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Abstract

While the performance of flight ssmulator motion system hardware has advanced
substantially, the development of the motion cueing algorithm, the software that
transforms simulated aircraft dynamics into realizable motion commands, has not kept
pace. Prior research identified viable features from two algorithms. the nonlinear
“adaptive agorithm”, and the “optimal algorithm” that incorporates human vestibular
models. A novel approach to motion cueing, the “nonlinear algorithm” is introduced that
combines features from both approaches. This algorithm is formulated by optimal
control, and incorporates a new integrated perception model that includes both visual and
vestibular sensation and the interaction between the stimuli. Using a time-varying
control law, the matrix Riccati equation is updated in real time by a neurocomputing
approach.

Preliminary pilot testing resulted in the optima algorithm incorporating a new
otolith model, producing improved motion cues. The nonlinear algorithm vertical mode
produced a motion cue with a time-varying washout, sustaining small cues for longer
durations and washing out large cues more quickly compared to the optimal agorithm.
The inclusion of the integrated perception model improved the responses to longitudinal
and lateral cues. False cues observed with the NASA adaptive algorithm were absent.
The neurocomputing approach was crucial in that the number of presentations of an input
vector could be reduced to meet the real time requirement without degrading the quality

of the motion cues.



The new cueing algorithms are implemented on the NASA Langley Visua
Motion Simulator (VMS), and will ultimately be implemented on the new Cockpit

Motion Facility (CMF) currently being erected at NASA Langley.
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1. Introduction

1.1. Effect of Simulator M otion on Human Performance
The objective of a motion system, when used in conjunction with a visual system,
is to stimulate the pilot so that he or she can perceive the required motion and force
information (i.e., cues) necessary to fly the simulator within the same performance and
control activity as the actual aircraft. An example of a motion system is the six-degree-

of-freedom hexapod shown in Figure 1.1.

Figure 1.1. Six-Degree-of-Freedom Hexapod Motion System. Delft University, The
Netherlands.

Buckingham [1] reported that the inclusion of motion cues allows the pilot to
become aware of the aircraft response before visual cues are detected, noting that without
motion cues, the pilot’s perception of motion is degraded and the aircraft feels slower in
responding. Buckingham noted that in extreme cases, the pilot might be unable to control
the aircraft when the absence of motion cues introduces a 90-degree phase lag into the

control loop. Buckingham cited one case in which the motion system was disabled while



unbeknown to the pilot; the pilot described the simulation as inferior to the previous
configuration with motion, asit took longer to respond to control inputs.

Gundry [2] reported that Douvillier, et a., Fedderson, Mathney, Perry and Naish,
and Tremblay, et al. observed that when motion cues were provided, there was an
increase in high-frequency, low-amplitude control movements that appeared more like
movements observed during flight as compared to activity in a fixed-base simulator.
Gundry noted that Perry and Naish compared pilot control activity of both fixed-base and
moving-base simulation of a flight through heavy turbulence, and observed a
considerable reduction in the simulated aircraft roll angle with motion present. The
presence of motion produced pilot responses with more rapid and accurate control. These
results show that when an aircraft is subjected to turbulence in flight, the pilot uses roll
and pitch motion as information to correct the aircraft attitude. It was observed that
platform motion in response to external disturbances and maneuvering alowed the
operator to control the simulator using sensory cues similar to those used in flight.

Gundry also reported that Dinsdale, Meiry, Shirley, and Stapleford investigated
the effects of roll motion upon compensatory tracking error. In these investigations, the
presence of motion was observed to reduce the phase lag of the simulated aircraft roll
angle relative to the command input, increase mid-frequency gain and crossover
frequency, and reduce the size of the remnant. This showed that the presence of roll
motion cues provide the operator with lead information that is used to track the
disturbance input more accurately, especially at frequencies greater than 0.5 Hz (as noted

by Shirley).



