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Abstract 
A patched-grid algorithm for the analysia of com- 

plex configurations with an implicit, upwind-biased 
Nwier-Stukes solver is presented. Results from both 
a spatial-flu and a timeflux conservation approach to  
patching m a s  sonal bouadariees are presented. A gen- 
eralized coordinate transformation with a biquadratic 
geometric element is used at the randinterface in order 
to treat highly stretched viscous grids and arbitxarily- 
shaped Eond boundaries. Applications are made to the 
F-18 forebody-strake configuration at subsonic, high- 
alpha condittiona. Computed surface flow patterns com- 
pare well with ground-based and flight-test results; the 
large effKt of Reynolds number OB the forebody Bow- 
field is shown. 

-- 

Nomenclature 
coefficients in surface definikion 
mean aerodynamic chord 
flux vectors (convective and pressure terms) 
flux vector (viscous terms] 
freeatream Mach number 
time flux vector 
position vector 
Reynolds number based on c 
time 
Cartmian coordinate system 
turbulent inner-law variable 
angle of a t txk ,  deg 
body-fitted coordinates 

Introduction 
There ia an increasing effort is the development 

and application of Euler/Navier-Stokes computational 
irlgorithms for realistic aircraft configurations. Use of 
these prediction tools, in combination with ground- 
b a e d  and flight experiments, can significantly reduce 
the required time and cost of the design cycle. In 
the case of the recently proposed National Aerdpace 
Plane, a greater rehance must be placed on computa- 
tional methods since many of the high enthalpy and 
high Mach number conditions are impossible to simu- 
late with present ground-based facilities. Timeliness is 
a critical issue in the design cycle and there h a pressing 
need to  reduce the overall time repaired for an analy- 
sis of candidate configurations which might arise m a 
typical design cycle. 

The solvers in use today can be loosely classified 
into three types according to the underlying grid topol- 
ogy : (1) Cartesian (2) unstructured and (3) multiblock 
structured. The Cartesian grid sohers lead to the sim- 
plest algorithms with the fewest operations and small- 
est memory requirements per grid point, but are leaat 
efficient and accurate in applications to curved sur- 
faces. With the latter two approaches, the use of body- 
conforming meshes leads to straightforward treatment 
and accurate resolution of general aurfaces. The un- 
structured mesh solvers are the most general aIgorithms 
and their principal advantage is that grids over complex 
geometries can be generated in the shortest time period. 
However, these algorithms are also the most costly in 
terms of operations per time step and memory per grid 
point because of no&-sequential memory access and the 

~f the 

The multiblock structured meshes are more effi- 
cient in terms of operation count and memory than the 
unstructured meshes, since general connection infoma- 
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tion is restricted to the edges of the blocks. However, 
more constraints are placed on the grid generation pro- 
cess in each block, although there is an active body of 
ongoing research to reduce or eliminate many of them 
constraints, The structured mesh approach leads to 
the most efficient algorithms for treating viscous flows, 
as the grids can be highly stretched in the direction 
normal to the developing shear layers. Of course, the 
algorithm of the future is likely to be a hybrid one, with 
overlapping structured meshes near the body linked to 
a Cartesian grid in the far  field through an unstructured 
mesh, for instance. 

The present work L directed toward the develop- 
ment of improved techniques associated with the block 
structured approach, and in particular the patched grid 
approach, In this method, also referred to as a do- 
main decomposition method, the computational do- 
main is divided into a number of sone% or blocks, each 
of which modeb the local geometric features and requi- 
site physics of the configuration.1-8 The grids in each 
zone can be determined independently, with the net re- 
sult that the grid generation task is simpler and the 
solution is more efficient, since local clustering of the 
grid ceUs to resolve geometric and physical features in 
one region need not propagate to other blocks. The 
utility of the approach in a longitudinally-patched grid 
framework for an F-18 and an SR71 configuration at 
supersonic speeds has been demonstrated previo~sly?~~ 
The method is extended in the present work so that 
the patching plane can be a general three-dimensional 
surface. The extension also overcomes a problem en- 
countered in the application to viscous 0 0 ~ 8 ,  in which 
a highly atretched grid is present on either side of a 
zonal interface. 

