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High precision membranes are used in many current space applications. This paper 
presents a fully nonlinear membrane theory with forward and inverse analyses of high 
precision membrane structures. The fully nonlinear membrane theory is derived from 
Jaumann strains and stresses, exact coordinate transformations, the concept of local 
relative dkp!acelm,er.ts, md oithagcirid virtud rotations. In this theory, energy and New- 
tonian formulations are fully correlated, and every structural term can be interpreted in 
terms of vectors. Fully nonlinear ordinary differential equations (ODES) governing the 
large static deformations of known axisymmetric membranes under known axisymmet- 
ric loading (i.e., forward problems) are presented as first-order ODES, and a method for 
obtaining numerically exact solutions using the multiple shooting procedure is shown. A 
method for obtaining the undeformed geometry of any axisymmetric membrane with a 
known inflated geometry and a known internal pressure (i.e., inverse problems) is also de- 
rived. Numerical results from forward analysis are verified using results in the literature, 
and r g u l t s  from inverse analysis are verified using known exact solutions and solutions 
from the forward analysis. Rgults show that the membrane theory and the proposed 
numerical methods for solving nonlinear forward and inverse membrane problems are 
accurate. 

Keywords: Nonlinear membrane theory; numerically exad analysis. 

1. Introduction 

As the cargo space of a launch vehicle is limited, large spacecraft structures 
must be designed to be stowed during launch and deployed once on orbit. 
Moreover, as the launch expenditure of a NASA space mission always consti- 
tutes a significant fraction of the total cost, inexpensive launch vehicles with 
small  payload masses are always desirable. Hence, instead of using previous 
electromechanical types of deploying system, recent efforts of NASA has con- 
centrated on the use of infiatable/deployable structures for space applications.1 
Idatable/deployable membranes have been used in space as parabolic antennas, 
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radiators, solar concentrators, sun shields, habitats, radio-frequency structures, 
optical communication systems, radars, lightweight radiometers, telescopes, etc. 
Large balloons are also membrane structures that have been used for many scientific 
missions. 

Materials for membrane structures are usually required to have (1) low 
weight (<0.2 kg/m2), (2) high tensile strength, (3) high tear strength, (4) low 
Helium permeability, (5) appropriate thermal properties, (6 )  low crease sensi- 
tivity, (7) seam strength greater than or equal to 80% of the parent material 
strength, and (8) no significant losses in tensile or peal strength at  low temper- 
ature (e.g., -30°C).213 Materials for current scientific membrane structures include 
reinforced films and coated fabrics. The reinforced films are generally polyethy- 
lene, polyester (e.g., Mylar), and nylon; and the coated fabrics are typically nylon 
or polyester fabric coated with silicone, polyethylene, polyurethane, polyester, or 
nylon.2 The majority of these materials are being developed by racing yacht sails, 
packaging, geomernbrane, parachute, and textile industries. The advantages of 
membrane structures include small stowed volume, light weight, low cost, and good 
thermal and damping proper tie^.^>^ However, there are difficulties in the design of 
large scientific membranes.6 

A few factors need to be considered in designing large membrane structures, 
which include construction of smooth membrane surfaces using gores and seam 
tapes, minimum folding requirement for stowage, deployability, accuracy of the de- 
ployed shape, positive principle stresses to prevent wrinkling, large principle stresses 
to provide enough global bending stiffness, small principle stresses to prevent ma- 
terial creeping and change of the deployed shape, and easy manufacturing. These 
are complex, stringent, and somewhat conflicting design requirements. Hence, there 
are unique issues that need to be solved in order to assess and satisfy these design 
requirements. 

1.1. Modeling issues 

Membranes are two-dimensional (2D) analogy of cables, and they have thin thick- 
ness and negligible bending stiffness. Hence, membranes support loads mainly by 
in-plane stretching and, sometimes, shearing. Since stretching is the main load path, 
thickness change due to Poisson’s effect can be significant. For a material with a 
Poisson ratio close to 0.5 (e.g., rubber), the material stiffness matrix is singular if 
the thickness change due to Poisson’s effect is neglected. Moreover, membranes are 
usually designed for undergoing large displacements and rotations but not for small 
or even large strains during regular operations.2 Large rotations cause geomet- 
ric nonlinearities and make some strain and stress measures non~bjective.~ Hence, 
choosing an appropriate strain measure that excludes rigid-body displacements and 
rotations becomes the major factor in deriving a fully nonlinear membrane theory. 

Wrinkling is a local buckling phenomenon of 2D structures with negligible 
bending stiffness. A membrane theory without accounting for bending stiffness 
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predicts that wrinkling will happen when the smallest in-plane principal stress de- 
creases from positive to negative. On the other hand, a membrane theory accounting 
for bending stif€ness predicts that wrinkling will happen only when the local tan- 
gent stifEness decreases from positive to negative, which usually corresponds to a 
negative but small principal stress. Furthermore, only a membrane theory with 
bending stif€ness can be used for post-buckling analyses to predict the bifurcated 
deformation shapes after wrinkling. Although rolling rather than folding is usu- 
ally preferred in packing inflatable structures,' folding is necessary in many cases. 
Unfortunately, folding may create permanent folding lines in crease sensitive mem- 
branes, and such folding lines cause surface distortion of the d a t e d  membranes.8 
To study the influences of folding lines requires the use of a membrane theory that 
accounts for bending stiffness. 

Although the d a t e d  shape of a membrane can be designed by varying the 
distribution of membrane thickness, research shows that temperature change may 
degrade prediction accuracy much more severely than thickness ~ar ia t ions .~  

Hence, a membrane theory for analyzing scientific membranes should account 
for geometric nonlinearities due to large rotations, thickness change due to Poisson's 
effect, bending stif€ness, and thermal influences. 

1.2. Analysis issues 

Analysis of scis~tific membrane structures is required with an accuracy beyond the 
customary tolerances of conventional structural engineering. For example, a shape 
prediction tolerance of 0.1 mm for a radio-frequency membrane reflector having 
a diameter of a few meters may be taken as the required accuracy of analytical 
s o l u t i ~ n s . ~ J ~  

As membrane materials are usually viscoelastic, membrane structures are 
designed to have small principle stresses in order to reduce the possibility of creep. 
However, a membrane with small stresses is vulnerable to wrinkling when the struc- 
ture is subjected to external l o c a l i i  disturbing loads. Because of the nonlineari- 
ties and multiple loading and unloading paths, the wrinkles may stay even after the 
disturbing loads are released. On the other hand, because the magnitudes of inter- 
nal stresses determine the global bending stifFnesses of a membrane, the principle 
stresses should be designed to be positive and as large as creep concerns will allow. 

Although creep is less of a problem for membranes because the internal pres- 
sure gradient can be adjusted and hence creep can be viewed as a change in the 
initial shape. Nonuniform creep due to nonuniform stresses may cause the deployed 
shape to deviate from the required one even after makeup gas is replenished. 
Hence, it is better to design a membrane to have uniform internal stresses after 
deployment. 

The change of deployed shape and redistribution of loads and load carrying 
capabilities of a membrane after wrinkling need to be understood in order to design 
accurate and durable membranes, which requires complex stability and bifurcation 
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analyses. Moreover, because membranes may experience strain values as large as 
14% before burst2 and membrane materials may be viscoelastic, their material 
properties may depend on strains and/or strain rates and need to be obtained 
experimentally before design analysis. 

Although an initially flat membrane can be inflated to approximate the geometry 
of a parabolic antenna, the inflation pressure required is so high that the makeup 
gas needed to replenish possible loss of gas due to meteoroid damage is also high and 
hence heavy." Hence, it is better to use an initially curved membrane to design an 
accurate deployed shape with a low inflation pressure. However, the design problem 
becomes how to find an unknown undeformed membrane geometry with unknown 
thickness distribution that will result in the required deployed shape with a known 
inflation pressure, which is a challenging nonlinear inverse problem. 

In the past, space systems experienced high failure rates during deployment but 
usually performed well after deployment.' With inflatable structures, the stake is 
even higher because their load carrying ability is commensurable with their state of 
deployment. To prevent deployment failure, simulation of the transient dynamics 
of inflatable structures is needed, which requires advanced modeling and analysis 
techniques. 

The above discussions show that designing scientific membranes is challeng- 
ing because of geometric nonlinearities, accuracy requirement, viscoelastic material 
properties, creep, wrinkling, inverse design problems, and transient deployment 
dynamics. However, an accurate nonlinear membrane theory plays the key role in 
solving these problems. 

1.3. Objective 

The objective is to derive a fully nonlinear membrane theory that can be used for 
accurate nonlinear analysis of precision membranes. Moreover, because rotation- 
ally symmetric membranes are popular in scientific applications, nonlinear OD% 
governing their static deformations under axisymmetric loading will be listed and 
a numerical method for investigating their load-deflection characteristics will be 
derived and numerically verified. Furthermore, a method for computing the un- 
known undeformed membrane geometry that is needed for manufacturing from the 
knownlrequired inflated geometry and the knownldesigned inflation pressure will 
be derived and numerically verified. 