Scanlon [3] conducted a piloted simulation study on the NASA Langley Visud
Motion System to determine the effects of motion cues during the performance of
complex curved approach and landing tasks in the signal environment of the Microwave
Landing System (MLS). Comparisons of pilot tracking performance and workload were
made on approach tasks of low, medium, and high complexity conducted with and
without motion, with and without turbulence, and with three different wind models. With
motion cues, smaller lateral tracking errors resulted for the most complex approach in the
presence of wind and turbulence. The effect of motion was insignificant for lateral
tracking errors for low and medium complexity approaches, and for vertical tracking
error for al levels of complexity. Motion cues, most noticeably with turbulence, yielded
a higher physical workload as measured by pilot control activity, with higher column and
whedl input rates measured for all levels of task complexity. All pilots indicated a
preference for motion over no motion, commenting that flying was easier and more
realistic with the addition of motion.

Schroeder [4] conducted an evaluation on the NASA Ames Vertical Motion
System with experienced test pilots performing single-axis vertical and directiona (yaw)
maneuvers of a hovering helicopter with varying degrees of fidelity in the motion cueing
algorithm, i.e., from nearly full motion to fixed-base. For the vertica maneuver full-
motion case, Schroeder reported that “well-damped, accurate bob-ups are achieved with
the vertical velocity staying within 10 ft/s’, but for the fixed-base case, the pilot had to
adjust his compensation with the remaining cues, recovering over time, but taking longer
to achieve final repositioning. Schroeder noted that the pilots were “stunned” by the total

loss of motion, reporting that motion cues were “certainly perceived” by all pilots for all



test conditions with motion cues, but not with the fixed-base configuration. Schroeder
commented, “Until the value of motion was demonstrated, pilot subjective impression
was that the vertical task was primarily visual”. Schroeder reported for the directional
maneuver, no performance degradation was noticed for the fixed-base case, noting that
visual yaw cues, depending on the visual scene, may be very compelling in inducing
motion perception, possibly overwhelming the yaw motion stimulus.

Hal [5] noted that platform motion remains the only currently available
technology that can provide motion cueing of both direction and magnitude without
requiring additional learning, because the pilot’s proprioceptive sensors are stimulated in
the short term in the same manner as in flight. The presence of motion will allow the
pilot to achieve a task closer to that seen in the aircraft since he uses a similar set of
sensory cues, especially when forced to operate in a high gan manner. Hall then
summarizes that motion becomes less important when the vehicle is easy to fly, the task
can be performed with low pilot workload and gain, and disturbance motion is either
absent or does not require corrective action. Platform motion becomes increasingly
important as task difficulty and pilot control gain increase, and are essentia in the
absence of good, wide field of view visua cues (e.g., flying in clouds, at night), and
necessary for high gain tasks even with strong visual cues. Hall concluded that motion
cueing is essential when a pilot must either react quickly in response to an unexpected
disturbance, or when the pilot must control a vehicle with low stability.

1.2. Vehicle Smulation Structure
The vehicle simulation structure for a motion system is shown in Figure 1.2. The

operator control inputs drive a mathematical model of the vehicle dynamics, generating



the vehicle states. Passing the vehicle states through the motion cueing agorithm
produces the desired motion cues and platform states. The desired platform states are
then transformed from degree-of-freedom space to actuator space, generating the realized
commands to the six actuators. The actuator motion commands serve as input to the

platform dynamics, resulting in the actual ssmulator motion.

Simulator .| Vehicle Dynamics
Control Input M odel

Vehicle States

Y

Motion Cueing
Algorithm

Desired
Platform States

h J

Kinematic
Transfor mation

Actuator Extension
Commands

h J

Platform Platform
Dynamics Motion

Figure 1.2. Vehicle Simulation Structure.

