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Effect of Detector Dead Time on the Performance of Optical 
Direct-Detection Communication Links 

C.-C. Chen 
C o m m u n i c a t i o n s  Systems Research Sec t ion  

Avalanche photodiodes (APDs) operating in the Geiger mode can provide a signifi- 
can tly impro ved single-ph o to n detect ion sensitivity over conventional photodiodes. 
However, the quenching circuit required to remove the excess charge carriers after each 
photon event can introduce an undesirable dead time into the detection process. The 
effect of this detector dead time on the performunce of a binary pulse-position-modulted 
(PPM) channel is studied by analyzing the error probability. It is shown that, when back- 
ground noise is negligible, the performance of the detector with dead time is similar to 
that o f a quantum-limited receiver. For systems with increasing background intensities, 
the error rate of the receiver starts to degrade rapidly with increasing dead time. The 
power penalty due to detector dead time is also evaluated and shown to depend critically 
on background intensity as well as dead time. Given the expected background strength in 
an optical channel, therefore, a constraint must be placed on the bandwidth of the 
receiver to limit the amount of power penalty due to detector dead time. 

1. Introduction 
The single-photon detection sensitivity of  avalanche photo- 

diodes (APDs) can be improved significantly by operating the 
APDs in the Geiger mode [ l ] .  In contrast to  conventional 
photodetectors that are susceptible to  circuit noise. the ex- 
tremely high gain of  the Geiger-mode APD allows single- 
photon events to  be detected effectively. For deep-space com- 
munications where the energy efficiency is critical, the use of 
the Geiger-mode APD will allow the implementation of near- 
quantum-limited optical communication links. 

To operate the AFD in the Geiger mode, the APD is first 
cooled to  reduce the number of  thermally excited charge 
carriers. The APD is then reverse-biased beyond its breakdown 

voltage. A single photon event will then initiate an avalanche 
of  charge carriers and generate a detectable signal. Because of 
the strong reverse bias, however, the APD must be quenched 
after each photon event t o  remove the excess charge carriers 
and stop the avalanche. This quenching process introduces an 
undesirable dead time into the detection process. Photons that 
arrive after the initial photon event and before the end of the 
quenching process will therefore not be detected. The presence 
of  detector dead time can also perturb the count statistics of  
the photodetector. Compared to  a conventional detector for 
which the detection process can be modeled as a Poisson 
arrival process. the number o f  detectable photon events of a 
Geiger mode APD over a fixed interval is limited by its dead 
time. The distortion of  count statistics can result in a higher 
bit error rate for optical communication channels. Conse- 
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quently. a higher signal power is required to  maintain the given 
error performance. In this article. the effect of detector dead 
time on the performance of an optical PPM system is analyzed. 
It is shown that in the presence of detector dead time. a higher 
signal power is required to  maintain channel performance. This 
power penalty is then numerically evaluated for several differ- 
ent signal and background strengths. 

II. Photocount Statistics 
In the absence of the detector dead time. the detection o f  

photon events can be modeled as a Poisson arrival process for 
which the probability of detecting k events over a time period 
[O. T,) is given by 

where the constant h is the average rate of  arrival for photons. 
The photocount rate h can be related to the intensity of  the 
optical signal by 

where 9 is the quantum efficiency of the detector, P, is the 
intensity of the incident optical signal. h is Planck's constant, 
and v is the frequency of the optical signal. 

When the detector dead time is considered, the actual count 
statistics of  the receiver can be very different from the photon 
arrival statistics. This difference is illustrated in Fig. 1. The 
photons that arrive after the initial photon event and before 
the end of the quenching process will not be detected. In the 
presence of  the detector dead time, the detection statistics are 
no longer Poisson distributed. In fact, for a detector with dead 
time A ,  the maximum observable count over a period of 
[O, T,) is k,,, = LT,/aJ + 1 where L..xJ denotes the largest inte- 
ger that is smaller than x .  Furthermore, since the detector 
dead time can overlap two adjacent time slots, the count statis- 
tics over a given time slot will also depend on the received 
optical intensity over the previous time slot. For a receiver 
with dead time A, the probability of detecting k photon events 
where k < k,,, - 2 is given by (Appendix) 