2. Fully Nonlinear Membrane Theory 

Membranes as well as plates and shells are 2D (two-dimensional) structures. An 
initially curved membrane is a thin shell with negligible bending and twisting stiff- 
nesses. Hence, we first treat a membrane as a doubly-curved shell in deriving a 
fully nonlinear membrane theory for general use, and then we apply assumptions 
to obtain governing equations for simplified types of membranes, especially for thin 
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Fig. 1. 
coordinate systems used. 

The undeformed and defom-ed geometries of a differential reference surface and the three 

axisymmetric membranes. The two major tasks in deriving a nonlinear 2D struc- 
tural theory are (1) how to describe the cross section warping, and (2) how to 
describe the reference surface deformation. Different approximations of the crow 
section warping result in different shear deformation theories, and different a p  
proximations of the reference surface deformation result in different geometrically 
nonlinear theories. As membranes have very thin thickness, the strain energy due to 
cross section warping is ?q&$Ae. Xext we present geometrically exact descriptions 
of the undeformed and deformed geometries of an initially curved surface. 

2.1. Surface analysis 

2.1.1. Coordinate systems and curvatures 

Two coordinate systems are required in order to describe the deformation of an 
initially curved 2D structures: one describes the undeformed reference surface and 
the other describes the deformed reference surface. Figure 1 shows an infinitesimal 
area of the reference surface of a 2D structure before and after deformation. The xyz 
is an orthogonal curvilinear coordinate system with the x and y being curvilinear 
axes on the undeformed reference surface and the z being a rectilinear axis, and 
the &IC is an orthogonal curvilinear coordinate system with the < and q beiig 
curvilinear axes on the deformed reference surface and the C being a rectilinear axis. 
An inertial rectangular coordinate system abc is also used, for reference purpose, 
in the calculation of initial curvatures. We let jl, jz ,  and j3  denote the unit vectors 
along the axes x, y, and z ;  i l ,  iz, and i3 denote the unit vectors along the axes E ,  
11, and C;  and i,, it,, and i, denote the unit vectors along the axes a,  b, and c. 

TO obtain initial curvatures, the undeformed position vector P of point A is 
presented ad2:  
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Taking first- and second-order derivatives of Eq. (1) with respect to x and y yields I 

I 

lzia + P2,ib + PdC , J1=-=P  . ap 
8 X  , 

and 

where ( )z = a (  )/ax, ( )y E a (  )/ay, {jm} = {j1,j2, j3IT, and [K?] and [K:] are 
initial curvature matrices. ICY and IC! are curvatures of bending with respect to the 
axes y and -2, respect,ively. IC& and kg2 are curvatures of twisting with respect to 
the axes -x and y, respectively. IC: is the spiral curvature of the y axis with respect 
to the z axis; and IC; is the spiral curvature of the x axis with respect to the z axis. 
The initial curvatures can be derived using Eq. (3). For example, 

= -Plzz(p2zp3y - P 3 z p 2 y )  - p2zz(p3zply - Plzp3y) 

- P3zz(plzP2y - P Z z P l y ) .  (4) 

In Fig. 1, u, 21, and w are the displacements of point A with respect to  the axes x, 
y1 and z ,  respectively. The axes i and f j  represent the convected configurations of the 
axes x and y, respectively; and 76 (= 761 + 762) is the in-plane shear deformation. 
We let ii  and ii denote the unit vectors along the axes i and f j ,  respectively. We 
note that the axes and q coincide with the axes i and f j  only if the in-plane shear 
deformation 76 is zero. Letting D AA’ = uj1 + vj2 + wj3 and using Eq. (3), we 
obtain 

aD aD 
A’B’ = -D +dxjcjl + D  + -& = dxjl + -dx ax a x  
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= [(.y - vk: + wk&)jl+ (1 + vv + uk: + w@)jz 

+ (wv - uk& - vk:)j3]dy. 

Hence, the axial strains along the axes i and 6, el and e2, are given by: 
- 
A'B' - & 

dz 
el = 

- 
A'C' - dy 

e2 = 
dY 

= [(uV - vk: + wk&)2 + (1 + vY + uk: + "k:)' 
+ ( wv - uk& - v@)2]1'2 - 1 . 

The unit vectors along the i and 6 directions are given by: 

where 
1 + uZ - VkE + wk: V, + uk: + Wk& 

T I 1  = , Ti2 = 
1 + e l  1 + el 

wz - uky - vk& 
1 + el 

1 + e2 

7 

uy - vk: + wkt2 
1 + e2 

T i 3  = , T21 = 

Tm = , T23 = 

7 

- l+vv+uk :+we  wY - ~ k &  - vk: 
1 + e2 

It follows from Fig. 1 and Eqs. (8) and (9) that 

76 761 + 762 = sin-'(ii . i i )  = sin-'(P11T21+ P12P.2 + ?13p23). (1la) 

Hence, 7'6 can be represented in terms of u, v, and w. Moreover, one can use the 
symmetry of Jaumann shear strains to prove that7 

(1 + el)  sin 7'61 = (1 + ez) sin 762. (1lb) 

Then, the unique expressions of 761 and 762 can be determined from Eqs. (lla) and 
( l lb) .  The unit vector normal to the deformed reference surface, is, is given by: 
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where 

Using Fig. 1 and Eqs. (8), (9), and (12), we obtain the following transformation 
which relates the undeformed coordinate system xyz to the deformed coordinate 
system &<: 

where 

(i123) E i l ,  i2 ,  i3}T, and {iii3} { i i ,  ii, i3}T. Moreover, using Eqs. (14a) and (3) 
and the following identities 

we obtain 
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Here, il = i 2  x i3, i2 = i3 x il ,  i3 = il x i2, and Eq. (14a) are used. Hereafter, 
unless otherwise stated, repeated subscript indices imply summations. We note 
that the k j  in Eq. (18) are functions needed for exact description of and Q, but 
they are not real curvatures because the deformed dz ( d y )  is not along the il (i2) 
direction because 761 # O(762 # 0). If 761 = 762 = 0, the curvatures are normalized 
(but not real) curvatures because the daerentiations in Eq. (18) are taken with 
respect to the undeformed lengths o!x and dy, instead of the deformed lengths 
(1 + el)& and (1 + e2)dy. Only if 761 = y62 = el = e2 = 0, kj  represent real 
curvatures. 

2.1.2. Variations of global strains 

To derive the governing equations using the extended Hamilton's principle, we 
need to have the variations of the global strains el, e2, 761, 762, and ki- Taking 
variations of Eqs. (6 )  and (7) and using Eq. (lo), we obtain the variations of el and 
e2 as: 
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(22b) 
1 

Si- - - ( j16t21 + j26 t22  + j36t23 - i y 5 e 2 ) .  
2 -  1 + e 2  

Taking the variation of sin 76 = ii . ii  (see Eq. (11a)) and using Eqs. (22), (8), (9), 
(19 ) ,  and (20), we obtain 

+ (f'ii - sin 76?21)6t21+ (P12 - sin 76f'22)6t22 + (y13  - sin 76?23)bt23 
cos 7 6 ( 1 +  e a )  

(23) 

Taking the variation of Eq. (llb) and using the fact that 676 = 6761 + 6762, we 
obtain 

(24b) 
( 1  + e l )  cos 761676 + sin 7616el - sin 76~6e2 

( 1  + e l )  cos 761 + ( 1  + e 2 )  cos 762 
6762 = ' 

where 676 is shown in Eq. (23). 
TO obtain the variations of curvatures (i.e., 6 k j ) ,  the concept of orthogonal 

virtual rotations is needed. Because the variations of the unit vectors i k  are due to 
the virtual rotations of the observed membrane element, we have 

0 683 -682 
6{i123} = [68]{im}, [be] = -683 (25) [ 682 -I, ?I ' 
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where 661, 662, and 663 are the virtual rigid-body rotations of the observed mem- 
brane element with respect to the axes {, q, and C, resjmtively. We note that d& are 
differential rotations and hence they are vector quantities. Moreover, 6& are along 
three perpendicular directions and hence they are mutually independent. Taking 
the variations of curvatures dehed  in Eq. (18) and using Eqs. (16), (17), and (25), 
one can obtain that12 

Using Eqs. (25), (14b), and (22) and the fact that i3 -ii = i 3 .4  = 0, we obtain that 

Using Eqs. (25), (14b), and (22), we obtain that 



30 P. F. Pai €4 L. G.  Young 

Hence, del, 6e2, 676, 6761, 6762, 681, 682, and 683 can be represented in terms of 
6u,6v, 6w, 6ux, bv,, 6wx, buy, buy, and 6wy. Moreover, the variations of curvatures 
6kj can be represented in terms of 6u, 6v, bw, dux, dux, 6wx, 6uy, doy, 6wy, 6uX2, 
621x5, b w x x ,  6uyy, hvyy, swyy, busy, 6vxy, and 6wxy. 

