once all particles have gone to sleep implying that none of the 
nominal trajectories are consistent with the observations we run the 
candidate generator and fault observer (Algorithm 3) to isolate and 
track the faults from time t - KT to time t at which point we switch 
back to the nominal observer. 

1: for each time step t do 
2: 
3: 
4 ifgt(') < o then 
5:  
6: 
7: 
8: 

Run RBPF to estimate (zt ,  &, Z t )  for each particle p ( i )  
Compute gt(i) as detailed in Section 3.2 

Put particle p ( * )  to sleep till time t + KT + 1 
Kill the particle after time t + KT + 1: ~ t ( 2 ~ ~ + ~  = 0 

Run candidate generator and fault observer 
if all particles are asleep then 

Algorithm 4: The Combined algorithm 

4 Conclusions and Future Work 
We have presented an architecture for monitoring and diagnosis 
of stochastic hybrid systems. Our approach combines the Rao- 
Blackwellised particle filter for tracking discrete mode transitions 
and continuous state, an n-step predictor scheme for fault detection 
and the Livingstone 3 algorithm for fault isolation. This is work in 
progress and we do not yet have results from an integrated system. 
However some of the pieces of the architecture have been tested with 
promising results. We hope to have results from the complete system 
in the final version of this paper. 

There are several avenues for improving this architecture. One ob- 
vious thing to do is determine empirically exactly how K and n 



should be set in relation to one another (assuming n is not being 
adapted dynamically). Intuitively, we might expect them to be the 
same, since they are both measuring how many steps it takes before 
a fault can be detected. However, there is a subtle difference: K is 
a property of the system as a whole, the number of steps it takes to 
detect any fault. On the other hand, n is a parameter of the algo- 
rithm; we can vary n to trade-off between more accurate estimation 
of when a fault actually occurred and reliability of detection (a small 
n means less time in which the fault could have happened, but may 
miss faults that can’t be distinguished in n steps). Clearly n should 

consequences of not knowing the time of the fault reliably. In Section 
3.2 we discussed the fact that n can be adapted on-line to improve 
performance for a particular fault. This allows n to be adapted to the 
particular fault being tracked (n increases if the fault is very gradual 
and hence harder to distinguish from nominal). Again, the choice of 
when to increase or decrease n may be informed by how important it 
is to determine the actual time of the fault. 

We have only discussed linear models and standard Kalman filters 
in this work. Since very few real-world systems are actually linear, 
we plan to extend the work to non-linear systems. The Gaussian par- 
ticle filter [5] already uses unscented Kalman filters (UKF) to apply 
RBPF to non-linear systems, but the fault detector will need to be 
modified to cope with non-linearity. The difficulty here is that the ap- 
proximation that occurs in the UKF will be magnified by the n steps 
of the predictor so the variance of the resulting distribution may be 
very large indeed, leading to increased problems in detecting faults 
early and reliably. 

Finally, Livingstone 3 is currently being expanded by adding ad- 
ditional constraint systems, including the ability to use continuous 
constraints. As these new capabilities become available, L3 should 
be able to generate a richer set of candidate diagnoses, and hence the 
performance of the system we have described here should be able to 
be similarly improved. 

ucvei be iiugci iiiau A’, but iiuw ciusc it shuuill Lc: imy lleyeuJ uu h e  

REFERENCES 

[I1 Gautam Biswas, Gyula Simon, Nagabhushan Mahadevan, Sriram 
Narasimhan, John Ramkez, and Gabor Karsai, ‘A robust method forhy- 
brid diagnosis of complex systems’, in Fourteenth International Work- 
shop on Principles of Diagnosis (DX ‘031, Washington D.C., USA, 
(2003). 

[21 Nando de Freitas, Richard Dearden, Frank Hutter, Ruben Morales- 
Menendez. Jim Mutch, and David Poole, ‘Diagnosis by a waiter and 
a mars explorer’, Invited paper for Proceedings of the IEEE, special 
issue on sequential state estimation, (2003). 

131 Stanislav Funiak and Brian Williams, ‘Multi-modal particle filtering for 
hybrid systems with autonomous mode transitions’, in Fourteenth Inter- 
national Workshop on Principles of Diagnosis (DX ‘031, Washington 
D.C., USA, (2003). 

[41 M. Hofbaur and B.C. Williams, ‘Mode estimation of probabilistic 
hybrid systems’, Hybrid Systems: Computation and Contml, Lecture 
Notes in Computer Science (HSCC 2002). 2289,253-266, (2002). 

[51 Frank Hutter and Richard Dearden, ‘The gaussian particle filter for di- 
agnosis of non-linear systems’, in Proceedings of the Fourteenth Inter- 
national Workshop on the Principles of Diagnosis, Washington, DC, 
(2003). 

161 James Kurien and Pandu Nayak, ‘Back to the future with consistency- 
based trajectoly tracking’, in M M M ,  pp. 370-377. (2ooo). 

[71 Eric-J. Manders and Gautam Biswas, ‘Fdi of abrupt faults with com- 
bined statistical detection and estimation andqualitative fault isolation’, 
in In P m .  of the 5th Symposium on Fault Detection, Supervision and 
Safety for Technical Processes, Washington DC, pp. 347-352, (2003). 

[81 S r i m  Naxasimhan, Model-bused Diagnosis of Hybrid Systems, Ph.D. 
dissertation, Vanderbilt University, Nashville, TN, USA, August 2002. 

[91 Sriram Naasimhan, Lee Brownston, and Daniel Burrows, ‘Explanation 

constraint programming for model-based diagnosis of engineered sys- 
tems’, in IEEEAemspace Conference, Big Sky, Montana, (2004). 

[IO] R. Patton, P.M. Frank, and R.N. Clark, Issues in Fault Diagnosis for 
Dynamic Systems, Springer Verlag, 2000. 

1113 E. Wan and R. van der Menue. ‘The unscented kalman filter for non- 
linear estimation’, in Pmc. of IEEE Symposium 2000, Lake Louise, Al- 
berta, Canada, (2000). 

1121 Brian Williams and Pandu Nayak, ‘A model-based approach to reactive 
self-configuring systems’, in AAAI, pp. 971-978, (1996). 