KoK: 
k - Q + I  

P = O  V!(Ko t K I )  

where 6 = A/T,  is the normalized dead time and K O ,  K ,  are 
~~ 

the average number of  incident photons over the previous and 
the present time slots, respectively. The probability of observ- 
ing kmax - 1 and k,,, events can also be calculated: 

KOK:  (1 - (k+l)d)Ko + e 
(KO + K,)k+'  

K t ( l  - k 6 ) k  [ k! 
-6Ko-( 1 -k6)K1 + e  

P=O 

+ 5 KOK: (I-k6)(Ko+K1) e 
p=o (KO + K,)"' 

+ y  5 
Q = O  m=O 
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i (1 - k6)' 

x (1 - (k - 1)  6))" 

The probability distribution p ( k )  is plotted in Fig. 2 for 
different values of 6 .  Note that for a receiver with no dead 
time. the photocount distribution is Poisson with mean K , .  
In the presence of the detector dead time, the distribution is 
shifted towards the lower end. Furthermore, the probability 
density is zero for k > k,,, . 

111. Performance Impact 
The performance of optical channels under Poisson statis- 

tics has been investigated thoroughly in the literature [ 2 ] .  [ 3 ] .  
It was shown that the pulse position modulation (PPM) 
channel offers superior performance over other modulation 
schemes. In this scheme, each transmitted word is divided into 
M time slots, and the signal is encoded such that only one of 
these M slots contains the signal pulse. Because the detector 
can be implemented by  simply comparing the received photo- 
counts over different slot periods and choosing the slot with 
the highest count, the PPM decoder is less sensitive to the fluc- 
tuation in background and signal strengths. Furthermore, by 
compressing the signal power into a narrow time slot, a higher 
signal-to-noise ratio can be achieved and the overall system 
performance is improved. 

Given an ideal photon counting detector, the probability 
of  error for a binary optical PPM system can be written as [2] 

where K, = h,T,, KB = hBT3 are the average number of signal 
and background photons received over the time slot, and 
Q(a, 0) is the Marcum's Q function which is given by 

where f o ( x )  is the modified Bessel function of order zero. The 
above equation was derived by assuming that the photocount 
statistics of  the receiver can be modeled as a Poisson arrival 
process. In practice. the detectors used rarely achieve Poisson 
counting statistics. Conventional PIN diodes and APDs. be- 
cause of their low signal gain (G = l for PIN diodes. and 
G = 100 - 300 for APDs), are susceptible to the thermal noise 
that is in general not Poisson distributed. When operating 
under low signal intensities, the low detection gain can result 
in a reduced single-photon detection efficiency and non- 
Poisson output  statistics. 

The detection sensitivity can be improved by operating the 
avalanche photodiode in the Geiger mode [ 11. Because of  the 
detector dead time associated with the Geiger mode of opera- 
tion, however, the photocount statistics cannot be modeled 
as Poisson-distributed random variables. Furthermore. because 
of the finite duration of  the detector dead time. the detection 
statistics for neighboring time slots become correlated. The 
photocount statistics of a given time slot depend not only on 
the signal intensity, but also on the intensity received during 
the previous time slot. In effect. the presence of the detector 
dead time introduces an intersymbol interference into the 
detection statistics. 

The actual error probability of the optical PPM channel 
under t h s  intersymbol interference is difficult to analyze. A 
simple estimate of the channel error rate. nevertheless, can be 
derived by assuming that the count statistics over different 
time slots are independent. In this case the error probability of 
a binary PPM channel can be written as 