The motion cueing agorithm generates the desired motion cues that are
constrained within the physical limits of the motion system. Figure 1.3 shows a typical
motion cueing algorithm implementation. Vehicle states are transformed from a body
reference frame to an inertial reference frame. Scaling and limiting the vehicle states
reduces the magnitude of the motion cues. The duration of the cues are limited by the

physical dimensions of the motion system. A method to overcome this limitation is a



technique known as “washout”. Washout involves returning the platform state to a
neutral position following the initial, or “onset” portion of a motion cue, thus “washing
out” the resulting cue at levels below the pilot's perceptual threshold. This is
accomplished by passing the vehicle state through a high-pass filter, removing long-
duration (low-frequency) motion components. Figure 1.4 shows the response of a high-

pass washout filter to an acceleration ramp to step input.

B
A l I ..
a . a : . S S
A _ | Scaling and A _ | High-Pass 1 |1 1
Lar Limiting o Filter i
_ | Low-Pass Tilt Rate
o Filter Limit

Bsr

. . + .
A l Y
o] B caling : o Pass 5 B p
A A | Scaling and _ | High-Pass SR+ S S
> Ty ™ Limiting ™ Filter = - »

Figure 1.3. Motion Cueing Algorithm Implementation.

The otolith organs in the human vestibular system sense both acceleration and
tilting of the pilot’s head with respect to the gravity vector. Since the otoliths cannot
discriminate between acceleration and tilt, this phenomenon, known as tilt coordination,
can be used to advantage in motion simulation. For long-term specific force simulation,
tilting the motion platform at a rate below the pilot’s perceptual threshold augments the
short-duration acceleration cues produced by high-pass washout filters. This additional
cue results from passing the vehicle acceleration through a low-pass filter to produce the

desired long-duration tilt cue. Tilt coordination is implemented in a motion cueing



agorithm by adding additional cross-feed channels with low-pass filters in the
longitudinal (pitch/surge) and lateral (roll/sway) modes that produce the additional
rotational cues as shown in Figure 1.3. For this reason four separate modes are

implemented in a motion cueing algorithm: longitudinal, lateral, yaw, and heave.

Aircraft and Platform Acceleration

[
T

Acceleration (m/sz)

—— Aircraft
O Motion Platform

Displacement (m)

Time (sec)

Figure 1.4. Response of a High-Pass Washout Filter to a Ramp to Step Input.

1.3. Scope of Research

In recent years, the performance of the hardware used to create the sensation of
motion in flight simulators has improved substantially. However, development of the
motion cueing algorithm, the software that transforms the simulated aircraft dynamics
into realizable commands to the motion system hardware, has not kept pace with the
hardware development. Wu and Cardullo [6] reported that early approaches to motion
cueing using ssimple (first- and second-order) linear washout filters, for which the ratio of
onset to washout duration was fixed, resulted in poor motion cues. This was a

consequence of the ratios of onset to washout duration and magnitude being fixed,



thereby limiting the duration of low-magnitude cues to that of the maximum cue. In
addition, most existing algorithms are oriented towards minimizing the state error
between the aircraft and simulator rather than the perceptua error between the aircraft
and simulator pilot. Wu and Cardullo [6] identified the two most viable approaches to
motion cueing, the nonlinear “adaptive agorithm”, for which the ratios of onset to
washout duration and magnitude vary with time, and the linear, human-centered “ optimal
algorithm”.

The coordinated adaptive washout algorithm, or “adaptive algorithm” was
developed at NASA [7]. The objective of this algorithm is to adjust the motion platform
response based upon its current motion states by adjusting filter gains through a process
of minimizing a cost function in real time. The cost function is minimized by
continuously adjusting a set of adaptive parameters by the method of steepest descent.
This technique has at its basis the minimization of state error between the aircraft and
simulator. Thisalgorithm is described in further detail in Section 2.7.

