ELECTRIC-FIELD-DRIVEN PHENOMENA FOR MANIPULATING PARTICLES IN MICRO-DEVICES

Boris Khusid New Jersey Institute of Technology University Heights, Newark, NJ 07102 Phone: 973-596-3316; Email; khusid@adm.njit.edu

Andreas Acrivos The City College of New York 140th Street & Convent Avenue New York, NY 10031 Phone: 212-650-8159; Email: acrivos@scisun.sci.ccny.cuny.edu

Compared to other available methods, ac dielectrophoresis is particularly well-suited for the manipulation of minute particles in micro- and nano-fluidics. The essential advantage of this technique is that an ac field at a sufficiently high frequency suppresses unwanted electric effects in a liquid. To date very little has been achieved towards understanding the micro-scale field-and shear driven behavior of a suspension in that, the concepts currently favored for the design and operation of dielectrophoretic micro-devices adopt the approach used for macro-scale electric filters. This strategy considers the trend of the field-induced particle motions by computing the spatial distribution of the field strength over a channel as if it were filled only with a liquid and then evaluating the direction of the dielectrophoretic force, exerted on a single particle placed in the liquid. However, the exposure of suspended particles to a field generates not only the dielectrophoretic force acting on each of these particles, but also the dipolar interactions of the particles due to their polarization. Furthermore, the field-driven motion of the particles is accompanied by their hydrodynamic interactions. We present the results of our experimental and theoretical studies which indicate that, under certain conditions, these long-range electrical and hydrodynamic interparticle interactions drastically affect the suspension behavior in a micro-channel due to its small dimensions.

Electric-field-driven Phenomena for Manipulating Particles in Micro-Devices

Boris Khusid¹ and Andreas Acrivos²

 ¹ New Jersey Institute of Technology, University Heights, Newark, NJ 07102 Email: <u>khusid@adm.njit.edu</u>
² The City College of New York, 140th Street & Convent Avenue, New York, NY 10031 Email: <u>acrivos@scisun.sci.ccny.cuny.edu</u>

Compared to other available methods, ac dielectrophoresis is particularly well-suited for the manipulation of minute particles in micro- and nano-fluidics. The essential advantage of this technique is that an ac field at a sufficiently high frequency suppresses unwanted electric effects in a liquid (for water, in particular, in the MHz-frequency range). To date very little has been achieved towards understanding the micro-scale field- and shear driven behavior of a suspension in that, the concepts currently favored for the design and operation of dielectrophoretic micro-devices adopt the approach used for macro-scale electric filters. This strategy considers the trend of the field-induced particle motions by computing the spatial distribution of the field strength over a channel as if it were filled only with a liquid and then evaluating the direction of the dielectrophoretic force, exerted on a single particle placed in the liquid. However, the exposure of suspended particles to a field generates not only the dielectrophoretic force acting on each of these particles, but also the dipolar interactions of the particles due to their polarization. Furthermore, the field-driven motion of the particles is accompanied by their hydrodynamic interactions.

We present the results of our experimental and theoretical studies [1-4] which indicate that, under certain conditions, these long-range electrical and hydrodynamic interparticle interactions drastically affect the suspension behavior in a micro-channel due to its small dimensions. As we shall demonstrate, this leads to the formation and propagation of the concentration front in suspensions subject to a high gradient electric field. This phenomenon provides a new method for strongly concentrating particles in focused regions of micro-devices. Potential applications of the field-driven phenomena for <u>advanced life support and environmental monitoring & control systems for long-duration missions</u> include a wide range of electro-micro-devices for multiphase separation, bubble manipulation, monitoring particulate and microbial background environment, etc. However, our experiments aboard the NASA research aircraft KC-135 [4] revealed that an unexpectedly pronounced effect of a relatively weak gravity imposes certain limitations on the use of ground-based tests for predicting the operation of electro-technologies in micro-gravity.

Principal publications

- 1. Bennett, D., Khusid, B., Galambos, P., James, C.D., Okandan, M., Jacqmin, D., and Acrivos, A., Field-induced dielectrophoresis and phase separation for manipulating particles in microfluidics. *Appl. Phys. Lett.*, (2003) **83**(23), 4866
- Markarian, N., Yeksel, M., Khusid, B., Farmer, K., Acrivos, A., Limitations on the scale of an electrode array for trapping particles in microfluidics by positive dielectrophoresis, *Appl. Phys. Lett.*, (2003) 82 (26), 4839; Particle motions and segregation in dielectrophoretic micro-fluidics, *J. Appl. Phys.*, (2003) 94(6), 4160
- 3. Kumar, A., Qiu, Z., Acrivos, A., Khusid, B., and Jacqmin, D., Combined negative dielectrophoresis and phase separation in nondilute suspensions subject to a high-gradient ac electric field. *Phys. Rev. E*, (2004) **69**, 021402
- 4. Markarian, N., Yeksel, M., Khusid, B., Kumar, A., and Tin, P., Effects of clinorotation and positive dielectrophoresis on suspensions of heavy particles. *Phys. Fluids*, (2004) **16**(5), 1826

