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Background

• Linear acoustic theory limits pressure waves 
to approximately 10% overpressure.  Shock 
formation dissipates any additional wave 
energy.

• Dr. Timothy Lucas discovered a method to 
produce high-amplitude pressure waves in 
acoustic resonators in 1990.

• Using specially shaped resonating cavities, 
dynamic gas pressures exceeding 500 psi 
can be generated shock-free.

Mechanical Engineering Magazine
“Sound Waves at Work” March, 1998

• Lucas focused on creating refrigeration compressors and 
formed Macrosonix Corporation to develop the technology.

• Most previously published work focused mainly on using 
refrigerant as the working fluid.
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Program Goal

Development of a non-contacting seal that would overcome 
two fundamental problems of conventional seals:

• Leakage

• Wear

Exploit recent developments 
in non-linear acoustics

• Specially shaped acoustic 
resonator is driven at 
resonance

• Generation of high-
amplitude pressures
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Research Objective

• Extend the research of non-linear acoustics in resonators:

– Lawrenson, et al. (1998)
• Experimentally generated high overpressure unshocked waveforms
• Peak acoustic pressures of 1446kPa (209 psia)

– Ilinskii, et al. (1998)
• 1-Dimensional numerical prediction

• Non-linear acoustics with shaped resonators

– Chun, et al. (2000)
• Additional resonator shapes

• Determine if high-amplitude standing pressure waves can be 
generated:

– using air as the working fluid

– in resonators containing seal-like features
• blockages (shaft)

• ventilation holes (annular clearance)
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Dimensionless Variables

Dimensionless Pressure

– p / p0 = pINSTANTANEOUS / pAVE QUIET CONDITION

– pMAX / p0 = pCYCLE MAXIMUM / pAVE QUIET CONDITION

• Dimensionless Frequency

– Ω = 2�f�lRESONATOR / (γ�8314�TK/ MW)1/2

• Dimensionless Time

– τ = f�t / (2�π)
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Baseline Configuration
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Baseline Configuration: Experimental Setup

• Electrodynamic Shaker Table

– 500lbf (2220N) capacity

• Conical Resonator

– r(z) = 0.0056 + 0.2680·z [m]
– Aluminum 7075T6 with 0.14inch (3.6x10-3m) wall thickness

– Containing air (ambient conditions)

A

B

C

D

• Instrumentation
Each end of the 
resonator contains:

A. Dynamic pressure 
sensors (2)

B. Static pressure 
transducers (2)

C. Accelerometer (2)

D. Thermocouples (2)
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Baseline Configuration: Experimental Results

• Non-linear frequency shift with 
increasing acceleration 
amplitude

• Moderate hysteresis evident 
(hardening)

Cylinder shocks below Pmax/Po < 1.1
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Baseline Configuration: Experimental Results

• Non-linear frequency shift with 
increasing acceleration 
amplitude

• Moderate hysteresis evident 
(hardening)

• Constant max acceleration: 80g

• Po = 100.2 kPa (14.5 psia)

• No microshocks evident

• PMAX / P0=1.88   (188.3kPa / 27.3psia)

• Static Pressure rise of 8.4 kPa (1.2psi)

Cylinder shocks below Pmax/Po < 1.1
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Closed Resonator Configuration With Blockages
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• Identical hardware and instrumentation used in 
Baseline experiments

• Baseline end caps (no ventilation holes)

• Additionally

– Centrally located cylindrical blockage
• φ 0.403 inch (1.255 cm)

Closed Configuration w/ Blockages: Experimental Setup

Blockage
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Closed Configuration w/Blockages: Experimental Results

• Blockage Diameter: φ 0.403 inch 
(1.255 cm)

• No apparent hysteresis

• No frequency shift with increasing 
acceleration amplitude
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Closed Configuration w/Blockages: Experimental Results

• No microshocks evident

• Po = 97.6 kPa

• PMAX / P0 = 1.34   (130.8 kPa)

• Static Pressure rise of 2.1 kPa

• Blockage Diameter: φ 0.403 inch 
(1.255 cm)