The “optima algorithm” was developed by Sivan, et a. [8], and later
implemented at the University of Toronto Institute of Aerospace Studies (UTIAS) [9, 10].
This algorithm uses higher-order linear filters that are developed, prior to rea time
implementation, using optima control methods.  This method incorporates a
mathematical model of the human vestibular system, constraining the pilot sensation
error between the ssimulated aircraft and motion platform dynamics. Wu and Cardullo [6]
reported that the optimal algorithm showed the most potential for future research,

although the time-varying feature of the adaptive algorithm was also desirable.



A primary component in motion simulator design is the determination of the
motion information that is relevant to the task and has an impact on human performance.
This requires knowledge of human motion perception that, when integrated in the cueing
algorithm development can provide the most necessary and beneficial motion cues. To
that end, an integral part of this research involved the modeling of the human vestibular
and perceptual systems. Literature studies in motion sensation and the vestibular system
have been conducted to develop vestibular system sensation models that are most
consistent with both experimental and theoretical analyses. New models of both the
semicircular canals and the otoliths are proposed. Literature studies of the characteristics
of visualy induced motion sensation and the visual-vestibular interaction have also been
conducted. A new integrated human perception model is proposed that includes both
visual and vestibular sensation and incorporates the interaction between the stimuli.

The new vestibular models are incorporated in an improved development of the
linear optimal algorithm. The development of this algorithm is presented along with
results that demonstrate the effects of implementing the new vestibular models. The
nonlinear algorithm is a novel approach to motion cueing that combines features of the
nonlinear adaptive and linear optimal algorithms. This algorithm incorporates the human
vestibular models along with the new integrated human perception model. The algorithm
is formulated as an optimal control problem with a nonlinear control law, resulting in a
set of nonlinear cueing filters that are adjusted in real time based on the motion platform
states. A neurocomputing approach to solve the matrix Riccati equation in rea timeis

discussed. Responses to single degree-of-freedom aircraft inputs for the nonlinear



algorithm are presented in comparison with the NASA adaptive agorithm and the

optimal algorithm.
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2. Background Information
2.1. NASA Langley Visual Motion Simulator (VM S)
The NASA Langley Visual Motion Simulator (VMS), shown in Figure 2.1, is a
genera-purpose flight simulator consisting of a two-crewmember cockpit mounted on a

60-inch stroke six-degree-of-freedom synergistic motion base [11], [12].

Figure2.1. NASA Langley Visual Motion Simulator (VMS). NASA Langley
Research Center, Hampton, Virginia.

Motion cues are provided in the simulator by the extension or retraction of the six
hydraulic actuators of the motion base relative to the simulator neutral position. The
NASA adaptive agorithm and the new optimal and nonlinear algorithms were used to
drive the motion base during the tuning of the new algorithms and the piloted test
evaluation.

The cockpit of the VMS, shown in Figure 2.2, is designed to accommodate a
generic transport aircraft configuration on the left side and a generic fighter or rotorcraft
configuration on the right side. Both sides of the cockpit are outfitted with three heads-
down CRT displays (primary flight display, navigation/map display, and engine display),
a number of small standard electromechanica circular instruments and a landing gear

handle mounted in the instrument panel. The left side contains a two-axis side stick
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control loader, and the right side contains a control loaded two-axis center stick. Both
sides contain control loaded rudder systems. The center aisle stand is outfitted with a
control display unit, a four-lever throttle quadrant, a flap handle, a speed brake handle,
and adats handle. The cockpit is outfitted with four collimated window display systems
to provide an out-the-window visual scene. During the piloted evaluations, the test

subject flew from the left seat, while an observer/test conductor rode in the right seat.

Figure2.2. Visual Motion Simulator Cockpit. NASA Langley Research Center,
Hampton, Virginia.

The simulator includes a high fidelity, highly nonlinear mathematical model of a
Boeing 757-200 aircraft, complete with landing gear dynamics, gust and wind models,
flight management systems, and flight control computer systems. For this study, the test
subjects flew the ssimulated aircraft in the manual control mode (without the autopilot),
and with manual throttle control (without the autothrottle).