Two approaches are described for maintaining the 
accuracy of the solution across the ~ o n a l  interface, A p  
plications using the two patching algorithms are made 
to the F-18 aircraft, at subsonic high-alpha eonditiona, 
as part of an ongoing high angkof-attack research pro- 
gram being conducted by NASA. Computed surface 
flow patterns from solutions to the Navier-Stokes equa- 
tions at a = 30 deg are compared to ground-based ex- 
periments conducted at NASA Langley and to in-flight 
experiments conducted at NASA Ames-Dryden using 
the High Alpha Research Vehicle (HARV)? The results 
are used to better understand the low Reynolds number 
ground-based tests, which are laminar and transitional, 
and their relationship to the flight results. A more com- 
prehensive comparison at a = 20 deg, including surface 
pressure comparisons, is given by Ghaffari et. al.lo 

Single Zone Algorithm 
The governing equations are the time-dependent 

Reynolds-averaged compressible Navier-Stokes equa- 

tions, cast in conservation law form and generalized 
coordinates aa 

a s  + a3 + 3 8  + a(B - RV) 
at at all Bf = 0, (1) - - -  

expressing the conservation of mass, momentum, and 
energy. The superscript denotes a quantity in gen- 
erabed coordinates. The thin-layer form of the equa- 
tions ia used, where < is the coordinate normal to the 
body surface. An ideal gas h assumed; the effect of 
turbulence is accounted for through the concepts of an 
eddy viscosity and eddy conductivity. The algebraic 
turbulence model of Baldwin and Lomaxll is used to 
evaluate the turbulence quantities including the mod- 
ifications introduced by Degani-Schiff1" to ensure the 
proper length scales are used in separated vortical flows. 

The equations, while written in generalized coordi- 
nates, are solved with a semi-discrete finite-volume al- 
gorithm, resulting in a consistent approximation to the 
consemation laws in integral f 0 ~ . ~ ~ 7 ~ ~ J ~  The convec- 
tive and pressure terms are differenced with the upwind 
flu-difference-splitting technique of Roe.ls A MUSCL 
(Monotone Upstream-centered System of Conservation 
Laws) approach of Van LeerIs is used to determine 
state-variable interpolations at the cell interfaces. Each 
flux computation requires a single point on each side of 
the interface for hst-order spatial daerencing and two 
points on either side of the interface for the third-order 
upwind-biased spatial differencing used here. The shear 
stress and heat transfer terms are dieerenced centrally. 

The equations are advanced in time to the steady 
state in delta form, so that the steady state is inde- 
pendent of the time step. Two implicit algorithm are 
used :( 1) a spatially-factored diagonalbed algorithm13 
or (2) a hybrid algorithm, using streapwise relaxation 
and approximate factorbation in the croas-flow planes.a 

Patching Algorithm 

u' 

General Concepts 
The two general approaches considered for patch- 

ing across ~ o n d  grids with coincident boundaries can 
be addressed based on the sketch in Fig. 1. Two- 
dimensionai Cartesian grids in two &ones are shown; the 
two zones have uniform spacing in the x-direction and a 
grid mismatch in the y-direction. The indices (i, j )  refer 
to the cell-center locations of zone 1 and (2, m) to those 
of zone 2. The sonal interface across which the solution 
must be patched corresponds to the points defined as 
{zi+1/2,j ; j  1,imaa) and {~1-1/2,m i m = lr h o z ) .  

Defining the spatia! ffux in the x-direction as F, 
Rail haa demonstrated that global consemation can be 
maintained by enforcing spatial-flux conservation along 
the interface, aa 

u 

U 

2 



The flux in sone 2, say, is constructed from the flw 
in sone 1 so that Eq. (2) is satisfied. For a scheme 
requiring two points on either side of the interface to 
compute the flux, the flux in sone 1 can be constructed 
from the data in none 1 and an interpolation of sone 2 
data at a projection of Bone 1 into sone 2. Referring 
to the conserved variables Q as the time ffux of mass, 
momentum, and energy, much as F b referred to as 
the spatial flux of mass, momentum, and energy, the 
conservation of time flux in the region defined by the 
projected cell% of sone 1 can be expressed as 

