Conference-Workshop on Strategic Research to Enable NASA's Exploration Missions Cleveland, Ohio, June 23, 2004

Space Experiment Concepts: Cup-Burner Flame Extinguishment

Fumiaki Takahashi

National Center for Microgravity Research Cleveland, Ohio Fumiaki.Takahashi@grc.nasa.gov

Supported by **NASA OBPR**

Acknowledgment

In-House

GBEX-Gaseous Burner Extinguishment Experiment GRC Roger Forsgren (PM) Scott Numbers Dennis Stocker
 NCMR Peter Sunderland
 ZIN Gregory Funk Dale Robinson David Althausen Mike Jamison Rita Cognion
 Akima David Bennett

NRA-99 NIST

Physical and Chemical Aspects of ISSI Fire Suppression in Extraterrestrial Environments Gregory Linteris (co-l) Viswanath Katta (co-l)

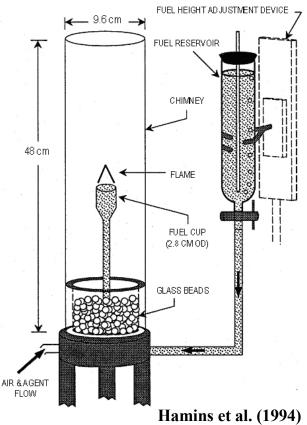
Background

NASA's Fire Safety Approach

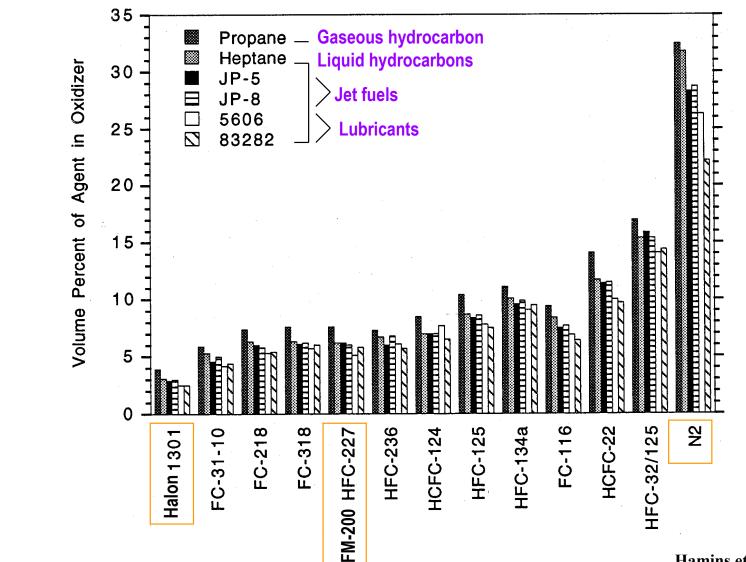
- Fire prevention plays a key role
- ⇒ fire safety program for manned space flight has been based on controlling the materials flammability and eliminating ignition sources
- Space exploration expands platform
- ⇒ longer duration missions to the moon, Mars, or aboard the International Space Station (ISS) increase the likelihood of fire events
- ⇒ various gravity levels affect fire behavior ISS: μg , lunar: 1/6g, Martian: 1/3g

Objectives

Space Fire Suppression Processes & Technology


- Be prepared for space fire suppression!
- ⇒ need better understanding of physical and chemical suppression processes in reduced gravity environments simulating various missions
- Develop space fire suppression technology
- ⇒ the results must provide useful data leading to technology development of fire suppression systems in various platforms

Organizing Questions Fire Suppression


- Fire-Extinguishing Agent Effectiveness in Space Environments
- 1. What is the relative effectiveness of candidate suppressants to extinguish a representative fire in reduced gravity, including high-O₂ mole fraction, low-pressure environments?
- 2. What are the relative advantages and disadvantages of physically acting and chemically acting agents in space fire suppression?
- 3. What are the O₂ mole fraction and absolute pressure below which a fire cannot exist?
- 4. What effect does gas-phase radiation play in the overall fire and post-fire environments?
- 5. Are the candidate suppressants effective to extinguish fires on practical solid fuels?
- Space Fire Suppression Technology Development
- 7. How can idealized space experiment results be applied to a practical fire scenario?
- 8. What is the optimal agent deployment strategy for space fire suppression?