The out-the window visual scene is driven by an Evans and Sutherland ESIG
3000/GT computer generated image system. The visual database represented the
Dallas/Fort Worth airport and its surrounding terrain. The study utilized runways 18L
and 18R for approach maneuvers and runway 18R for takeoff maneuvers. The runways

were equipped with approach lights, precision approach path indicator lights, runway
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markings, and signage. The database included all runways and taxiways, and al airport
structures and buildings. All tests were conducted in a daylight environment with full
visibility.
2.2. Reference Frames

A series of reference frames are used in the definition of the motion cueing
algorithms. These reference frames are defined below and are shown in Figure 2.3.

2.2.1. Aircraft Center of Gravity

The aircraft center of gravity reference frame Fr; has its origin at the center of
gravity of the aircraft. Frame Frs has an orientation for X¢g, Yce, and Z¢ that is parallel
to reference frames Frs and Fr.

2.2.2. Simulator

The ssimulator reference frame Frs has its origin at the centroid of the simulator
payload platform, i.e. the centroid of the upper bearing attachment points. The origin is
fixed with respect to the simulator payload platform. Xs points forward and Zs points
downward with respect to the simulator cockpit, and Y points toward the pilot's right
hand side. The x-y planeis parallel to the floor of the cockpit.

2.2.3. Aircraft

The aircraft reference frame Fr, hasits origin at the same relative cockpit location
as the simulator reference frame Frs. Fra has the same orientation for X,, Y., and Z,

with respect to the cockpit as the simulator frame Frs.
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2.24. Inertial

The inertia reference frame Fr, is earth-fixed with Z, aligned with the gravity
vector g. Itsoriginis located at the center of the fixed platform motion base. X, points
forward and Y, points to the right hand side with respect to the simulator pilot.

2.2.5. Reference Frame Locations

In Figure 2.3 are four vectors that define the relative location of the reference
frames. R, defines the location of Frs with respect to Fr,. Rs defines the location of Frps
with respect to Frs. Similarly, R, defines the location of Frp, with respect to Fr,, where

Ra = Rs. Rcc defines the location of Fr, with respect to Freg.

Aircraft

Simulator

Z

Figure 2.3. Reference Frame Locations. Adapted from Wu [13].
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2.3. Coordinate Transfor mations

The orientation between the body-fixed ssimulator reference frame Frs and the
inertial reference frame Fr, can be specified by three Euler angles: p=[¢ 6 w]' tha

define a sequence of rotations that carry Frs into Fr. A vector V expressed in the two

frames can be related by the transformation matrix L,s (Fr, to Frs) or Ly (Frsto Fr)), with
vi=L V' andV'=Lg V® wherelL =L3 =Ly, and

cosfcosy Singsin@cosy —cosgsiny  CoS@Sin@ cosy +singsiny
Ly =|cosfsiny sSingsin@siny +Cosgcosy  cosgsSingsiny —sing cosy |. (2.2)
-sing singcosé COS¢ cosé

The angular velocity of Frs with respect to Fr, can be related to the Euler angle
rates f by the following expression. Let of represent the components of this angular
velocity in frame Frg, then p = T, 02, where

1 singtand cosgtané
T,=|0 cos¢ -sing |, (2.2)
0 singsecd cosgsecd

and ®f =TS B, where

1 0 —-sing
T.'=|0 cosg singcosd |. (2.3)
0 —-sing cos¢cosd

Note that in this example, the body-fixed aircraft reference frame Fr, can replace the

body-fixed simulator reference frame Fres.
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2.4. Actuator Geometry
The geometry of a six-degree-of-freedom synergistic motion system is given in
Figure 2.4. The relevant vectors relating the locations of the upper and lower bearings of

the j-th actuator are shown below in Figure 2.5.