It is aseumed that the grid spacing normal to the hter- 
face boundary is nominalIy the same between the sones 
to be patched. If the spacing is not the same, the er- 
ror introduced is equivalent to that introduced into a 
single grid by a step discontinuity in the spacing. This 
approximation reduces the dimenaion of the interpol& 
tion implied by Eq. (3) by ow, to a form very much like 
&. (2). For equal spacing in the z-direction, Fq. (3) 
becomes W 

(4) 

On the other hand, the flux in sone 1 could have 
been constracted from sone 2 through Q. (Z), in which 
case a projection of sone 2 cella into Lone 1 b re- 
quired. The time-flux constraint equation counterpart 
of Eq. (4) is then 

1 1 

Ideally, all of the Fq. (214,5] would be satisfied. How- 
ever, any two of the three equations are sufficient to 
pass information between the sones. The approach 
which enforces &. (2) and either of &s. (4) or (6), 
as in the work of Rai'i6 and Waters et. d , 2 f 3 1 8  is re- 
ferred to aa the spatial-flux conservation approach. The 
approach which enforces Fq, (4) and (6) is referred to 
as the time-flux conservation approach. This latter a p  
proach satisfies &. (2) only to within truncation error 
but has been found, m practice, to maintain the con- 
servative, i.e. ehock-capturing, properties of the singis 
zone scheme a well as the former approach.'*' The 
latter approach arises naturaUy m rexoning techniques 
for Lagrangian or adaptive mesh simulations i18 well as 
in transferring information between grids in a multigrid 

- 

calculation. For higher order spatia1 differencing, the 
above equations need to  be augmented with relations 
representing the additional information required at the 
interface. For a four-point stencil at the interface, such 
as used in the present work, a minimum of four inter- 
polations need t o  be done at an interface using either 
the spatial-flux or the time-flux appproach. 

Viewing Eq. (2) ae a conservative interpolation of 
the time f lues  at a projection of one sone into an- 
other, it is clear that the approach does not rely on the. 
bonndaries being coincident; hence, overIapped grids, 
such as that used in the Chimera scheme of 3enek 
et. al,4 can be accomodated. Also, the the-flux a p  
proach eliminates the departure from freestream con- 
ditions that can occur near curved interfaces using the 
spatial-flux approach, because of the di@erences in the 
diacrete boundary definitions of the two  sone^? 

The conservative interpolations implied above can 
be evaluated discretely in a variety of ways. Defining 
the discrete flux in sone 1 to be interpolated at a par- 
ticular s-position as (7:') from the discrete 3wr in sone 

2, CE', Rail hae used a piecewiseconatant projection 
of C from one grid onto the other, as 

cy = c:)Ny, (6) 
m 

mWym+s/n * g j + l / n )  
othtrwiac. 

(7) 
Nj" represents the relative area of overlap of cell m onto 
the cell i, 0 5 Nj" 5 1, and the discrete flux balance 
is maintained, as 

3 m 

since E,. NFAyj = Ay,,, = y,+lp - ym-lp.  The 
piecewise-constant approximation is, in general, only 
firat order accurate. Interpolating onto a coarse grid 
from a fine grid, the coarse grid values represent an 
accurate integrated average of the fine grid solution. 
However, interpolating onto a fine grid from a coarse 
grid leads to the least accurate situation, since the dis- 
crete fine grid solution reflects the 'stairstep" approx- 
imation of the coarse grid. Thb effect can be ~ e e n  in 
the patched-grid inlet rrtudy of Ref. 7, where an oblique 
shock passes from a coarse grid into a much finer one. 
The virtue of the approximation is it8 simplicity and 
efficiency, especially in three-dimensional applications. 
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For second order accuracy, the distribution of 0nx 
in sone 2 can be taken an piecewise linear, , 

C(')(Y) = cE) .t (DyC"))rn(y - ypi), 

for Ym--1/2 I Y 5 Y,+l/2, (8) 

where the slope in each sone can be determined to 
maintain monotonicity between the sones,l' BS for ex- 
ample? 