G o  m 

k = O  P=k+l  
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In the above equation, P(klKo) and P(klK,) denote the 
probability of receiving k counts in a slot where the average 
incident photons are KO and K , ,  respectively. The first term 
on  the right-hand side of the PBE expression is the probability 
that bo th  time slots receive equal counts. in which case a ran- 
dom choice was assigned at the decoder. The second term on 
the right-hand side is simply the probability that the back- 
ground time slot receives moie photons than the signal time 
slot. It should be remembered that the above PBE expression 
was derived by  assuming that the receiver photocounts for 
adjacent time slots are uncorrelated. The marginal count 
statistics for each time slot. however, still depend on the 
optical intensities received in the present and the previous 
time slots. Using this approximation. the PBE of  a binary PPM 
channel can be evaluated by averaging over different distribu- 
tions of the transmitted sequences. Plotted in Fig. 3 is the 
probability of  bit error for a binary PPM system assuming 
independent slot count statistics. The PBE is evaluated by 
assuming that channel symbols are transmitted with equal 
probability. It is seen from the figure that .  at small values of 
6 ,  the effect of dead time on the channel PBE is almost negli- 
gible. As the dead time increases. however. the channel error 
rate starts to  increase. For 6 > 0.2. the discrete quantization 
of  the detector count statistics can result in an observable 
distortion of the PBE curves. T h s  fact can be seen from Fig. 3 
where. at 6 = 1/3  and 1/2.  the PBE curves display significant 
distortions due to quantization. 

It should be noted that the performance of the PPM receiver 
depends strongly on  the background count statistics. For chan- 
nels with no background noise, the performance of the detec- 
tor with dead time is identical to  that of a quantum-limited 
receiver. When background noise is present in the receiver. 
however. the performance of the receiver becomes very sensi- 
tive to  the detector dead time. Plotted in Fig. 4 is the proba- 
bility of bit error for a binary PPM channel at different values 
of the background intensity. It is seen that, even for KB = 0.5. 
the receiver performance is very sensitive to  the detector dead 
t i m e a t S > 0 . 1 .  

Finally, the increasing probability of bit error implies that 
higher signal power is needed to  maintain the system perfor- 
mance in the presence of detector dead time. The power 
penalty due to detector dead time can be defined as the ratio 
between the required signal power in the presence and in the 

absence of detector dead time. This power penalty can be 
evaluated numerically. Plotted in Fig. 5 is the receiver power 
penalty versus dead time for a binary PPM channel at several 
values of the probability of bit error. The background inten- 
sity is assumed to  be KB = 1. Note that the power penalty 
increases rapidly for S > 0.1. In particular, for PBE = 
the power penalty due to  dead time is greater than 2 dB when 
6 > 0.1. This implies that, in order t o  keep the power penalty 
due to  detector dead time to  within 2 dB, the system operat- 
ing at PBE = must have an effective detector bandwidth 
hgher  than lo/?.  Equivalently, the detector used in the 
receiver must be capable of counting photons at a rate higher 
than l O / T , .  The required detector bandwidth is smaller for 
systems operating at lower bit error rates and weaker back- 
ground intensities. 

The power penalty also depends strongly on the back- 
ground intensity. Shown in Fig. 6 are the power penalty curves 
for a system operating at PBE = and at different back- 
ground levels. Note that systems with hgher  background 
levels are more sensitive to the detector dead time. Given the 
detector dead time, the power penalty is smaller for systems 
with weaker backgrounds. In particular, for 6 = 0.1, the power 
penalty ranges from less than 0.1 dB for Ks= 0.01. to approxi- 
mately 1.5 dB for KB = 2. 

IV. Conclusions 
The effect of detector dead time on the performance of an 

optical communication link was analyzed. It was shown that. 
in the presence of a large detector dead time, the receiver 
photocount statistics are seriously distorted. The distortion 
of photocount statistics can result in a degradation of the 
receiver performance for systems with nonzero background 
intensities. As a result, higher signal power must be applied to  
maintain the performance of the optical channel. This power 
penalty was shown to be a function of  the desired BER, the 
detector dead time, and the background intensity. When 
designing the optical channel using the Geiger mode APDs, 
therefore, sufficient power margin must be reserved to  account 
for the losses due to detector dead time. Similarly. given the 
power budget, the desired BER, and the expected background 
level. care must be taken to  ensure that the detector employed 
has a sufficient bandwidth. 
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Fig. 1. The count statistics for a detector with dead time can be very different from 
the photon arrival statistics 

1 K = X T, = 30 

k 

Fig. 2. Probability distribution of detector photocounts at difterent 
values of detector dead time 
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Fig. 3. Probability of bit error versus detector dead time for a binary 
PPM receiver with varying signal Intensity 
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Fig. 4. Probability of bit error versus detector dead time for a binary 
PPM receiver with different background intensities 
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Fig. 6. Power penalty due to detector dead time for a binary PPM 
receiver at different background intensities 