Motion
Platform

Fixed
Platform

Figure 2.4. Geometry of a Six-Degr ee-of-Freedom Motion System. Adapted from
Wu [13].
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O

Figure 2.5. Vectorsfor thej-th Actuator.

In Figure 2.5, Os and O, are the centroids of the motion platform and fixed
platform respectively, and are also respectively the origins for Frs and Fr,. It can be seen

that the relation among those vectorsis
R +A =R, =B +I. (2.4)
The actuator length vector can then be found from
| =Al+ R, -B. (2.5)
The expression of |; intheinertial reference frame Fr; is desired:

| — | |
Ij —Aj+ Rl—Bj

(2.6)
=LgAS+ R, -B],

where Al.S are the coordinates of the upper bearing attachment point of the j-th actuator in

Frs and BJ'. are the coordinates of the lower bearing attachment point of the j-th actuator

in Fr. The actuator extensions can then be found from

Alj =1; (t) = 1; (0)

=(Lg (t)-Lg (0))A% +(R, (t) =R, (0)). @7
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Usually the actuator extension is computed from a neutral platform position, where
Ly (0)=1 (I istheidentity matrix), and R, =0, therefore Al = LS,A].S +AR, .
2.5. Nonlinear Input Scaling

Limiting and scaling are applied to both aircraft transational input signals a, and

rotational input signals 4. Limiting and scaling modify the amplitude of the input

uniformly across al frequencies. Limiting is a nonlinear process that clips the signal so
that it is limited to be less than a given magnitude. Limiting and scaling can be used to
reduce the motion response of a flight ssmulator. A third-order polynomial scaling was
developed [13] and has been implemented in the new simulator motion cueing
algorithms.

When the magnitude of input to the simulator motion system is small, the gain is
desired to be relatively high, or the output may be below the pilot’s perception threshold.
When the magnitude of input is high, the gain is desired to be relatively low or the
simulator may attempt to go beyond its hardware limits. Let us define the input as x and

the output as y. Now define X, as the expected maximum input and y. ., as the
maximum output, and s,and s as the slopes at x = 0 and x = X, respectively. Four

desired characteristics for the nonlinear scaling are expressed as.

@D x=0=y=0,

(2) X=X = Y= Yo
A Y]o= S
@Y. =s

A third-order polynomial is then employed to provide functions with al the

desired characteristics. This polynomia will be of the form
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y=0X +C, X +CX+Cy, (2.8)

where
G =0,
G=%:
C2 = Xr:fa\x (3ymax - 25Oxmax - S.Lxmax)’
Cs = X (5% = 2Yimae + S %K)

One example of this polynomial gain is shown in Figure 2.6, with parameters set as

Xmax = 10' ymax = 6) %: 1-0, Sl= 0.1.

Nonlinear Scaling
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Figure 2.6. Nonlinear Input Scaling.

2.6. Specific Force at the Pilot’s Head
The purpose of the motion cueing algorithm is to create a specific force vector
and an angular velocity vector at the pilot's location in the simulator that approximates
the stimulus that the pilot would experience in an actual aircraft. The relation between
the specific force acting on the simulator pilot and the specific force at the origin of the

simulator reference frame can be found from
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S _ S _ oS
frs =aps—0

=a3 + e X R+ 0 X (03 xRy) —g° (2.9)

=fS + @z xR+ 0 X (@I XR,).
Both fS.and ®F are used to compute sensed responses using the vestibular models

discussed in Chapter 3. Similar expressions can be obtained for the specific force and
angular velocity at the aircraft pilot’s head.
2.7. Coordinated Adaptive Washout Algorithm
The intent of the NASA adaptive algorithm [7] is to adjust the response of the
simulator washout filtersin real time according to the current state of the smulator. The
block diagram for this algorithm is shown in Figure 2.7. There are separate filtering
channels for the trandlational and rotational degrees of freedom with a cross-feed path to

provide the steady-state tilt coordination cues.