2.2. Jaumann s t r a i n s  and stresses 

Although membranes have thin thickness, it is necessary to account for bend- 
ing stiffness in order to study wrinkling problems and shape control of inflatable 
membranes. For the modeling of highly flexible structures, Jaumann strains and 
stresses are appropriate and convenient measures because they are objective, work- 
conjugate, and fully nonlinear.’ Moreover, because Jaumann strains are corotated 
engineering strains, material properties obtained from experiments using small en- 
gineering strains and stresses can be directly applied. 

Next we derive the fully nonlinear expressions of Jaumann strains by using the 
polar decomposition theory and the concept of local relative displacements. 

2.2.1. Polar decomposition 

For an arbitrary point Q on a differential membrane element that has dimensions 
dx x dy x h (h  = thickness) and crosses the reference surface at  point A shown in 
Fig. 1, because transverse shear warping is assumed to be negligible, the undeformed 
position vector PQ and the deformed position vector P, are given by: 

PQ = xjl + Y.~Z + zj3, (304 

where e3 is the extensional strain along the thickness direction and is assumed to be 
independent of z .  Because x and y are local curvilinear axes starting from point A, 

x = y = o .  (31) 

Taking derivatives of Eq. (30a) and using Eqs. (3) and (31), we derive a gradient 
tensor [PI as: 

Qn 1 
1 + zky 

0 0 

O 1  

where xn(n = 1,2,3) denote x, y, and z ,  respectively. Similarly, taking derivatives 
of Eq. (30b) and using Eqs. (3), (16), (17), (14a), (31), and (lo), we obtain the 
deformation gradient tensor [Y] as: 
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I kif11 + ~ ( ~ 1 ~ 1 1  + b 1 ~ 2 1 )  + z e b ~ 3 1  

e1913 + i(klT13 + biT!) + ze3=Ts 

~ 2 f 2 1 +  i ( b z ~ i 1 +  k 2 ~ 2 l )  + zesy~31 

Z2%3 + Z(b2T13 + k2T23) + ~ e 3 ~ T a  63Ts 

d3T31 

- ~ 1 9 1 2  + ~ 1 ~ 1 2  + bi~n) + ze3=~32 ~ z T m  + i ( b 2 ~ 1 2  + k 2 ~ 2 2 )  + .ze3"~32 e3T32 , 

(33) 

- [  
where 2 = (1 + e3)z, 21 = 1 + e l ,  E2 

using the polar decomposition theory that13 
1 + e2, and E3 1 + e3. It can be shown by 

[YI = ITITIVl 3 (34) 

where [VI is the so-called right stretch tensor and should be a symmetric matrix, 
and [T] accounts for the corotation from the system zyz to the system ,$qc as shown 
by Eq. (14a). Jaumann strain tensor [B] is defined to be 

PI = VI - 1 (35) 

where [I] is a 3 x 3 identity matrix. It follows from Eqs. (34), (15), (33), and (14a) 
and the orthogonality of ij that 

O l  (36) 

21 COS 761 + i k l  22 sin 762 + i b z  
[VI = [T][Y] = 61 sin 761 + 22 COS 762 + ik2  0 . [ ze3z xe3y e3 J 

To determine principal strain directions of [B] ,  one needs to determine the eigen- 
values X of [VI by solving 

[[VI - X[I]1 = 0 .  (37) 
Equation (36) indicates that the eigenvalues X i  will vary with z. However, because 
the membrane thickness h is usually small, one can choose the reference point 
( z  = 0) for computing principal strain directions. The eigenvalues of [VlZ=o can be 
obtained to be 

A3 = 1 + e 3 .  (38) 

{Cl) = {C11,C21,0)T, {C2) = {--C21,C1130)T, {C3) = {0,O,1lT, (39) 

The corresponding eigenvectors are: 

where Cll and C2l can be obtained from Eq. (36) (with z = 0)  as functions of e l ,  

e2, 761, and 762. If 761 = 762 = 0, eigenvalues of [V],=O are l + e l ,  l+e2, and l+e3, 

and C11 = 1 and C21 = 0. In other words, the axes 5, 77, and C are the principal 
strain axes. Pai and Pa laz~ t to '~  showed that, if {Cj} are normalized such that 

[CITICl = [I1 1 (404 
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then 

where [C] 3 [{C1}{C2}{C3)], { i i i 3 )  = {ii ii and i i  are base vectors along the 
principal strain directions. 

Equations ( l l b )  and (36) show that [V],=O is symmetric. For strains at z # 0, 
[VI is symmetric only if k61 = k62 and e3x = esY = 0. k61 = k62 is true if the 
deformed reference surface is smooth. However, es2 and esY may not be zero and 
approximations due to computation may make k61 # k62,  and hence the [VI in 
Eq. (36) is usually asymmetric. The transformation matrix [TI in Eq. (14a) is 
derived only for points on the reference surface (i.e., z = 0), but it is used in 
Eq. (36) for all points. Hence, the [VI in Eq. (36) is not really the right stretch 
tensor for points at z # 0 because of the nonuniform distribution of e3 and the 
local rotations due to twistings (i.e.l ik61, ik62). Consequently, instead of using 
Eq. (35), Jaumann strains B,, are modified as: 

1 
[B] = 5 [[VI + [VIT - [p] - [PIT] . 

Substituting Eqs. (32) and (36)  into Eq. (41) yields the Jaumann strains of a doubly- 
curved membrane as: 

B11 = ( 1  + e l )  cos 7 6 1  - 1 + i k l  - zky , B22 = (1  + e2) cos 762 - 1 + ik2 - zkg , 
1 

BIZ = - [(l + e l )  sin 761 + (1 + e2) sin 7 6 2  + ik6 - z @ ] ,  
1 1 

B33 = e 3 ,  2 2 

2 

B I ~  = - e 3 x z ,  B23 = - e s Y z ,  

where kg k& +IC:,. As membranes usually have thin thickness, 
the z is small. Hence, we replace i with z ,  neglect e3zz and e3yz, and rewrite Eq. (42)  

k61+ k62 and k t  

as: 

where 

{ B l l } ,  

[' 0 0 z '2' 
{ B )  = B22 (SI= 0 1 0  0 3 

($1 
2B12 0 0 1 0 0 z  (44) 

((1 + e l )  cos 761 - 1, (1 + e2) cos 762 - 1, (1 + e l )  sin 7 6 1  

+ (1 + e2)  sin 7 6 2 ,  k l  - Icy , k2 - k g ,  kg - 
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2.2.2. Concept of local relative displacements 

Next we show that Jaumann strains can be easily derived using the concept of local 
relative The local displacement vector u, of an arbitrary point on 
a differential membrane element, has the form 

= ukik, (45) 

where 
0 ul(x,Y,zlt) = ul(x,y,t) + z[e2(x1Y7t) - e;(x,Y)] I 

(46) 
u2(x,y,z,t) = . 2 ( ~ , Y 7 ~ ) - ~ [ ~ 1 ( ~ , Y , ~ ) - ~ $ : ( ~ , Y ) 1 7  0 

u3(x, Y, z,  t) = 'Il3(x, Y, t) + ze3 0 

Here, u i  are the displacements (with respect to the system EqC) of the reference 
point A' shown in Fig. 1,81 and 192 are the rotation angles of the observed membrane 
element with respect to the 5 and q axes, respectively, and 0: and @ are the 
corresponding initial rotation angles. Because the <q( is a local coordinate system 
attached to the observed membrane element, and the E - q plane is tangent to the 
deformed reference surface, we have 

It follows from Fig. 1 and Eqs. (3), (16), and (17) that 

- k i2  * - -L1,  -- 
a 8 2  

ax ax aY ax aY 
a1 -- - --. i 3 = k l ,  -- ael - -k2, - - ae2 ail 

Taking the derivatives of Eqs. (45) and (46) and using Eqs. (47) and (48), we obtain 

al A1 au2. au3. 8 1  a i 2  ais 
ax ax ax ax ax ax ax 

- i l+-  12 + -13 + '111 - + 212 - + U3 - 

= [(l  +el)  cos 761 - 1 + i k l  - zk$l + [ ( l  + e l )  sin 761 + ibl - zk&] i~  

+ ze3zi3 7 (49) 

= [(I + e2) sin 762 + i k i 2  - zkg2]i1 + [(1+ e2) cos 762 - 1 + ik2 - z@]i2 
al 
aY 
- 

+ ze3,i3 3 (50) 
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- - (1 + u ) ( l  E - 2u) [E] 

In terms of the local relative displacements shown in Eqs. (45) and (46), Jaumann 
strains can be simply defined as14: 

- - 
1 - u  u U 0 

u 1 - u  u 1 - u  u 0 0 [ q! (53) 
1 - 2u 

0 -  2B12 - 2 -  0 0 

Substituting Eqs. (49)-(51) into Eq. (52) yields the same Jaumann strains shown 
in Eq. (42). 