Agent Effectiveness

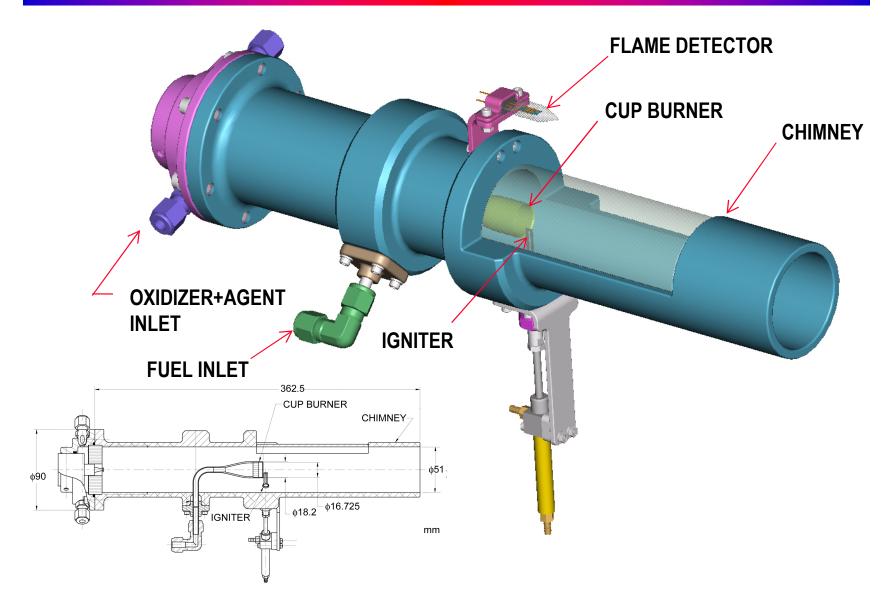
- Cup-Burner Method: dynamic co-flow diffusion flame
 Standard Test
 - ⇒ the most widely used test specified in national and international standards (NFPA 2001, AS 4214, ISO 14502)
 - ⇒ measure the minimum extinguishing concentration (MEC) which renders the "inhibited" air <u>incapable</u> of supporting diffusion flame combustion
 - ⇒ the minimum design concentration of a gaseous *agent* for a fire protection system is determined by adding at least 30% to the cup-burner MEC value by manufacturer
 - ⇒ the third party approval (e.g., UL, Factory Mutual) of a fire extinguishing **system** requires large-scale pan fire tests in relation to the cup-burner MEC values

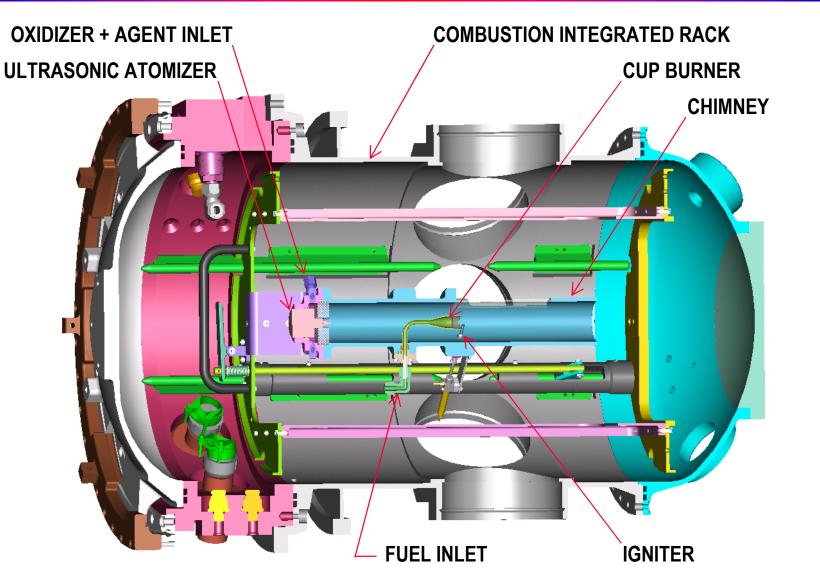
MEC Minimum Extinguishing Concentration

Laboratory Flame vs. Real Fire

Cup- Burner Flame Behavior:

- Relatively system independent:
- ⇒ the MEC is nearly independent of the fuel cup size, chimney size, fuel velocity, and oxidizer velocity
- \Rightarrow the cup-burner MEC values are nearly equal to those for low strain rate counterfow diffusion flames
- Scale model of a real fire:
- \Rightarrow flame segments subjected to various strain rates, including stabilized/spreading edge diffusion flames
- \Rightarrow flame flickering and separation in 1g, affecting the air and agent entrainment into fire zone
- ⇒ extinguishment occurs via *dynamic* blow-off process rather than global extinction typical of counterflow diffusion flames