The projection of the sone 1 grid onto the xone 2 grid 
gives 

m 

0, i f  ~m+1/2 < ~ i - 1 / 2  

if ~ r n - 1 / 2  > ~i-t-1/2 

mid~,+i / t ,Yj+i / i )  
(y - y,)dy, otherwiat, 

{ O? 
Mj" = 

(13) 
L/ *yi ~ a = ( v . , , - ~ p , u j - ~ / ~ )  

where the discrete flux balance iil again maintained 
since Cj Mj"Ayj = 0. This approximation repairs the 
inaccuracy of the piecewise constant integration when 
interpolating to finer grids from coarser grids. 

An alternate method within either approach ia to 
use a nonconsemative pointwise interpolation to evalu- 
ate the flux as from Eq. (8) evaluated at the cell centers 
of zone 2, 

cj ( 1) = ~'"'(yj) = cC' + (D~c(~)),(Y~ - ym), 

f o r  Ym-1/2 5 Y i  I Ym+l/2, (14) 

The discrete conservation constraint equations are then 
satisfied only to within truncation error, The lack of 
complete conservation is moat apparent when interpb 
Iating to a coarser mesh from a finer mesh, where the 
flux interpolated at the center of the come grid sone 
may not be representative of an integrated variation 

L.j 
of the finer grid 0ux over the comer grid none. Thia 
limitation can be removed by defining 

where C(l)(yP) is defined pointwise from Ea. (8) eval- 
uated at 

2p - 1 
~p = ~ j - 1 / 2  +  FAY^^ P = 1, N, (16) 

representing the cell centers resulting from a division 
of the coarse cell sone into N smaller sones. This cor- 
rection need only be used when interpolating from 6ne 
ceb  unto come cells, &o that N can be ehoaen auto- 
matically a ~ ,  for example, 

)* ( 17) 
1y = moz(l, %+W - W-lD 

Yrn+l/l - Yrn-112 

In the limit of N -+ 00, the procedure satisfies the 
conservative property exactly. Exact eatbfaction of the 
conservation equations is important for capturing weak 
solutions to the governing equations, such as shocks 
and slip surfaces. In smooth regions of the ffowfield, 
Fq. (14) iS sufficient, 

Surface Patching 
The counterpart in three dimensions of patching 

the rronal solutions along a line in two dimensions 
(Fig. 1) corresponds t o  pakching along a adace .  Given 
the three-dimensional coordinate transformation im- 
plied in Eq. (1) for each sone, 

u 

r'= d€,tl,O (18) 

a patching surface can be defined without loss of gener- 
ality as a surface of constant 6. The patching algorithm 
must match the solution between the sones given the 
set of surface points on each grid defining the patching 
surface, as illustrated in Fig. %for a planar interface. 

To interpolate acroes the interface, the transfor- 
mation defined by the discrete ordered aet of points in 
zone 1, 

is used to construct at the patch interface .$ = constant 
the generabed coordinate8 for the set a€ points in sone 
2 corresponding to the patch boundary, 

4 



The equation to conserve the spatial flux at the inter- 
.-* face ,$= constant ia 

which is analagous to Ek+ (2) for the two-dimensional 
case. Likewise, the counterpart to a. (3) is 

where the limits of integration span the cella adjacent 
to  the interface. The spatid-flux conservation approach 
uses Eqs. (1920) to patch a c r a s  the boundary; the 
time-flux conservation approach nses F.q. (20) and an 
analagous equation for the projection of none 1 into 
zone 2, For higher order differencing, Ea. (20) iS aug- 
mented by a similar equation relating the conserved 
variable8 in the region spanned by the second set of 
cells in the 6 direction adjacent to the interface. The 
assumption of equal spacing across the interface reduces 
Eq, (20) to a two-dimensional equation. 

&EL (i9-20) express the conservation relations for 
the redistribution of flux on one side of the interface 
onto the cell faces of the grid opposite the interface. 
Assuming a piecewise conatant variation of the flux, the 
interpolation reduces to determining the area of overlap 
Nr;" from the c e h  (m,n) of one lone onto the cells 
( j t k )  of the other, i.e. 