2.2.3. Constitutive equation 

For isotropic materials the constitutive equation that relates Jaumann stresses J,, 
to Jaumann strains B,, is given by: 

where E is Young's modulus and u is Poisson's ratio. We note that, for a material 
with u = 0.5 (e.g., rubber), numerical singularity exists in the constitutive equation. 
However, because the thickness of a membrane is usually thin and hence B33 (= e3) 
is mainly due to Poisson's effect, one can assume that J33 = 0 to obtain that 

U U 
e3 = - B11+ - B22  u - 1  u - 1  

Consequently, we have 

1 u  0 

1 - u2 
J12 

(544 

Membrane materials can be anisotropic. For example, Mylar has been reported 
to be orthotropic." If the membrane is made of layers of orthotropic materials, 
one can obtain the transformed stiffness matrix [Q'Z)] for the ith lamina from its 
principal stiffness matrix [Q(')] and its ply angle (measured with respect to the axis 
E) by using tensor transformation and assuming J$,) = 0. Then, the constitutive 
equation for the ith lamina is given by: 

{J) = IQ'"l{B) 1 (55a) 

where 

{J} E J&) , [ Q ( Z ) ]  E { Z ]  



f i l ly  Nonlinear Modeling and Analysis of Precision Membmnes 35 

Moreover, stress resultants are defined as: 

dz = 

where Eqs. (43) and (44) were used and [Q] is a 6 x 6 matrix. Here M I ,  M2, and 
M6 represent the moment intensities acting on the edges of a differential membrane 
element, N1 and N2 are the in-plane extension force intensities, and N6 is the 
in-plane shear force intensity. 

2.3. Governing equations 

To derive governing equations we use the extended Hamilton's principle, which 
states t h a P  

L ( b T  - bn + bW,,,)dt = 0, (57) 

where t is the time, bT is the variation of kinetic energy, bn is the variation of 
elastic energy, and SW,, is the variation of nonconsenative work. 

Deformations of membranes are mainly caused by rigid-body displacements and 
rotations and in-plane stretching, and the in-plane shear strain 7 6  (= 7 6 1  + 762)  is 
usually small. Hence, the influence of 76 on the deformed geometry can be neglected 
without significant loss of accuracy in accounting for geometric nonlinearities. Sub- 
stituting 761 = 7 6 2  = 7 6  = 0 into Eqs. (14a) and (14b) yields 

(58) 
. .  . .  [I?] = [ I ]  , = T I * ,  T 2 ,  = Tzi, 11 = 1i , 12 = 19. 

Substituting 761 = 7 6 2  = "ys = 0 and Eq. (58) into Eqs. (19), (20), (27), and (28) 
yields 

bel = T ~ l b ( u ,  - vk; + wk:) + T12b(v, t uk: + wk&) 
+ T ~ ~ S ( W ,  - Uk: - vk&), (594 
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+ Ti3(6~,  - kg26u - k2061/)] . (62b) 
Moreover, when 76,  761 and 762 are small, the Jaumann strains in Eq. (44) reduce 
to 

Bii = el  + z(k1 - I cy ) ,  B22 = e2 + z(k2 - IC!), 
(63) 2B12 = 761 + 762 + Z(k6 - IC:). 

It follows from Eqs. (30a) and (30b) that the displacement vector D of an 
arbitrary point on the differential membrane element is: 

D = P, - PQ = uj1 + vj2 + wj3 + i i 3  - zj3. (64) 
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Taking the variation of Eq. (64) and using Eq. (25) yields 

6D = j16u + j26v + j36w + &(ilb& - i2661). 

5 = iij1+ iij2 + lij3 + ~ ( r t 3 ~ 1 +  F3j2 + F43). 

(Gal 

Taking time derivatives of D and using Eq. (14a) yields 

(65b) 

Using Eqs. (65a), (65b), and (14a), we obtain the variation of kinetic energy as: 

bT = - 1 pD . bDdxdydz 

(A,& + A,bv + A,bw + Ae,b& + &,b&)dxdy, (66) =-J,  
where A is the area of the undeformed reference surface, p is the mass density per 
unit volume, and 

A, = mu + I1Tsl, 

Ael = -Ii(uT21 + UT22 + wT23) - 12(F31T21+ T32Tn + fkT23), 

A, = mu + IlT32, A, = mw + IlTs, 

(67) 
A e z  = Il(iiT11 + CT12 + GT13) + 12(T31T11+ F32T12 + fkd'13) 3 

{m,Ii,I2} E . fzp{L~,i2}dz,  

where m represents the mass per unit area and E = (1 + e3)z. If p is symmetric 
with respect. to the middle reference surface, I1 = 0. Moreover, we also assume 
that the membrane thickness h is small and hence the rotary inertia density 12  is 
negligible. Substituting 11 = I 2  = 0 into Eq. (66) yields 

bT = - (miibu + mvbv + mw6w)dxdy. (68) 
/A 

If the membrane is only subjected to a normal pressure p along the < axis, the 
noncomervative work is given by: 
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Because the elastic energy ll is due to relative displacements among material 
particles, 6II is the virtual work done by the internal forces fi through the virtual 
relative displacement 6u. Hence, we have 

where dxl = dx, dx2 = dy, dx3 = dz, dVo = dxdydz, and fi is the force vector 
acting on the convected area of dx,dx,(i # m # n). Because Jaumann stresses are 
defined ad3: 

substituting Eqs. (71b) and (52) into Eq. (71a) and using B13 = B23 = 533 = 0 
yields 

Substituting Eq. (63) into Eq. (72), using Eqs. (26a) and (26b), and integrating by 
parts we obtain that 

where X and Y denote the integration limits of the curvilinear coordinates x and 
y, respectively, and 
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Moreover, it follows from Eqs. (63), (44) and (56) that 

Substituting Eqs. (59a), (59b), (62a), and (62b) into Eq. (73) and adding the 
integrals of Q2 x Eq. (60a) and Q1 x Eq. (60b), we obtain 

where { U V W }  = {u  w } ~ .  It is shown later that the introduced Q1 and Q2 are 
transverse shear force intensities. 

Substituting Eqs. (68), (69), (75), and (74a) into EQ. (57), integrating by parts, 
and using Eqs. (60a) and (60b) for the boundary t e r n  -M66& and M6682 in 
Eq. (75), we obtain 
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where 

Setting the coefficients of 6u, 6vl 6wl 681, 682, and 683 in Eq. (76) equal to zero, 
we obtain the equations of motion as: 

The boundary conditions are to specify: 
Along x = 0, X :  
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Along y = 0, Y :  

6u=O or [ - M6 
l + e l  1+e2  

where 

We also define 

Ma = -M& + Mli2, 

M g  = - M2i1 + M6i2 , 
IF = miij, + mvj2 + mwjijj,, 

RF = P d i  + P j 2  +P3j3. 

Using Eqs. (16) and (17) and the identity [TIT = [TI-', we rewrite Eq. (78) as: 

[TIT (!p + [K1IT{Fa} + ay a{FB} + [K2IT{Fg}) + {RF} = { I F } .  (82) 

Using Eqs. (sla), (81b), (16), and (17), we put Eqs. (82) and (79) in the following 
vector forms: 

Equations (83) and (84) state the balance of forces and moments on a differential 
membrane element, which can be directly obtained using the stress resultants in 
Eq- (74b) and a vector approach with Newton's second law. Although we started 
with the energy formulation (see Eq. (57)), the results axe fully correlated with 
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the Newtonian formulation and every structural term is interpretable in terms of 
vectors. This shows that the equations obtained are intrinsic. 

One can see from Eq. (8la) that Q1 and Q2 are along the is-direction and hence 
represent the transverse shear force intensities. However, it is assumed that there 
are no transverse shear strains in this membrane theory and hence Q1 and Q 2  are 
not directly related to displacement variables (see Eq. (74b)). Hence, Q 1  and Q2 

need to be obtained from the first two equations of Eq. (79) as: 

Q2 = ( M 2 y  + M6z + M6k4 + Mlk5)  . 1 + e2 

The third equation of Eq. (79) is a statement of the balance of internal moments 
with respect to the C axis, which is given by: 

N6 - N6 + M2k62 - M1k61 + M6k1 - M6k2 = 0 .  (85b) 
Hence, only the three equations in Eq. (82) and the boundary conditions in Eq. (80) 
need to be solved in the nonlinear analysis of doubly-curved membranes. Equation 
(82 )  can be rewritten as: 

N1z + N 6 2 y  ~ Q I -  k5N61+ k62Q2 - k4N2 { Nsiz + N 2 y )  + { k6iQi + k5Ni + k2Q2 + k4Ns2 } + [TI { i} = [TI { 5 )  , 
Qlz + Q2y -klN1 - k61N61 - k62N62 - k2N2 

(86) 

where N61 E Ns/(l + e l )  and N62 N 6 / ( l +  e2). 

2.3.1. Without bending stiffness 

If 76  is small and the membrane thickness h is so thin that the change of strain 
values with z is negligible, the strains in Eq. (63) can be approximated as: 

B11 = e l ,  B 2 2  = e 2 ,  2B12 = 7 6 1  i- 7 6 2 .  (87) 

Substituting Eq. (87) into Eqs. (72) and (73) reveals that M I ,  M2, and M6 should 
disappear from the governing equations. Hence, Eq. (85b) becomes a null statement 
of N6 = N6, and Eq. (85a) becomes 

Q 1  = Q2 = 0 .  