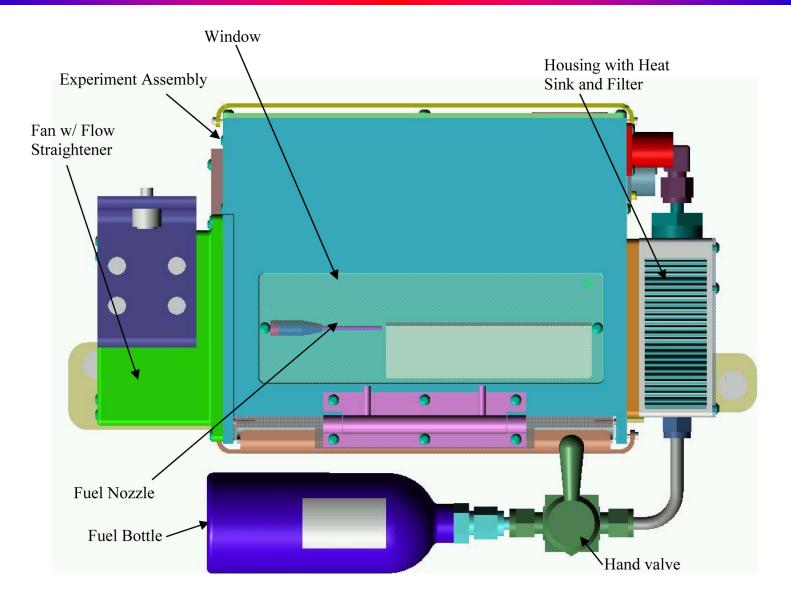

Cup Burner


Pool Fire

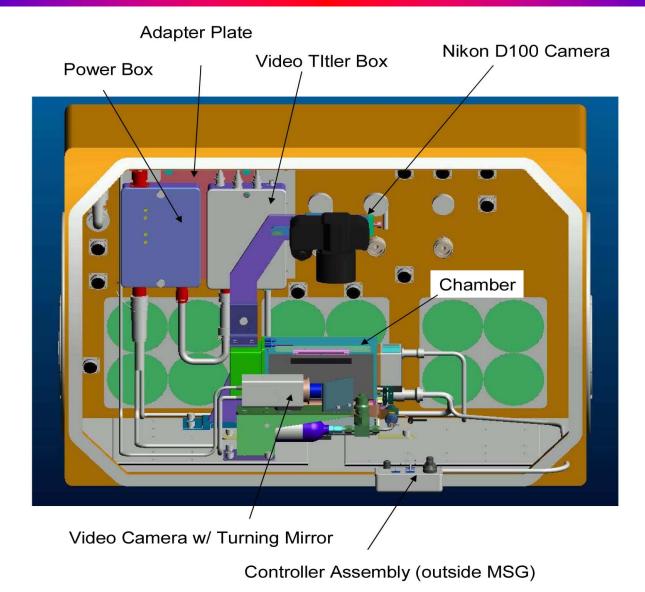
http://www.me.uwaterloo.ca/~ew eckman/fire/firehome.htm

GBEX Gaseous Burner Extinguishment EXperiment

GBEX in CIR


GBEX Gaseous Burner Extinguishment EXperiment

Dimensions: 5/8 Scale
 Burner: 17 mm ID
 Chimney: 51 mm ID × 350 mm length

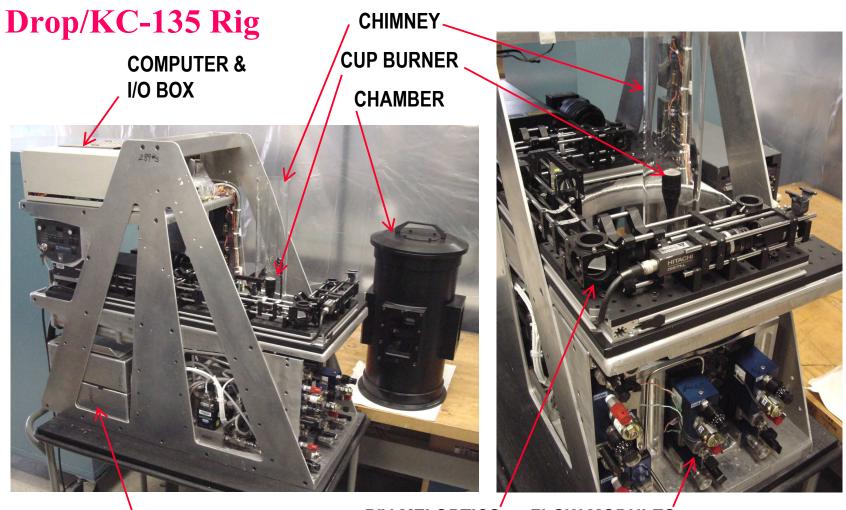

Test Matrix:

Fuel:	CH ₄
Oxidizer:	$O_2 - N_2$ mixture
	Oxygen mole fraction: 0.21, 0.3
	Velocity : 1 – 12 cm/s
Agent:	CO ₂ , N ₂ , He, Water Mist, Inert Gas/Water Mist
Gravity:	μg
Pressure:	1 atm, 0.7 atm

MSG Microgravity Science Glovebox

MSG Microgravity Science Glovebox

MSG Microgravity Science Glovebox


Dimensions:

Burner:12 mm IDChimney:79 mm square × 187 mm length

Test Matrix:

Fuel:	CH ₄
Oxidizer:	Air
	Velocity : 1 – 50 cm/s
Agent:	N ₂
Gravity:	μġ
Pressure:	1 atm

FSEE Fire Suppression in Extraterrestrial Environments

FSEE Fire Suppression in Extraterrestrial Environments

Dimensions: Full Scale

Burner :	28 mm ID	
Chimney:	$85 \text{ mm ID} \times$	533 mm length

Test Matrix:

Fuel:	Gas: CH_4 , C_2H_6 , C_3H_8
	Liquid: n-C ₇ H ₁₆ , CH ₃ OH
	Solid: trioxane (3[CH ₂ O]), PMMA
Oxidizer:	$O_2 - N_2$ mixture
	Oxygen mole fraction: 0.21 – 0.3
	Velocity: 3 – 20 cm/s
Agent:	CO_2 , N_2 , He, Ar
-	$CF_{3}H(HFC-23), C_{3}F_{7}H (HFC-227ea), CF_{3}Br (Halon 1301)$
	Water Mist, Inert/Water Mist, Microencapsulated Water
Gravity:	μg , lunar (1/6 g), Martian (1/3 g), 1g
Pressure:	0.7 – 1 atm

Dynamic Flame Extinguishment

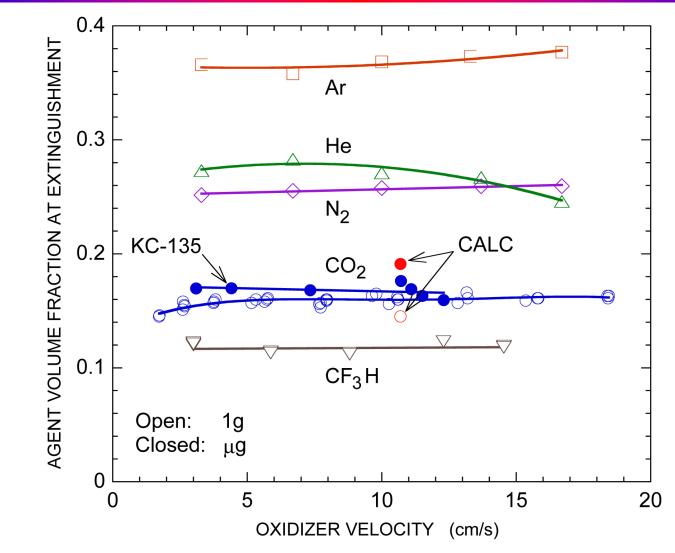
Experiment (1g)

Methane Air + 15.9%CO₂

 U_{CH4} = 0.92 cm/s U_{ox} = 6.7 cm/s **Direct Numerical Simulation (0g)**

Methane Air + 30.7% He

 U_{CH4} = 0.92 cm/s U_{ox} = 10.7 cm/s

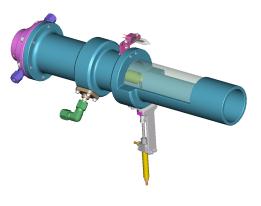

> •Full chemistry (GRI Mech 1.2)

•Radiative loss

•Mixture rules

Extinguishment Limits

Takahashi, Linteris, and Katta, AIAA Paper No. 2004-0957, January 2004


Answering to Organizing Questions

- Cup-burner flame extinguishment experiment can:
- 1. measure the relative effectiveness (MEC) of candidate suppressants in low-*g*, including high-O₂, low-P environments
- 2. determine the X_{O2} (LOI) below which a fire cannot exist
- 3. examine the effect of radiation in fire and post-fire environments
- 4. reveal advantages/disadvantages of physical/chemical agents
- 5. measure the agent effectiveness for practical solid fuels
- 7. provide an idealized space experiment applicable to a practical fire scenario
- 8. produce useful data in relation to agent deployment strategy

Conclusions

Space Fire Suppression Processes & Technology

- ⇒ Space experiment concepts of cup-burner flame extinguishment have been conceived to address to the key issues (i.e., organizing questions) in space fire suppression
- ⇒ Cup-burner flame extinguishment experiment can reveal physical and chemical suppression processes and provide agent effectiveness data useful for technology development of space fire suppression systems in various reduced-gravity platforms