• No apparent hysteresis

• No frequency shift with increasing 
acceleration amplitude
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Open Resonator Configuration
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Open Resonator Configuration: Experimental Setup

• Identical hardware and instrumentation used in 
baseline experiments

• End caps

– Aluminum 7075T6

– 0.188inch (4.77x10-3m) 
thickness

• Additionally

– Wide end cap:

– one (1) ventilation hole 
φ0.100in (φ2.54x10-3m)

– Narrow end cap:

– eight (8) ventilation holes 
φ0.025in (φ6.35x10-4m)

RESONATOR

8 VENT HOLES

1 VENT HOLE

Wide and narrow ventilation have similar areas
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Open Configuration: Experimental Results

• Max acceleration: 100g

• No apparent hysteresis

• No frequency shift with 
increasing acceleration 
amplitude
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Open Configuration: Experimental Results

• Max acceleration: 100g

• No apparent hysteresis

• No frequency shift with 
increasing acceleration 
amplitude

• No microshocks evident

• Po = 99.2 kPa

• PMAX / P0 = 1.26   (125.5 kPa)

• Static Pressure rise of ~ 0.5 kPa
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Open Resonator Configuration
with Pressure Differential
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Open Resonator Configuration: Experimental Setup

• Identical hardware and 
instrumentation used in 
open resonator 
experiments

• Additionally

– Plenum pressurized

– Air flow metered

• Oscillation conditions:

– No Oscillation

– Off Resonance

– On Resonance
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Open Resonator with Differential Pressure Results

• No Oscillation
• Off Resonance
• On Resonance

1.5 psi seal
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• No Oscillation
• Off Resonance
• On Resonance

Open Resonator with Differential Pressure Results
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Feasibility of reducing air-flow 
using acoustic pressurization 
demonstrated
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Summary

1. Standing waves with maximum pressures of 188 kPa have 
been produced in resonators containing ambient pressure 
air.

2. Addition of structures inside the resonator shifts the 
fundamental frequency and decreases the amplitude of the 
generated pressure waves.

3. Addition of holes to the resonator does reduce the 
magnitude of the acoustic waves produced, but their 
addition does not prohibit the generation of large 
magnitude non-linear standing waves.

4. The feasibility of reducing leakage using non-linear 
acoustics has been confirmed.
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Future Work

• Other resonator 
shapes are known to 
produce higher 
pressure amplitudes 
(shown right).

• Other advanced seal 
concepts have been 
identified and are 
expected to have 
greater pressure 
blocking ability.
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End of Presentation
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Appendix
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Shock Formation in a Cylindrical Resonator

Off Resonant Frequency Oscillation
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Shock Formation in a Cylindrical Resonator

On Resonant Frequency Oscillation
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Pressure Waveform in a Horn-cone Resonator

On Resonant Frequency Oscillation
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Horn-cone resonator results
Using New Glenn Acoustic Seal Lab:

• Demonstrated high acoustic pressures 
(~45psi) suitable for seals can be 
generated in closed resonators with air
as working fluid (Literature: high 
molecular weight refrigerant)

• Demonstrated high acoustic pressures 
possible with addition of central shaft 
blockage

Developed / validated

• 1-Dimensional acoustic 
resonator analysis/design tool 
for closed  resonators.

– Good agreement 
between experimental 
and predicted pressure 
amplitudes and 
resonant frequency
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Closed Configuration w/Blockages: Experimental Results

• Constant maximum sinusoidal 
acceleration: 80g

• Increasing blockage diameter:

– Reduces PMAX
• PMAX / P0 = 1.65 ( φ0.403 inch )

• PMAX / P0 = 1.57 ( φ0.443 inch )

– Increases fundamental 
resonant frequency

• Ω1 = 1.293 ( φ0.403 inch )

• Ω1 = 1.299 ( φ0.443 inch )
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Comparison of Results

• Maximum 
Acceleration 
Amplitude: 80g

• From the baseline 
configuration:

– PMAX reduced 31% 
with addition of 
openings 

– PMAX reduced 36% 
with addition of 
blockages

– Ω increased 2% 
with addition of 
blockages
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