Substituting Eq. (88) into Eq. (86) yields 
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These are the only three governing equations, and the boundary conditions in 
Eq. (BO) reduce to: 

Along x = 0, X: 
bu = 0 or NIT11 + N6lT21, 

bv = 0 or N1T12 + N6lTZ , 
6w = 0 or NIT13 + N6lT23. 

Along y = 0, Y: 
6u = 0 or N62T11 + NzTzl , 
62; = 0 or 1\'62T12 + AT2T~ , (go) 
bw = 0 or N62T13 + N2T23. 

We note that, if x and/or y are curvilinear, the magnitude of the differential 
area dxdy may change with x and/or y. This area effect is not accounted for in 
using integration by parts in Eqs. (73) and (76) because it can be done only if the 
explicit expressions of x and y are known. Next we show how to account for this 
area effect in using Eqs. (85a) and (86) to obtain the fully nonlinear theory of thin 
circular plates. 

2.3.2. Circular pbte theory 

Figure 2 shows a general axisymmetric membrane described by an orthogonal 
curvilinear coordinate system xyz, where x denotes the meridian (also called the 

Fig. 2. 
metric membrane. 

The two coordinate system used in describing the undeformed geometry of an axisym- 



44 P. F. Pai d L.  G. Young 

generator) and y denotes the circumference. For a circular plate, if the x is chosen 
to coincide with T ,  we have 

dx = dr , d y  = rd9. (914 

Then, one can follow Eqs. (1)-(4) to show that all initial curvatures are zero except 
that 

1 
r 

I C : = - - .  

It is clear from Eq. (91a) that, if d9 and dr are fixed, the differential area dxdy 
changes with T .  To account for this area effect caused by curvilinear coordinates, 
one just need to do the following changes for the spatial derivatives of a stress 
resultant: 

dNlrd6dr 1 -- - Nigk,O. 
rd9 rd6dr Nly -+ 

Hence, the fully nonlinear circular plate theory can be obtained from Eqs. (86), 
(85a), and (92) as: 

} + [TI { ;;} klQ1 - k5N61 + k62Q2 - k4N2 
k61Q1 + ksNi + k2Q2 + hN62 

-klN1 - k6lN6l - k62N62 - k2N2 

N ~ T  f Nlki  + N620ki 
NsiT + N6ik: + N2eki 

Q i T  + Q ~ k i  + Q2eki 
mu 

= [TI { m u } ,  
mw 

(93) 

where 
1 

1 + el 
1 

1 + e2 

Qi = - (MiT + Mik,O + Mseki - M2k4 - M6k5) 1 

(94) 
Q2 = - (M29k: + MsT + M& f M6kq + M i k s ) .  

The boundary conditions are the same as those in Eq. (80) except that dx and d y  
need to be replaced with dr and rd6, respectively. Similarly, dx and d y  need to be 
replaced with dr and rd9 in the nonlinear expressions of e l ,  e2, 7 6 1 ,  7 6 2 ,  k l ,  k2, and 
k6 (= k61 + k62) shown in Eqs. (6), (7), ( l la) ,  ( l lb ) ,  and (18). 

2.3.3. Accounting for 7 6  

We point out here that the governing equations (83) and (84) are valid and can be 
derived using the vector approach only if 7 6  is negligibly small. If 7 6  is not small, 
substituting Eqs. (43) and (44) into Eq. (72) yields 

+ &de2 + &61b761+ fi626762 + M16kl + M26k2 + M66k~)dzdy ,  
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where 

fii Ni Cos 761 4- N 6  Sin 7 6 1 ,  

$2 N 2  COS 762 + N 6  sin 7 6 2 ,  

fi61 = (1 + e i ) ( ~ s  cos 761 - ~1 sin 7 6 1 ) ,  

fi62 3 (1 + e 2 ) ( ~ 6  cos 762 - ~2 sin 762) . 
Then, one can follow the same procedures to derive the governing equations. 
However, Eqs. (19), (20), (24a), and (24b) need to  be used for bel, be2, 6761, and 
6762. The derivation is straightforward, but the governing equations obtained are 
complicated by 76. However, if finite elements are used to discretize the system, 7 6  

does not complicate the formulation too much.I6 
Large scientsc d a t a b l e  membranes are usually constructed from specially- 

shaped flat gores using a doubler material at the seams or other methods, 
which leads to structural models that defy closed-form solutions. Moreover, as 
materials for scientific membrane structures may exhibit nonlinear viscoelastic 
r e s p n s e , 1 7  the [Q] in EQ. (56) may become functions of strains and strain 
rates. Hence, the finite element method is more appropriate for analyzing r ed  
membrane structures. Furthermore, nonlinear finite element equations can be easily 
solved using an arc-length iteration method, and they can be used to deter- 
mine bifurcation points when nTirMing s ta r t s  a ~ d  io study bifurcated equiiibrium 
paths. 

3. Axisymmetric Membranes Under Axisymmetric Loading 

Rotationally symmetric membranes are popular in scientific applications because 
they are easy to manufacture and it is easy to predict and control their d a t e d  
shapes. Next we derive the fully nonlinear governing equations of axisymmetric 
membranes subjected to axisymmetric loading. 

From the undeformed geometry of the axisymmetric membrane shown in 
Fig. 2 and the coordinate systems and unit vectors shown in Fig. 1 we obtain 
that 

P = aia + r sin Oib + T cos Oi, , 
d x = d w ' = f d a d m ,  dy=rdO, 

. v- 

32 = - = cos 6 i b  - aY 
f l  

j, = j 1  x j 2  = (-r& + sin Oib  + cos 6ic) ,  Jm 
where P is the position vector of point A, r is a function of a, T,, = dr/da, and 
the f is determined by the sign of da/dz. Substituting Eq. (95) into Eq- (3) we 
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obtain 

Since x and 0 are two curvilinear Lagrangian coordinates to be used, 
one needs to account for the area effect by making the following 
replacements: 

dNlTd8dx 1 1 -- - - N1,g. 
rd0 rdedx T 

N1, 

The same replacements need to be done for all other spatial derivatives of stress 
resultants in the governing equations. 

For a specific membrane geometry, one can use Eq. (96a) to derive initial 
curvatures. For example, if it is a parabolic membrane with the apex at the origin 
of abc and the focus at a = si, then 

2a -4a2 
r2 = 4 a ~ i ,  T ,  = -, raa = - 

T T3 ’ 
(974 2a 0 -  4a2 1 0 -  

IC1 - +&2)3/2 ’ ,/-’ T2 + 462 IC4 - T d m .  
If it is a spherical membrane with the center at  the origin of abc and the radius is 
R, then 

R2 
T3 ’ 

_- -a 
R2 = a2 + T ~ ,  T a  = - , Taa  = 

T 

Under axisymmetric loading, displacements only happen on the xz plane, and 
the convected axes i and f j  are always perpendicular to each other. Hence, we have 

Moreover, because ii = il and i i  = i2, 
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Equation (98b) indicates that there is no in-plane shear straining in axisymmetric 
membranes undergoing axisymmetric deformations, and hence x and y are the 
principle strain axes. Moreover, because of Eq. (98b), one can see from Eq. (73) 
that & should disappear from the governbg equations. Substituting Eqs. (!36a), 
(98a), and (98b) into Eqs. (14a), (lo), (16), (17), and (70) yields 

Tl1 0 T13 
w, - uk: 

1 + e l  1 (994 
1 + u, + wk: 

T13 = [TI=[  0 1 0 1 ,  T11= 1 + e l  

, [Kz] = 

Under static b y m m e t r i c  loading and without bending s t f iess ,  because of 
Eqs. (%a), (98a), (98b), and (99a)-(99c), the second equation of (89) becomes 
a rd! statcrzcnt of 0 = 0 and the other ~ W G  equations become 

NlZ - k4N2 = miiTll + mWT13, (1Ooa) 

-klN1 - k2N2 + p ( l  + e l ) ( l +  e2) = -miiT13 + mGT11. (100b) 

Accounting for the area effect by using Eq. (96b) in Eq. (lOOa) yields 

-- - N2k4 - N1kt + miiT11 + mwT13. dNi 
dx 

Post-multiplying Eq. (16) by [TI and using Eqs. (99a) and (99b), we obtain that 

(101a) 

Moreover, it follows from Eq. (99a) that 

(101b) 

(101c) 

(101d) 

(101e) 
dw 
dx - = (1 + e l ) ~ 1 3  + uk!. 