P

i

Y
=

Ay Nonlinear & + A * 5 o SI 1 SI st
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Scaling 5 5

. + A -
gA gb d
e |-
p - . | Tilt Rate
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ory Nenlinear o Ba ] Bsr ﬁS

Y
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Scaling

Figure2.7. Coordinated Adaptive Washout (NASA Adaptive) Algorithm.
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The aircraft acceleration vector a, is first transformed from the center of gravity

of the aircraft to the motion base centroid. After nonlinear scaling and limiting, the
gravity vector is subtracted to produce a simulator frame specific force vector. The

simulator specific force is transformed from the simulator frame Frs into the inertial
frame Fr,, resulting in the inertial specific force command f,. The specific force
command f, is passed through a trandational channel with a time-varying gain 4 to
produce a simulator trandational acceleration command S'. This acceleration is
integrated to produce the velocity S', which is then integrated to produce the simulator

trangdational position command S . Both the velocity and position commands are

employed as feedback.

The aircraft angular velocity vector o, is limited and scaled similar to the
trandational channel, with the resulting vector being transformed to the Euler angular
rate vector f A - Thisvector is passed through the rotational channel with a time-varying
gain & to produce the vector Bg,. The tilt coordination rate B is formed from the
acceleration a, being passed through the cross-feed channel with a fixed gain y. The
summation of B, and B, will yield g, which is then integrated to generate B, the

simulator angular position command.

Lg and Ts are formed by Egs. (2.1) and (2.2). The simulator transational
position S' and the angular position B are used to transform the simulator motion from

degree-of-freedom space to actuator space as given in Egs. (2.6) and (2.7), generating the

actuator commands required to achieve the desired platform motion.
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The control law for the longitudinal mode is given by the following expressions:

éi:le/-l\x_dxs.l_exsi

. . (2.10)
08 = 7x f/-l\x + 5x0A’

where d,, e, and y, are fixed parameters, and A, and J, are the time-varying
parameters that are continuously adjusted in an attempt to minimize the instantaneous
value of the cost function. The cost function is defined as

1 | Ry WX . ) bx 12 Cx 1 \2
JX:E(fAX—SX) +7(9A—93) +?(SX) +7(sx), (2.12)

where W, , b, and C_  are constant weights that penalize the difference in response

between the aircraft and simulator, as well as restraining the translational velocity and

displacement in the simulator.

The time-varying parameters A, and o, are adjusted by steepest descent as given

by
. 33,
A =—K, 2 +Ki, (Ao —Ay)
x (2.12)
. 33,
§x = Kﬁx 20 + Ki5X (5><0 - 5x)’

X

where K, , K, , K, , and K;; are constants. The first right-hand side term of each

equation defines the change of the time-varying parameter is to be toward a minimum,
and together with the second term defines the rate of change. The second term also

restrains the deviation of either 4, or o, respectively from their original values.
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3. Vestibular System M odeling

This chapter discusses the development of vestibular system sensation models that
are most consistent with both experimental and theoretical analyses and can be readily
implemented into a motion cueing algorithm. These results are based on the literature
presented by several researchers who investigated the physiology of the semicircular
canals and the otolith organs, and also studied rotational and linear motion sensation.
The development of the semicircular canals sensation model follows a previous
presentation [13]. In addition, research on motion thresholds was surveyed in order to
produce values to be used in the motion cueing algorithm devel opment.

The vestibular system is located in the inner ear and consists of the semicircular
canals and otolith organs that sense angular and linear motion respectively. The location

and orientation of the vestibular system in the head is shown in Figure 3.1.
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Figure 3.1. Location and Orientation of the Semicircular Canals. Reproduced with
Permission from Purves, et al. [14].
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3.1. Semicircular Canals

3.1.1. Physiological Description

The semicircular canals consist of two sets of three elliptical cavities or canas
that are filled with a fluid known as endolymph. The orientation of the canals in the head
is shown in Figure 3.1. With the head in its normal erect position, the plane through the
diameter of each horizontal canal is inclined about thirty degrees above an earth-
horizontal plane. The posterior vertical canal lies in an amost vertical plane, forming a
45-degree angle with the frontal plane of the head. The anterior canal is also a a 45-
degree angle with the frontal plane, forming aright angle with the posterior canal.