% J  

m n  

One approach to determining the area of overlap 
is a clipping algorithm, adapted from computer graph- 
ics, which has been used in the three-dimensional Bond 
calculations of Refs. 2,3, and 5. A more efficient pro- 
cedure, originally developed for Lagrangian hydrody- 
namic reroning calculations by R a m s h a ~ , ~ '  reIies an 
the divergence theorem applied to the position vector 
to calculate the area aa a summation of line integrals 
over the bounding polygons. For a linear mapping of 
the surface, 

line segments of the two meshes, since all of the ar- 
eas of overlap are formed by the intersection of mesh 
lines from the two surfaces. This procedure has been 
used in the three-dimensional calculations of Kathong 
et. al: Walters et. al? and G h d a r i  et. aLIO The com- 
putational work €or the area of overlap scales linearly 
with the number of mesh points. In a straightforward 
application, t h m  procedure i s  more efficient than the 
clipping approach? 

The procedure used in most of the calculations re- 
ported here is to interpolate to the cell centers of one 
grid aseumhg a linear variation of the 3ux within the 
cells of the other grid, as 

for Vna-l/a 5 'lj 5 rlm+l/2r <n-L/P 5 fk 5 fn+1/2, 

malagous!y to Ea. (14) in the two dimensional case. 
For both approaches, the geometric information de- 
scribing the interpolation from one sone to another is 
calculated initially and then re-used at each subsequent 
iteration, so that the additional overhead due to  the 
patching is &hal .  

In order to construct the generalbed coordinates 
of one gone given the diecrete transformation defined 
by another zone, a local geometric variation ia aaaumed 
in each cell. A bilinear variation in each cell, 

leads to a mismatch in the discrete boundary deanition 
between the two grids near a curved boundary, ae illus- 
trated in Fig. 2. The boundary mbmatch is not gen- 
erally an h u e  for meshes encountered in computations 
for the Euler equations, since the mismatch is a small 
fraction of the area of the cells adjacent to the bound- 
ary. For solutions to  the Navier-stokes equations, in 
which the grids are highly clustered near the boundary 
to resolve the viscous layers at high Reynolds numbers, 
the situation depicted in Fig. 2(b) is not uncommon. In 
Fig. 3(a), the cell centers of one sone are shown in the 
generalised coordinate frame of the other sone (unit 
spacing in q and $); the two cell centers nearest the 
boundary actually lie outside the discrete boundary of 
the other sone. For the zone8 shown, the fid spacing 

the area of a cell A, bounded by 8 directed line segments 
running from Itll, h) to (m, $2) 

normal to the boundary is the same for both nones and, 
in the outer part of the grid, the ce11 centers tie midway 
between the grid Iines, as expected. 

The surface definition can be substantially im- 
proved by using a degenerate biquadratic fit in the di- 
rection tangential to the boundary, i.e. 

' (Vrb - rlafi), 123) 

where e: is either +1 or -1 as the cell p lies to the 
left or right, respectively, of the line segment a. The 
areas of overlap cm be calculated by aweeping over the 

I 
2 

A, = 

I 
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(26) 
?= a1 + &?I + asr 4- a4vg 

+ + aef12s. 
This form emweb that the boundaries of the cells are 
continuous between the sones, if the grid point data 
L augmented by additional edge points in the q di- 
rection. For each cell edge dong 5 = constant, addi- 
tional points are determined by passing a least squares 
quadratic curve through the 2 grid points defining a 
cell edge and the nearest grid point on either side. For 
the Eon- in Fig. 2, the grid mismatch is reduced from 
Otl) to 0(10'2), aa shown in Fig. 3(b), wherein all the 
cell centers tie very close to midway between the grid 
points of the other. 

The generabed coordinates of each cell center to 
be interpolated is determined through a nonlinear itera- 
tive procedure. A nearest enclosing cell is guessed based 
on the dicrtance from the grid point data to the cell cen- 
ter and then updated by solving for (a, $) from Eq. (26) 
through a Newton procedure, until the computed ( q ,  (1 
lies within the candidate cell boundary. The conserved 
variables are then interpolated uaig  the linear fit of 
Eel. (24). 

