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The stability of cylindrical liquid bridges in reduced gravity is affected by ambient vibrations of the 
spacecraft. Such vibrations are expected to excite capillary modes of the bridge. The lowest-order 
unstable mode is particularly susceptible to vibration as the length of the bridge approaches the stability 
limit. This low-order mode is known as the (2,0) mode and is an axisymmetric varicose mode of one 
wavelength in the axial direction. In this work, an optical system is used to detect the (2,0)-mode 
amplitude. The derivative of the error signal produced by this detector is used to produce the appropriate 
voltages on a pair of ring electrodes which are concentric with the bridge. A mode-coupled Maxwell 
stress profile is thus generated in proportional to the modal velocity. Depending on the sign of the gain, 
the damping of the capillary oscillation can be either increased or decreased. This effect has been 
demonstrated in Plateau-tank experiments. Increasing the damping of the capillary modes on free liquid 
surfaces in space could be beneficial for containerless processing and other novel technologies. [work 
supported by NASA] 
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Abstract

The stability of cylindrical liquid bridges in reduced gravity is affected by ambient
vibrations of the spacecraft. Such vibrations are expected to excite capillary modes of
the bridge. The lowest-order unstable mode is particularly susceptible to vibration as
the length of the bridge approaches the stability limit. This low-order mode is known
as the (2,0) mode and is an axisymmetric varicose mode of one wavelength in the axial
direction. In this work, an optical system is used to detect the (2,0)-mode amplitude.
The derivative of the error signal produced by this detector is used to produce the
appropriate voltages on a pair of ring electrodes which are concentric with the bridge.
A mode-coupled Maxwell stress profile is thus generated in proportion to the modal
velocity. Depending on the sign of the gain, the damping of the capillary oscillation can
be either increased or decreased. This effect has been demonstrated in Plateau-tank
experiments. Increasing the damping of the capillary modes on free liquid surfaces in
space could be beneficial for containerless processing and other novel technologies.

1 Introduction

Various capillary modes of liquid bridges are susceptible to vibration in a zero gravity en-
vironment. Under zero gravity, in the absence of any stabilization method, the (2,0) mode
shown in the graph below is the first mode to become unstable and breaks if the slenderness
S = L/2R exceeds π. This is known as Rayleigh-Plateau limit.

L

2R

slenderness   S = L/2R

(2,0) mode

(3,0) mode

Rayleigh-Plateau limit,  S  = π
2

Stability limit,  S  = 4.4934...3

When the vibration frequency of the environment is near the natural frequency of a cap-
illary bridge mode, mode-coupled electrostatic stress in proportion to the modal amplitude
can be used to shift the frequency of the mode higher, and at same time the electrostatic
stress in proportion to the modal velocity can be used to further enhance the stability of the
bridge. This is useful for reducing the effect of g-jitter.

NASA/CP—2004-213205/VOL2 504



2 Setup

2.1 System configuration
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As shown in the above illustration, the laser beam illuminates the bridge which has a com-
position of 52 wt% CsCl and 48 wt % H2O. The tank liquid is a 3M product, HFE 7500
which has the same density as the bridge liquid so that a weightless condition is simulated.
A multi-element lens is used to focus the laser beam onto the segmented photo diode, which
detects the deformation of the bridge and generates a signal to the feedback circuit which
will generate the proper voltage (in proportion to the square root of the modal velocity) on
the ring.

The bridge is horizontal in the Plateau tank, and this is the top view.

2.2 Bridge profile
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The left figure above shows a grounded bridge with two concentric ring electrodes. In this
figure the bridge has a (2,0) mode shape. Since the voltage on the ring is proportional to the
square root of the modal velocity, (dx/dt)1/2, so is the electric field. Note that the stress is
proportional to the square of the electric field, therefore, the generated stress on the surface
of the bridge is proportional to the modal velocity dx/dt, which is the derivative of the modal
amplitude, shown as x in the above graph.
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3 Simple model and model prediction

The bridge is similar to a driven, damped harmonic oscillator. The feedback force can be
expressed as: Ffb = −R2

[
Gx(t − τ) + Gv

dx
dt
|t−τv

]
. where G,Gv are the modal amplitude

gain and velocity gain. Therefore the equation of motion is

m0
d2x

dt2
= − k0x(t) − γ0

dx

dt
− R2

[
Gx(t − τ) + Gv

dx

dt
|t−τv

]
−

− α
√

2

∫ t

−∞

1

[π(t − t′)]1/2

d2x

dt′2
dt′,

where x(t) is instantaneous modal amplitude. For the eigenmode solution x(t) = x0e
iΩt, the

characteristic equation is

(k0 + R2G) − Ω2

(
m0 +

1

2
R2Gτ 2 − R2Gvτv

)
+ αi (1 + i) Ω3/2

+ iΩ
(
γ0 − R2Gτ + R2Gv

)
= 0.

This equation can be rewritten as

ke − Ω2me + αi (1 + i) Ω3/2 + iΩγe = 0

where ke, γe are the effective spring constant and damping rate respectively,

ke = k0 + R2G,

k0 ∝
[
(
π

S
)2 − 1

]
,

γe = γ0 − R2Gτ + R2Gv,

me = m0 +
1

2
R2Gτ 2 − R2Gvτv.

Inspection of the above equations suggests that:

• When the slenderness of the bridge is larger than π, k0 becomes negative, thus the
bridge is unstable, but by introducing amplitude gain G, ke can be made positive, the
bridge can therefore be stabilized.

• Increasing the velocity gain can increase the damping rate γe linearly.

4 Experimental procedure

• Check the density match between bridge liquid and tank liquid,deploy the bridge

• Excite the bridge with a 20 cycle sine wave burst

• Record the P.D signal, fit decay to Duffing equation to get
Ω = ω + iγ, where ω is the frequency and γ the damping rate.

d2x

dt2
+ (ω2 − ax2)x = −2γ

dx

dt
,
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5 Experiment results
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This figure shows the qualitative effect of velocity feedback. One can see that positive
velocity gain can enhance the damping while negative velocity gain decreases the damping.

The experimental results also show that

• The velocity gain doesn’t affect the frequency a lot.

• Increasing the velocity gain can increase the damping rate.

• Damping increases linearly with the velocity gain, after the gain correction factor (due
to non-ideal feedback electronics) is taken into account.

• when the velocity gain becomes sufficiently negative, the quality factor or the damping
rate can become negative, this will cause the naturally stable bridge to break up.

6 Conclusions

• Enhanced damping of the axisymmetric (2,0) capillary mode is demonstrated by ap-
plying mode-coupled electrostatic Maxwell stress that is proportional to the modal
velocity.

• Damping increases linearly with velocity gain as predicted from the model.

• Amplitude feedback shifts the natural frequency higher and has been used for bridge
stabilization. Amplitude and velocity feedback can be used together to further enhance
the stability.
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