Fig. 5. Power penalty due to detector dead time for a binary PPM 
receiver at different values of the probability of bit error 
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Appendix 

Evaluation of the Probability Distribution 

; p ( k )  =lyJy . , f k - A  

The probability distribution for the count statistics can be 
divided into 4 different cases, depending o n  the time of arrival 
to of the last detected photon before the start o f  the current 
counting period. and the time o f  arrival of  the k t h  photon. 
The probability density for each of the 4 conditions can be 
easily shown to be [4] 

= krnax 
r =o t =o tk- = (k  -2)A 

~ ( t ,  . . . . , tk)  dt,  dt2 . . . dtk 
* Jk:(k- I)A 

Case 1 : to <-A , t k  > T - A  : p ( t , ,  r 2 , .  . . , t k )  

Case 2 : to < -A ,  tk < T - A : p (  io. tl , . . . . t k )  

= e-’OA e-Al(T-kA)dt . . . dtk 

C a s e 3 1  t o > - A . t k > T - A : p ( t o . t l  , . . . ,  t k )  

= h h k  eAO‘O e-Al(tk-rO-kA) dto dtl  , , , dtk 
0 1  

C a s e 4 :  t o > - A . t k < T - A : p ( t o . t  , , . . . ,  t k )  

dro d t ,  . . . dtk = hk e A o ‘ ~  e-AIIT-to-(k+l)Al 
0 1  

The probability of receiving k photons over the period 
[O,T) is simply the integral of the probability density over the 
k t 1 dimensional region spanned by ( t o .  tl  , . . . , r k ) .  Depend- 
ing on the number of photons k, the integral must be carried 
out over a different region. 

Case 1 : to <-A.  rk > T - A :  

Depending on the number of signal photons collected. the 
probability for t h s  case is given by 

, , 

t =o f =o f k - ,  = (k-2)A 

k<kmax - 1 P(k )  = 

Case 2 : to <-A.  tk < T -  A:  

‘kmax 

,T-A 

P ( t l  , . . . . tk) dt ,  dt, . . .dfk 
f,cI,=(k- 1)A 

-Al (T-kA)  e - h ~ A  
( T - k A ) k  - - e k !  

k = kmax : Not admissible 

Case 3 : to > - A .  tk > T -  A :  

I n  this case the dead time resulting from the last photon 
that arrived before the start of the time slot will overlap into 
the current time period, and the resulting photocount proba- 
bility must be averaged over the probability of arrival for the 
0th photon: 

k G k m a x  - 2 : P(k)  = 1 r-A . . .[: 
=t +(k-l)A t = - A  ? = I  +A 

1 0  

p ( t  t . ,t ,)dtodt, ... dtk 
0’ 1 ” ’  

p( t l  , . . . . t k )  d t ,  dt ,  . . . dtk k = kmax  - 1 : PO,) = /oT-(k+1)A/r2-A , , 

t = - A  f = I  +A tk- ,=Zo+ (k-I) A 
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P (io, r ,  , . . . . rk) dro dr, . . . drk 
/ t k = T - A  

+lo0 . .  
t =T- (k+ l )A  t = i  + A  

PT 

p ( f , , r , .  . . . , fk)dro dr, . . . d fk  

= kmax : P ( k )  = lT-kA f-: 
t = - A  t = t  + A  

C a s e 4 :  r o > - A . r k < T - A :  

- 2 : P ( k )  =loo r-A . . .jkr:::o 
- t  + ( k - l ) A  t = - A  t =t + A  

k'krnax 
1 0  

T- A 

Jk=to+kA 

p (fo ~ f, , . . . , rk) dfo drl . . . drk 

T- (k+ l )A  f2-A 

k = kmax - 1 : P ( k )  = . . .  
J o = - A  l = t o + A  

T-A  

p ( f  r , . . . ,r,)d$ drl . . .drk Jk=ro+kA 0' 1 

k = kmax : Not admissible 

Since the 4 cases stated above are mutually exclusive, the 
total probability of detecting k photons. is the sum of the 
probabilities evaluated in all 4 cases. By substituting the 
probability densities into the integrals, the probability for 
detecting k photons in the interval can be calculated. 
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