Computational Results 
The grid topologies used are shown in Fig. 4. A 

2-zone grid, shown in Fig. 4(a), is described in detail 
by GhafTari et. d.l0 The grids were generated in each 
block using an El-0 topology with transfinite interpola- 
tion. The two blocks are patched together at the strake 
apex. The upstream block contains 31 and 65 points in 
the circumferential and normal directions, respectively, 
and the dowastream block contains 65 points in both 
directions. The %block grid contains a total of 186,000 
grid points and a spacing normal to the boundary of 
0.8 x 1O-'C. At the ronal interface, the grid linea are 
coincident only at the surface and in the longitudinal 
plane of symmetry and were generated with no require- 
ments for grid alignment in the interior of the grid. The 
disadvantage of the %block grid topology is that the 
circumferential grid dustering at the strake propagates 
forward into and ahead of the nose region, 

A three-block grid ia shown in Fig. 4(b-c). Part 
of the upstream block in Fig. 4(a) is replaced with an 
0-0 topology. The additional block givea a mu& bet- 
ter resolution of the forebody geometry; the additional 
zonal interface is evident on the body surface and in the 
longitudinal plane of symmetry. A number of different 
grids were used in the first block. The fibeat, Fig. 4(b), 
has 65 and 73 points in the circumferentid and normal 
directions, with a normal spacing of 0.1 x 10-'~; the 
coarsest, Fig. a(.), has 31 and 49 points in the circum- 
ferential and normal directiona, with a normal spacing 
of 03 x 10-'c. 

Laminar Flow Computatioae 

flux and time-flux coneelvation strategies for the 2- 
block grid are shown in Fig. 5 for the conditions con- 
sidered in detail by Ghaffari et. allo: M, = 0.6, R, = 
0.8 x 106,a = 20 deg. Both calculations interpolate 
across the rond interface using Eq6 .  (21) and (23). The 
two solutions are nominally the same; any d8erences 
are on the order of the truncation error of the calcula 
tione. 

Computed totai pressure contoursl and surface par- 
ticle traces are shown in Fig. 0 at ahigh angle-of-attack, 
laminar flow condition: M, = 0.3, R, E= 0.74 x SO6, a 
= 30 deg. The primary and eecondary Beparation lines 
on the forebody are evident, aa well aa the secondary 
separation line ob the strake. The vortices shed dong 
these lines are very shallow and lie close to  the body 
sUrfiLCe, especially in comparison to the primary vor- 
tex shed from the strake. The primary separation line 
on the forebody leads into a large region of reverse flow 
ahead of and predominantly under the strake apex, Un- 
der the strake along the body, a primary separation line 
is evident, leading to a vortex impinging on the strake 
lower surface. Along the fuselage above the strake, a 
separation line extending downatream from the apex is 
evident. The streamliies pasa smoothly through the 
sonal interfaces. The overall flowfield ia qualitatively 
similar to the laminar calculations given by Ghaffari 
et. aPo at Q = 20 deg. 

Oil flows &om a test in the Basic Aerodynamics 
Research Tunnel (BART)l8 at NASA Langley Research 
Center for the same angle of attack but slightIy Iower 
Reynolds number, Re = 0.2 x IOs, are compared to 
the computed particle traces in Fig. 7. The experimen- 
tal oil flows demonstrate a strilrmg reesemblance to the 
computations. 

The effect of grid refinement is shown in Fig. 8 
for the tblock grid at the experimental Reynolds num- 
ber. The interface interpolations were done with the 
time-flux approach, using Eq. (28) and the nonconser- 
vative interpolations of Eq. (24). With the finer grid, 
the forebody secondary separation b e  ie straighter, ly- 
ing nearer to the leeward plane of symmetry, in better 
agreement with the experiment. The flow over the two 
downstream blocks is IargeIy the same. Some apparent 
differencea are due to the fact that the eeeding positions 
for the particle traces are not identical for Fig, 8(a) and 
8(b). As can be seen by comparing Figa. 7 and 8, un- 
der the laminar assumption there is very little effect of 
Reynolds number over the range conaidered. In Fig. 8, 
the particle traces originating in a block are confined to 
remain in that block; the surface flow, however, paases 
smoothly through the two Eonal interfaces. The h a t  
sonal interface hw a variation in both the circumfer- 

Symmetry plane pressure contom using the spatid- LJ' 

L./' 
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ential and normal spacing of the grid on either side, 
and the improved interpolation obtained with the bi- 
quadratic surface fit to the geometry ia c r i t i a l  in ob- 
taining the smooth results shown. 