Substituting Eqs. (96a), (98a), and (99a) into Eqs. (7) and (18) we obtain that 

kz = T11@ - T13k2, e2 = vkt + wk:, k4 = T13kg + T11kt. (102a) 
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Because 76 = 0 and the bending stiffnesses are neglected, it follows from Eq. (74b) 
that 

, N2 = &2&+ Q22e2. 
Nl - Q12e2 

el = (102b) 
(211 

Furthermore, we obtain from Eq. (100b) that 

(102c) 
p(1 + e l ) ( l +  e2) - k2N2 + miiT13 - rnGTll 

Nl 
IC1 = 

Substituting Eqs. (102a)-(102c) into Eqs. (lola)-( 101e) yields five equations in 
terms of N1, 7'11, T13, u, and w. In other words, Eqs. (101a)-(101e) are the five 
governing differential equations. However, it is a fourth-order system because it 
follows from Eq. (90) that the boundary conditions are to specify: 

at x = 0 and x = L, where L is the arc length of the meridian. Because il is a unit 
vector, the constraint equation needed is: 

Tfl + q3 = 1 .  (104) 
Equations (lola)-(lole) (or Eqs. ( lola),  (l0lc)-(lole) with T11 = & d m )  
will be used to obtain numerically exact solutions by using a multiple shooting 
method." 

One can see from Eq. (96a) that, at T = 0, IC:, k i ,  k2, and k4 may become 
singular and it is impossible to compute el, N2, and kl using Eqs. (102b) and 
(102c) because e2, k p ,  and k4 cannot be computed using Eq. (102a). However, 
because of the axisymmetric geometry, we have 

Ti1 = 1 , Ti3 = 0 ,  ky = k: , k2 = kl , 
(105a) 

k4 = k i  , el = e2 , N1 = N2 , N1, = 0 .  

at T = 0 ,  where k4 = k i  is obtained from Eq. (102a) by using T11 = 1 and TIS = 0. 
Note that k2 and kq do not represent actual curvatures and they are functions used 
for exact description of and q, as explained right after Eq. (18). Substituting 
Eq. (105a) into Eqs. (102b) and (102c) yields 

We note that N1 = N2 in Eqs. (105a) and (105b) results in 011 = 0 2 2 .  In 
other words, if an initially axisymmetric membrane is not manufactured to have 
011 = Q 2 2 ,  the membrane will not have an axisymmetric shape under axisymmetric 
loading. 

If a spherical membrane undergoes uniform expansion with respect to its center, 
we have 

u = T 1 3 = 0 ,  T11=l .  (106a) 
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Because of symmetry, we have 

N1= N2,  kl = k2, Icy = k: ,  W, = NiZ = 0 .  (106b) 

(1064 

Moreover, substituting a. (lO6a) into EQs. (998) and (102a) yields 
W 

el = wk: =e2 = w e  = -, 
R 

102 = k2 0 , k4 = ki . (106d) 

Equation (106d) is due to the fact that k2 and IC4 are defined with respect to the 
undeformed length dx and are not the actual deformed curvatures, as explained 
right after Eq. (18). Equations (106a)-(106d) satisfy exactly the governing equa- 
tions (lUlaj-(lOle) and make them to be 0 = 0. Substituting Eqs. (106b)-(106d) 
into Eqs. (102b) and (102c) yields the nonlinear function of p in terms of w as: 

2(& + Q12)w + R2mw 
( R  + w ) ~  P =  

If w / R  is small and the pressure is static, one can replace R + w with R and then 
p is proportional to w. 

3.2. Forwand analysis with bending stimess 

If bending stiffnesses are to be included in the analysis of axisymmetric membranes 
under axisymmetric loading, the strains shown in Eq. (63) need to be used, instead 
of Eq. (87). However, the surface analysis shown in Eqs. (95)-(99c) are still valid. 
Although Eq. (74b) show that N6 and M6 may be nonzero due to elastic couplings, 
Eq. (73) shows that N6 and M6 should not appear in the governing equations 
because b = 761 = 762 = 0 (see Eqs. (98a) and (98b)). However, M I  and M2 
should be included. Moreover, substituting Eq. (98a) into l3q. (85a) yields Q2 = 0 
and 

where 
Eq. (96b). The first and third equations of (86) become 

is replaced with M I ,  + M1k: to account for the area effect, as shown in 

-- - k4N2 - klQ1 - kiN1 + miiT11+ mwT13, (108b) dN1 
dx 

-- dQi - klN1 + k2N2 - p ( l  + e l ) ( l +  e2) - kiQ1 - miiT13 + rnGT11, (108~) dx 
where Niz and QlZ are replaced with NlZ + Nik! and QlZ + Qlk!, respectively, 
to account for the area effect. Moreover, Eqs. (101b)-(101e) are still valid and are 
repeated here as: 

(108d) 
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-- - Til(@ - ki)  dTl3 

dx 

du - = (1 + el)T11 - wky - 
dx 1 1  

Moreover, Eq. (102a) is also valid and is repeated here as: 
0 e2 = uki + wk: , k2 = Tllk; - T13k4 , k4 = T13k; + Tl lk i .  

Because 7 6  = k6 = kg = 0, it follows from Eq. (74b) that 

Qllel  + Q14(k1 - @) = ~ 1 -  Q12e2 - Q15(k2 - IC:), 

Q4lel+ Q44(k1 - k!) = MI-  Q42e2 - Q45(k2 - k;). 
Using Cramer's rule we obtain that 

[NI - Q12e2 - Q15(k2 - k:)]Q44 - [ M i  - Q42e2 - Q45(k2 - k;)]Qi4 el = 
011044 - Q14 

(109b) 

Moreover, we obtain from Eq. (74b) that 

N2 = Q21e1 + Q22e2 + Q24(k1 - k?) + Q25(k2 - I C ; ) ,  

M2 = Qslel + Q52e2 + Q54(k1 - IC?) + Q55(k2 - kg). 
Substituting Eqs. (109a)-( 109c) into Eqs. (108a)-( 108g) yields seven equations in 
terms of MI, N1, Q1, T11, T13, u, and w. In other words, Eqs. (108a)-(108g) (or 
Eqs. (108a)-(108c), (108e)-(108g) with T11 = *,/-) are the governing dif- 
ferential equations. We need the constraint equation (104) because the system is of 
sixth-order, as shown by the following boundary conditions: to specify 

(109c) 

21 or NlTl1 -QlT13 

at x = 0 and x = L. 

because, at r = 0, 
Because of the axisymmetric geometry, the singularities at r = 0 can be dissolved 
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( l l l b )  

-v2 = ( 0 2 1  + &22)e1+ (Q24 + Q ~ , ) ( k l -  ko) 

M 2  = (&I+ Q52)e1+ (QM + Q=)(kl - ky) . 
( l l l c )  

1 7  

If the material is isotropic, it follows from Eq. (98b) that the elastic energy II 
is given by: 

Here the first term is due to in-plane stretching and the second term is due to 
bending. 

3.3. Eigenvalue analysis 

To derive linear natural frequencies and mode shapes of vibration with respect to 
a deformed static equilibrium configuration we assume 

u = i i + i i ,  w = G + ? z ,  (113) 
where fi and denote large static displacements, and ii and G denote smal l  dy- 
namic displacements. If the dynamic displacements are assumed to be harmonic at 
a natural frequency w, we have 

u = -JG, = -&&. (114) 

Substituting Eqs. (113) and (114) into Eqs. (101a)-(101e) and (102a)-(102c) and 
using Taylor's expansions yields the following first-order expansions: 

-- - N2k4 + N 2 i 4  - N l k z  - m i L 2 T 1 1  - mGw2T13 ,  
d N 1  

dx (115a) 

(115b) 
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dw - = o ,  
dx 

(115c) 

(115d) 

(115e) 

(115f) 

(1 16a) 

(116b) 

(1 16c) 

where Eq. (115f) is based on the fact that the natural frequency w is the same 
for every point on the membrane. At T = 0, it follows from Eqs. (113), (114), and 
(105b) that 

E l  = Nl , N 2  = N 1 ,  
Ql l  + Q12 

Substituting Eqs. (116a)-(116c) (or Eq. (11:)) into Eqs. (115a)-(115f) 
yields six equations in terms of R1, p11, T13, G, 6, and w. Because 
(p11 + 5?11)~ + (Ti3 + ' iF13)~  = 1 and Tfl + Tf3 = 1, the linear expansion 
of p11 is !f'11 = -p13T13/T11. Hence, only Eqs. (115a), (115c)-(115f) need to 
be solved in the multiple shooting process. 

3.4. Inverse analysis 

In the design of regular structures (e.g., building and aircraft structures), the de- 
formed shape is usually not specified but is put as an inequality constraint in the 
design optimization process. Hence, the final design can be obtained by trying 
different undeformed shapes and dimensions to satisfy all equality and inequality 
constraints, which is not really an inverse problem. On the other hand, a precision 
membrane is usually required to have a precise inflated (or deformed) shape with a 



IWly Nonlinear Modeling and Analysis of Precision Membmnes 53 

Fig. 3. The generators of the undeformed and deformed shapes of an axisymmetric membrane. 

known infiation pressure, but the undeformed shape is unknown. Hence, the design 
of a precision membrane is a fully inverse problem. Next we show how to solve such 
a fully inverse problem. 

