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EVIDENCE FOR AQUEOUSLY PRECIPITATED SULFATES IN NORTHEAST MERIDIANI USING
THEMIS AND TES DATA. Melissa D. Lane, Planetary Science Institute, 1700 E. Fort Lowell Road, Suite 106,

Tucson, AZ 85719 (lane@psi.edu).

Introduction: Recently aqueously deposited sul-
fate-rich bedrock was found at the MER-B Meridiani
landing site [1]. Additional sulfate was observed from
orbit by the Mars Express OMEGA instrument [2]. In
this work, | present midinfrared spectral evidence (us-
ing THEMIS and TES) for sulfate in and around a
channel deposit that lies to the northeast of the hema-
tite-strewn plains of Meridiani at ~2°N, 1°W (Fig. 1).
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Fig. 1: THEMIS dayltie IR band 9 image mosaic
showing distinct geologic units.

Approach: A radiance decorrelation stretch (DCS)
was performed on THEMIS daytime IR data to mag-
nify the variation in thermophysical and lithologic
properties (Fig. 2) as shown by the colors. The data
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Fig. 2: THEMIS daytime IR radiance DCS image
mosaic showing distinct geologic units.

then were radiometrically corrected to produce tem-
perature-independent emissivity.  The false-color
emissivity images (not shown) still exhibited great
color variety, supporting the lithologic diversity.

In order to maximize the understanding of the unit
compositions, high-spectral-resolution TES data were
extracted for each color unit (A-D) defined by the
THEMIS data (Fig. 2). These data were then decon-
voled using an endmember suite that included the 8
spectral endmembers derived by Bandfield [e.g., 3,4],
representing atmospheric as well as broad surface
components, in addition to a variety of sulfate miner-
als.

Results: Unit A: Deconvolution of the spectra
from the pink area “A” showed a predominance of
Syrtis-type [3] basalt (92%) in addition to 8% sulfate.
The atmospherically corrected surface spectrum (“Pink
unit”) is shown in Fig. 3. Comparison of the unit A
surface spectrum to a Syrtis-type endmember shows
the need for additional components. Although detailed
analyses of the spectra have not gone confidently be-
yond lumping the individual sulfate minerals into a
“sulfate” category, the deconvolution results did return
glauberite, jarosite, and polyhalite. Comparison of
these three sulfate spectra to the modeled surface spec-
trum shows why these minerals were identified in the
deconvolution.
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Fig 3. Modeled pink surface (unit “A’) spectrum
as compared to the derived constituents.

Unit B: The unit “B” was previously identified as
bearing coarse, gray hematite [5]. The spectral decon-
volutions from this study show the same result of
abundant hematite (~24%), in a Syrtis-dominated unit
(60%). The component kieserite also was retrieved at
~11%. Minor (~4 and 2%, respectively) jarosite and
glauberite were also identified. This list of minerals is
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intriquing because the MER-B Opportunity rover has
found evidence for jarosite [6] as well as Ca- and Mg-
bearing sulfates [7] within the hematitic Meridiani
plains to the southwest. It is likely that the two hema-
tite units are the same stratigraphic unit [5,9].
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Fig. 4: Modeled hematite-rich surface (unit “B”) spec-
trum as compared to the derived constituents.

Unit C: Data from 5 channel-crossing TES orbits
were individually analysed. The deconvolutions all
returned sulfates from 10 to 25%. Visual inspection
of several 18 m/pixel THEMIS VIS images shows
bright “bathtub rings” within the channel and the ad-
joining crater basins (Fig. 5) that likely originated as
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Fig. 5: THEMIS VIS mosaic showg “bathtub” ring
deposits in the canyon and adjoining craters

the water dried up and the sulfate-rich salts precipi-
tated. The highest percentage of returned sulfate
seems to correlate with the brightest canyon “tub ring”
deposits; however that specific deconvolution also had
the highest RMS error. An example spectrum of a
channel deposit can be seen in Fig. 6. For this particu-
lar spectrum 90% of the surface could be modeled as
Syrtis-type basalt; however it is clear when comparing
it to a Syrtis spectrum that other constituent minerals

with fundamental vibrational bands around 1200 cm™
are required to fit the spectrum better. This deconvo-
lution returned 10% sulfate (the lowest of the group).
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Fig. 6: Modeled channel surface (unit “C”) spectrum
as compared to the derived constituents.

Unit D: Deconvolution results (not shown) sug-
gest that his unit is dominated by Syrtis-type basalt
(~85%); however the unit is also sulfate-rich (~15%).

Conclusions:  Spectral deconvolution of high-
spectral-resolution TES data show this regional area to
be dominated by Syrtis-type basalts and sulfates as
well as hematite (for certain units). Although there is
work still to be done in deciphering the specific sul-
fates involved, it appears that they are predominantly
Ca-, Mg-, K-, and Na- bearing.

Not only are sulfates found within the channel it-
self, but also sulfate is required to satisfy the TES
spectra of the surrounding plains to varying degrees.

Future work: Additional spectral deconvolution
endmembers will be added to include a variety of hy-
drated silicates. This region and an area just to the east
will be investigated further with THEMIS and TES
data because preliminary results look promising for
more sulfates, and a comparison will be made to the
results from OMEGA.
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