._ 

Turbulent Flow Computations 
Comparisons with wind-tunnel result8 at higher 

Reynolds numbem and with in-flight results show mark- 
edly different surface oil flow pattern8.O The flight-test 
results correspond to a Reynolds number of 10.15 rnil- 
lion based on and show primary and secondary sepa- 
ration lines on the forebody much closer to the leeward 
plane of symmetry. Computed particle traces at flight 
Reynolds number for the Lblock grid of Fig. 4(b) are 
compared with the flight-test results" in Fig. 9. The 
primary and secondary separation lines on the fore- 
body are well predicted. The extent of separation in 
the strake apex region is considerably reduced and the 
secondary separation line on the strake is moved out- 
ward from the laminar condition, as expected. The 
computed secondary separation lie on the strake does 
not extend into the forward region of the strake; a re- 
ffex in the particle traces iir indicated in that region, 
which generally leads with grid refinement to a clearly 
defined separation line, In this context, the grid spacing 
in block 1 corresponds to y+ w 2 and is considerably 
finer in the normal direction than in either of the two 
downstream blocks. 
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Concluding Remarks 
A patched grid algorithm for complex configurs 

tions has been described, The work is an extension to 
the longitudinally-patched approach of Refs. 2-3, allow- 
ing for the analysis of grids which are highly stretched 
in the normal directian to resolve vkous Bows, and 
for arbitrarily-shaped patch aurfacea. Two algorithmrr, 
a spatial-flux and a time-flux conservation approach, 
have been used across aonal interfaces with few dif- 
ferences noted. The latter approach is somewhat more 
flexible and can be easily extended to handle more com- 
plex situations, such as overlapped and embedded grid#. 
A longer term objective of the present domain decom- 
position approach is €or the only constraint on the grid 
topology to be that the grid8 Span the entire physical 
domain. The computational algorithm should be gen- 
eral enough to automatically determine the necessary 
connections between the domains to  ensure a globally 
eecond-order accurate solution. 

Applications using the algorithm have been made 
to the F-18 forebody-strake configuration at a = 30 
deg over a range of Reynolds number. The laminar flow 
calculations agree well with the wind-tunnel results at 
RE = .2 x loe. The turbulent flow calculations are sub- 
stantially different in the separation line positions and 

U 

agree well with flight-test resulte at RE = 10 x lo6. The 
wind-tunnel results at RE w 1 x lCP exhibit a separation 
pattern different from either calculation;0 the daerence 
i% associated with the transition from laminar to tur- 
buIent %ow, The laminar separation bubble described 
in Ref. 9 from flow visnaiisations occura in the region 
of the primary separation line predicted by the present 
algorithm, assuming a laminar viscous model. 
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Zone t Zone 2 
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Fig. 1.- Two-dimeilsional zonal interface. 
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(a) Farfield view. 

Fig 2.- Coincident 
ellipse section. 

(b) Nearfield view. 

zonal interface defined by zone 1 grid (solid lilies) and zone 2 grid (doLtec1 lines) for partial 
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(a) B i h e n r  basis. (b) Biquadratic h i s .  

L.' Fig 3.- Generaliaed coordinates of zone 2 cell-center locations (dotted lines) in ttansfonnatiou detiued by mite 1 
grid (solid h e a )  for partial ellipse section. 

(a) Nearfield 2-block grid (185,000 points). 

Fig 4.- F-I8 forebodyetrake grid. 
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( z )  Side view. 
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{a) 3-block grid (193,000 grid poirits): 

(a) 3-bloclr grid (282,000 grid points). 

15 



_._. 