Figure 3 shows how the deformed shape of an axisymmetric membrane is re- 
fated te its unknown iadefcrmed shape. Because of numerical difficulties in using 
coordinates a or c (= r )  as the independent variable, we will use the curvilinear 
coordinate €, as the independent variable. Because 

(1 + el)dz = 4, (1 + e2)dy = dq ,  (118) 

it follows from Figs. 2 and 3 and the definitions of ky, k;, k l ,  and k2 shown in 
Eq. (18) that 

aa a& a& 
kl = - = (1 + e l )  -, 

k ? = z ,  ax a€, 

Moreover, because Nl represents the tension force per unit of dy and N2 represents 
the tension force per unit of dx, we obtain from Eq. (118) that 

I N1 = kl(l +e2) ,  N2 = k*(1 + e l ) ,  (121) 

where N 1  represents the tension force per unit of d v  and N 2  represents the tension 
force per unit of 4. From the freebody diagram of the bottom part of the deformed 
membrane cutting by a plane parallel to the c axis (see Fig. 3), because the internal 
pressure is balanced by the membrane force we obtain the following equilibrium 
equation: 
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On the other hand, Eq. (100b) is an equilibrium equation for a differential mem- 
brane element at any location. Substituting Eqs. (119)-(121) into Eq. (100b) and 
assuming static deformation (i.e., ii = w = 0) yields 

Because the pressure and the deformed shape are assumed to be known and hence 
p ,  &(e), and t([) are known, &1(c) and &2(c) can be solved from Eqs. (122) and 
(123) as: 

It follows from Eqs. (121) and (56) that 

& ( I +  ez) = &el + Q12e2, 

& ? ( I +  e l )  = Q12e1+ Q22e2. 

filQ22 - 3 2 ( 0 1 2  - fill 

fi2Q11 - fil(Q12 - fi2) 

Hence, el(<) and e 2 ( c )  can be obtained from Eq. (125) to be 

el = - 
(126) 

Q11Q22 - (Q12 - fi1)(Q12 - fi2) ' 

e 2  = - 
Q11Q22 - ( 0 1 2  - &1)(&12 - fi2) ' 

Because the circumferential strain e 2  at T = t should be constant due to symmetry, 
we have 

(127) 
C 

C 
e 2 = - - 1 .  

Hence, c(<) can be obtained to be 

C c =  - 
1 + e 2  

Moreover, it follows from Eq. (118) that 

e l = - - - l  d< 
dx 

Hence, x(<) can be obtained by performing the following integration: 

It follows from Fig. 3 and Eq. (118) that 
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where the sign is determined by the sign of sin &. Hence, a(<) can be obtained by 
performing the following integration: 

where a(0) = 0 is assumed. After a(<),  c(<), and z(<) are obtained from Eqs. (132), 
(128), and (130), one can easily obtain the undeformed geometry for manufacturing 
use. We note that it is more convenient to obtain the &/e in Eq. (132) by numerical 
differentiation. 

4. Numerid Results 

1 Large static deformation analysis, linear eigenvalue analysis, and nonlinear inverse 
analysis of several different membranes are performed and discussed in this section. 
For all cases we consider axisymmetric membranes made of Kapton film that has 

E = 5.51581 GPa (800 kpsi) , v = 0.3, p = 1390 kg/m3, 
(133) 

h = 0.0127 IIM (0.0005 in).  

4.1. Forwad analysis 

Inclusion of bending stifEness in membrane analysis results in difficulties in solution 
convergence in the multiple shooting process because M1 and Q1 have very small 
values. Figure 4(a) shows the undeformed (broken line) and deformed (solid and 
dotted lines) shapes of an axisymmetric parabolic membrane (see Eq. (97a)) having 
ii/L = 20, 0 5 x 5 L = 1.5 m and h = 15 mm, being subjected to an internal 
pressure of 500 Pa, and having a fixed rim at x = L. The boundary conditions for 
Eqs. (108a)-(lO&), (108e)-(108g) are 

Q1= Ti3 = u = 0 at x = 0 ,  MI = u = w = 0 at x = L .  (134 

Although Fig. 4(a) shows that the bending stiffness does not cause dramatic change 
of the deformed geometry, but Fig. 4(b) shows that N1 and N2 are significantly 
changed by the bending stifEness. Moreover, Figs. 4(c) and 4(d) show that M I ,  
Mz, and Q1 are also significant. However the elastic energy ratio Re (= bending 
strain energy/total strain energy) is obtained using Eq. (112) to be 10.6% for this 
thick thickness case. If ii/L = 20, p = 500 Pa, and h = 15,10,5,3 IIM, Re is com- 
puted to be l0.60%, 5.08%, 1.30%, 0.40%, respectively. We note that Re decreases 
significantly when h decreases, and it becomes more difkult to obtain a convergent 
solution when R, < 1.0%. I f i i /L = 10, h = 10 mm, andp = 500,400,300,200,100, 
10, 1 Pa, R, is computed to be 2.69010, 2.79%, 2.91%, 3.06%, 3.25%, 3.47%, 3.50%, 
respectively. We note that Re increases slightly when p decreases. If h = 10 m, 
p = 200 Pa, and ii/L = 20,15,10,5, 1, Re is computed to be 6.03%, 4.39%, 3.06%, 
2.13%, 1.41%, respectively. In other words, Re decreases when si decreases. Hence 
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20 I 

0 0.5 1 1 .5 

Fig. 4. The deformation of an axisymmetric parabolic shell with zi = 20L, h = 15 mm, and p = 
500 Pa: (a) deformed geometries with (-) and without (...) bending stiffness (NBS = no bending 
stiffness), (b) distributions of N1 and N2, (c) distributions of M I  and M2, and (d) distribution 
of Qi .  

loo) I 

- 
-1.5 -1 0.5 0 0.5 1 1.5 

0' 
0 0.5 1 1 .s 

x (m) x (m) 

(a) (b) 
Fig. 5. 
being under different pressures: (a) deformed geometries and (b) distributions of N1 and N2. 

The deformation of a circular membrane having R = 1.5 m and a fixed outer rim and 
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the bending effect is negligible especially when h and/or si are small. Because we 
consider only membranes made of the thin Kapton film shown in Eq. (133), bending 
stiffness will be neglected in all following cases and Eqs. (lola), (l0lc)-(lole) will 
be used in the forward analysis. 

4.1.1. Circular membrane 

For a circular membrane having a radius R = 1.5 m and a fixed outer rim, Fig. 5 
shows the deformed shapes and the distributions of Nl and NZ corresponding to 
different pressures. The corresponding boundary conditions are: 

u = w = 0 at x = R.  TI^ = u = 0 at 2 = 0 ,  (135) 

0.322 Pa, w(0) is obtained to be 18.6573 mm, which agrees well with the 
1 The multiple shooting solution is obtained using 21 shooting points. For p = 

I 
-1.5 -1 4.5 0 0.5 1 1.5 

c (m) 

(a) 

Fig. 6. The deformation of axisymmetric membranes whose undeformed shapes are parabolic: 
(a) deformed and undeformed geometries with p = 1 Pa and different i i /L,  (b) distributions of Nl 
and N2 with p = 1 Pa and different a / L ,  (c) deformed and undeformed geometries with p = 100 Pa 
and i i /L = 0.5, and (d) distributions of N1 and N 2  with p = 100 Pa and i i /L = 0.5. 



58 P. F. Pai €4 L. G.  Young 

MSC/NASTRAN solution, 18.6589 mm, using 50 membrane elements and the 
solution, 18.6610 mm, using a different formulation and an integration m e t h ~ d . ~  We 
note that MSC/NASTRAN uses Green strains and second Piola-Kirchhoff stresses. 

4.1.2. Paraboloidal membrane 

Figure 6(a) shows the undeformed (broken line) and deformed (solid line) shapes of 
axisymmetric membranes having parabolic undeformed shapes with different focus 
lengths (i.e., a), 0 L x 5 L = 1.5 m, and a k e d  rim at x = L, and being subjected 
to an internal pressure of 1.0 Pa. The boundary conditions are given by: 

Tl3 = u = 0 at x = 0 ,  u = w = 0 at x = L .  (136) 

We note that, under the same pressure, the deformation w(0) increases with 
si and hence the deformed geometry deviates more from a paraboloidal surface. 
Figure 6(b) shows the distributions of the internal force intensities N1 (along c )  
and N2 (along Q). We note that Nl > N2, N1 = N2 around the apex, and the area 
where N1 is close to N2 increases when a decreases. However, Figs. 6(c) and 6(d) 
show that N2 can be larger than Nl if zi is small and/or p is large. 

4.1.3. Toroidal membrane 

We consider a toroidal membrane whose undeformed cross-sectional radius is R 
(= 3/n m) and the center of the cross section is at c = CO = 10 m, as shown in 
Fig. 7(a). It follows from Fig. 7(a) that 

R 2 = a 2 + ( r - C ~ ) 2 ,  a = R s i n  , r = C o + R c o s  
x 7 T  (137) 

a = - + - - ,  O 5 x L L = 3 m .  
R 2  

We note that the meridian of the toroidal membrane starts from the point (a ,  c) = 

(0, co + R). It follows from Eqs. (137) and (96a) that 

Figures 7(b) and 7(c) show the deformed geometry of the right cross section 
and the distributions of Nl and N2 when p = 3000 Pa. The RMS of the deviation 
of the deformed cross section from a fitted circle 0.2% of R, and this ratio increases 
with p .  In other words, when p increases, the deformed cross section deviates more 
from a circle. 