Dielectrophoretic Particle Concentrator

40 μ m (W)×6 μ m (H)×570 μ m (L) 10 Vptp, 15-30 MHz

Source: Bennett, Khusid, Galambos, James, Okandan, TRANSDUCERS'03, Boston, MA

Experimental Results

1µm polystyrene spherical beads in DI water, 0.1% (v/v) $\beta = -0.45 - 0.27i$ **Particle polarization** Flow rate 0.24 pL/s to 9.6 pL/s; Re~10⁻⁵-10⁻³ Dielectrophoretic $10V_{ptp}$, 30 MHz gates **10V 0**V Phase Flow Electrodes 6µm . . transition $\nabla \mathbf{E}_{\mathrm{rms}}^2$ 20um Gate

Source: Bennett, Khusid, Galambos, James, Okandan, Jacqmin, Acrivos, Appl Phys Lett, 83, 2003

Flowing Heterogeneous Mixture

Beads and bacterial cells (heat-killed staphylococcus aureus)

10 V_{ptp}, 15 MHz Flow rate 0.24 pL/s to 9.6 pL/s

Source: Bennett, Khusid, Galambos, James, Okandan, Jacqmin, Acrivos, Appl Phys Lett, 83, 2003

Source: Bennett, Khusid, Galambos, James, Okandan, Jacqmin, Acrivos, Appl Phys Lett, 83, 2003

Source: Kumar, Qiu, Khusid, Jacqmin, Acrivos, Phys. Rev. E, 69, 2004

Comparison with Experiments

Source: Kumar, Qiu, Khusid, Jacqmin, Acrivos, Phys. Rev. E, 69, 2004

Multi- Channel Apparatus

electrodes Source: Markarian, Yeksel, Khusid, Farmer, Acrivos, Appl Phys Lett, 82, 2003

KC-135 Experiment

Source: Markarian, Yeksel, Khusid, Kumar, Tin, Phys. Fluids, 16, 2004

187

Tin, Phys. Fluids, 16, 2004

NASA/CP-2004-213205/VOL2

Microsensor Technologies for Plant Growth System Monitoring

Chang-Soo Kim Depts. of Electrical & Computer Eng. and Biological Sciences Univ. of Missouri-Rolla

- Critical need of precise control of root zone; wetness, oxygen, nutrients, temperature.
- Ideal sensor configuration; miniaturization, multiple, array, low power, robustness.
- <u>Thin film flexible microsensor strips for</u> <u>dissolved oxygen and wetness detection</u>.
- Flexible microfluidic substrate for rhizosphere monitoring and manipulation.

Experimental setup with a porous tube growth system

 Dissolved oxygen microsensor strip (3-electrode amperometric measurement by enwrapping the porous tube surface)

3 inches

• Wetness sensor strip (4-electrode conductivity measurement along the porous tube surface)

Dissolved oxygen measurement on the porous tube surface

- With a commercial oxygen probe;
- Reflecting O₂ value of inner sol. at (+) pressures.
- Convergence to 20% value (air-sat. value) at (-) pressures.
- With a microsensor array;
- Reflecting O₂ value of inner sol. at (+) pressures.
- Scattering around 0% value at (-) pressures (due to surface dryness and absence of sensor permeable membrane).

Wetness measurement on the porous tube surface

• A steep decrease of surface impedance at the transition from (-) to (+) pressure.

Experimental setup with a particulate growth system (Turface[®] 1-2 mm size particulate)

- Dissolved oxygen and wetness measurements within an unsaturated Turface[®] media.
- Repeated flooding and suction of nutrient solution using the embedded porous tube.

Dissolved oxygen measurements within the particulate

Wetness measurement within the particulate

 Variations of the impedance due to repeated solution flooding and suction.

Flexible microfluidic substrate for rhizosphere monitoring and manipulation

- Root hair growth on the surface of a porous membrane with underlying microfluidic channels and microsensor arrays.
- Exemplary layout of planar microfluidic substrates.

Conceptual growth system using flexible microfluidic rhizosphere substrate

- Rhizosphere manipulation using embedded microchannels (e.g. change of nutrient solution composition).
- Rhizosphere *in situ* monitoring using embedded microsensor arrays or remote optical sensors.
- Root growth pattern analysis using optical imaging.

Summary

- Demonstration of feasibility of microsensor for porous tube and particulate growth systems.
- Dissolved oxygen.
- Wetness.
- Flexible microfluidic substrate with microfluidic channels and microsensor arrays.
- Dynamic root zone control/monitoring in microgravity.
- Rapid prototyping of phytoremediation.
- A new tool for root physiology and pathology studies.

Acknowledgement: NASA grant NAG9-1423