4.2. Eigenvalue analysis 

To understand how pressurization changes the natural frequencies of a membrane 
structure we consider a parabolic membrane having L = 1.5 m and zi = 6L and 
perform eigenvalue analysis using the method shown in Sec. 3.3. Figure 8(a) shows 



FuIly Nonlinear Modeling and Analysis of Precision Membmnes 59 

Fig. 8. Linear natural frequencies and mode shapes of a pressurized parabolic membrane with 
L = 1.5 m and li = 6L: (a) the first five natural frequencies, and (b) the third mode shape when 
p = 60 Pa. 
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the influence of the internal pressure p on the first five natural frequencies. It 
is apparent that natural frequencies increase about quadratically with p and the 
increment rate is high when p is small. Figure 8(b) shows the third linear mode 
shape when p = 60 Pa. As the derivation is for axisymmetric deformation, only 
axisymmetric vibration modes can be obtained here. To obtain nonaxisymmetric 
modes one needs to solve the equations derived in Sec. 2.3 using the finite element 
method or other methods. 

In the formulations shown in Sec. 3.3 the change of p due to the small displace- 
ments ii and IE was neglected and it was assumed that p = p + @ x p. However, 
it is necessary to include @ in the calculation of low-order natural frequencies 
(especially the first-mode frequency) of some types of membranes. For example, 
if a pressurized spherical membrane undergoes the breathing-mode vibration (i.e., 
the first axisymmetric mode) and the gas inside the membrane is assumed to be 
an ideal gas, one can use p(R + f1)~47r/3 = p ( R  + lij + IE)347r/3 to derive the linear 
approximation of p as p = p(l - 3IE/(R + w)). Hence, one can use Eq. (107) to 
derive the first &symmetric-mode frequency w1 to be 

If @ is not included, w1 = 4(2 (Q11  + Q12)  - 2p(R + w)) / (mR2) ,  which is erro- 
neous. However, f l  is negligible for high-frequency modes because of their wavy 
shapes (e.g., Fig. 8(b)). 

4.3. Inverse analysis 

4.3.1. Spherical membrane 

To verify the inverse analysis method shown in Sec. 3.4 we consider a deformed 
spherical membrane whose deformed radius is R (= 3/7r m) and whose material is 
shown in Eq. (133). It follows from Fig. 3 that 

a& 1 
0 I < I 3  m .  (140) - 13 = R(1- cos &), i: = R sin &,  a A [ -  = - - 

R 7  a< 2 ,  
If p = 10000 Pa, the undeformed geometry (broken line) obtained from the de- 
formed geometry (solid line) is shown in Fig. 9(a). The exact solution of w ( & ~ )  can 
be obtained from Eq. (107) with iir = 0 to be 

The inverse solution of tu(&) is 0.04553136 m, which is less than the exact solution 
(141) by 0.067%. Figure 9(a) shows also that the obtained undeformed geometry 
fits perfectly with a circle (dots). Moreover, Fig. 9(b) shows that N2 = N1, as it 
should be. Furthermore, we use the obtained undeformed geometry and the forward 
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Fig. 9. The inverse analysis of a known deformed spherical membrane with L = ri?r = 3 m and 
p = loo00 Pa: (a) deformed (-), inverse undeformed (---), and circlefitted undeformed ( e - - )  

geometria, and (b) distributions of N1 and Nz.  

analysis method to compute the deformed geometry, and the obtained deformed 
geometry overlaps with the initial deformed geometry. This verifies the proposed 
inverse analysis method. 

4.3.2. Paraboloidal membrane 

because of their broad applications in communication, axisymmetric membranes 
having a deformed paraboloidal surface are important membranes. Next we consider 
an axisymmetric membrane whose deformed shape is parabolic and is given by: 

E2 = 4 s .  (142) 

Fkom Fig. 3 we obtain 

It follows from Eqs. (142) and (143) and integration that and E are related as: 

Because is the known spatial coordinate, E(<) can be obtained from Eq. (144) 
using a nonlinear root solver and then &(<) can be obtained from Eq. (142). More- 
over, it follows from Fig. 3 and Eqs. (142) and (143) that 

- &  2ii & C dii 4ii2 s i n & = - =  4 d m ’  = (47i2+3)3/2. 
cos a = - = 

4 d m ’  
(145) 

Figure lO(a) shows the deformed (solid line) and undeformed (broken line) 
shapes of an axisymmetric membrane having a parabolic deformed shape and a 
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Fig. 10. The inverse analysis of a known deformed parabolic membrane with L = 1.5 m, a = lOL, 
and p = 200 Pa: (a) deformed (-) and inverse undeformed (- - -) geometries, and (b) distributions 
of N1 and N2. 

focus length 7i = 15 m, 0 5 [ 5 i(= 1.5 m), and being subjected to an internal 
pressure of 200 Pa. Figure 10(b) shows the distributions of the internal force in- 
tensities N1 (along <) and N2 (along 11). We note that N2 > N1 and they become 
equal at z = 0. Substituting Eq. (145) into Eq. (124) yields 

It is apparent that fi1 < f i 2  except that $1 = f i 2  at E = 0 (i.e., the apex). However, 
Fig. l0(a) shows that the rim diameter at < = L needs to be increased in order 
to have the deformed geometry is parabolic, but it results in N 2  > N1. On the 
other hand, Fig. 6(b) shows that, if the rim diameter at z = L is fixed, it results 
in N2 < Nl but the deformed geometry is nonparabolic. Hence, one can reduce the 
increase of the rim diameter at < = L in Fig. lO(a) to make N 2  close to N1 and 
keep them almost constant at every location. Of course, the deformed geometry 
will deviate a little from being a paraboloidal surface. 

4.3.3. Cylindrical membrane 

Figure l l (a )  shows a known deformed circular cylindrical tube with two spher- 
ical ends subjected to an internal pressure p = 2000 Pa. If L1 = 2.5 m and 
R1 = R 2  = 2 m, Figs. l l (b )  and ( l l c )  show the obtained undeformed geome- 
try and the distributions of e l  and e 2 ,  respectively. The undeformed geometry has 
a sudden change at the junction of the circular tube and the spherical end because 
the spherical end has a smaller e 2 .  If the deformed geometry and p are fixed, fi1 
and N 2  are also fixed. Hence, increase of e 2  requires decrease of Qzj, as shown in 
Eq. (125). In other words, the thickness h of the spherical ends needs to be re- 
duced because Q l l ,  Q22,  and Q12 are proportional to h as shown in Eq. (56). From 
the geometry shown in Fig. l l ( a )  and Eq. (124) one can show that &!/a[ = 0, 
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Fig. 11. The inverse analysis of a known deformed circular cylindrical tube with two spherical 
ends, ~ 5 1  = 2.5 m, Ri = Rz = 2 m, and p = 2000 Pa: (a) the circular cylindrical membrane, 
(b) deformed and undeformed geometries, and (c) distributions of e l  and e2. 

e/ sin & = R1, and N 2  = 2N1 = pR1 for the cylindrical tube; and = 1/R2, 
elsin ti = R2, and N 2  = N 1  = pR2/2 for the spherical ends. Replacing N 2  and 
N 1  with pR2/2, Q i j  with q Q i j ,  and e2 with the circumferential strain ezc of the 
cylindrical tube in Eq. (126) yields 

(147) 

which can be solved for the q (= hnew/horidnd) required to match e2 at the junction. 
Figure 12(a) shows that, if the thickness of the spherical ends is reduced to be 
h,, = 0.005451 mm (Le., q = 0.4292 from Eq. (147)), the undeformed geometry 
is smooth at the junction. 

Replacing & and f i 1  with pR2/2 and e2 with the circumferential strain ezC of 
the cylindrical tube in Eq. (126) yields 
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which can be solved for the R2 required to match e2 at the junction without chang- 
ing the thickness of the spherical ends. Figure 12(b) shows that, if R2 is increased to 
4.6597 m, the undeformed geometry does not have a sudden change at the junction. 

5. Concluding Remarks 

A fully nonlinear membrane theory is derived by treating membranes as shells and 
using Jaumann strains and stresses and new concepts of local relative displacements 
and orthogonal virtual rotations. Fully nonlinear governing equations for different 
membranes are listed, especially the ones for axisymmetric membranes subjected to 
axisymmetric loading. The membrane theory is used to obtain numerically exact de- 
formed shapes of several axisymmetric membranes subjected to internal pressures. 
Numerical results show also that bending stiffness is negligible for thin membranes, 
and natural frequencies of pressurized membranes increase with the internal pres- 
sure. Moreover, an inverse solution method for computing the undeformed geometry 
of a membrane with a known/designed deformed geometry and a known inflation 
pressure is presented and numerical results are obtained and verified. 
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