At one point on each canal, the canal cavity swells to form a bulbous expansion
called the ampulla that contains the sensory ephithelium or crista.  The crista contains
bundles of sensory hair cells that extend into a gelatinous mass called the cupula as
shown in Figure 3.2. The cupula bridges the width of the ampulla cavity, forming a sed
through which endolymph cannot circulate. When the head turns in the plane of one of
the canals, the inertia of the endolymph produces a force across the cupula, deflecting it
in the opposite direction of head movement and causing a displacement of the hair
bundles in each hair cell. Each hair cell has about 70 stereocilia and one kinocilium [15],
with the stereocilia graded in length towards the kinocilium. Within one cupula, each
kinocilium is on the same side as its stereocilia, forming a direction of polarization.
When the cupula deflection is in the direction of the kinocilium, the hair cells will be
maximally excited; whereas when the deflection is in the opposite direction the cells will

be maximally inhibited.
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Figure 3.2. Physiology of the Semicircular Canals Cupula. Reproduced with
Permission from [14].

There are two types of sensory cells located in the cupula. The type | cells are
contained in a nerve chalice and are innervated by fibers with alarge diameter. The type
Il cells are cylindrical and are innervated by fibers with a small diameter. Both types of
cells have a series of small hairs that penetrate into the cupula mass.

3.1.2. Mathematical Model

Zacharias [16] reported that Steinhausen first developed a linear second-order
model of canal dynamics to explain the observed characteristics of vestibular-induced eye
movements in fish (pike). This model was further refined by the “torsion-pendulum”
model of Van Egmond, et a., [17], and was later developed from a systems approach by

Mayne [18]. The transfer function for this overdamped system is

e (S) TlTZ (3 1)

a(s) (+zs)(1+1,8)

Further studies showed that the torsion-pendulum model does not completely
represent rotational sensation. Y oung and Oman [19] formulated an adaptation operator

and cascaded it with the torsion-pendulum model to resolve the conflicts between the

25



response predicted by the torsion-pendulum model and the perceptual responses
measured in experiments. The addition of the adaptation operator resulted in the

following transfer function:

7S 1
a(s) " e [(14' TaS)}[(l+ 7,5)(1+ z'zs)}’ (32

where the gain Kgc hoted by Zacharias [16] is proportional to 7 7.
Zacharias [16] reported several experiments suggesting an additional lead
component. With the addition of this component, a model representing both the

semicircular cana dynamics and the neural transduction dynamics was established:

_ 7,S (1+17.s)
als) = Lu ras)}[m 791+ TZSJ- (33)

Parameters for man are difficult to measure because direct measurement of the

afferent response of the semicircular canals cannot be obtained. Therefore, most early
experiments to determine the torsion-pendulum model parameters were based on
subjective responses. Van Egmond [17] reported that the long time constant z; and short
time constant 7, had values of about 10 seconds and 0.1 seconds respectively. The values
were based on the verbal response of humans subjected to various motion inputs in both a
rotating chair and a torsion swing. Zacharias [16] noted that Meiry, measuring detection
latency as a function of angular acceleration step size, obtained a 7-second long time
constant for roll-axis rotation about the earth-vertical axis, and that Guedry, using a short
period rotational stimulus consisting of an acceleration pulse doublet, and a response
measure of apparent displacement, found values of 16 seconds for yaw-axis rotation and

7 seconds pitch-axis rotation about the earth-vertical axis. Zacharias [16] then reported

26



that Malcolm and Melvill-Jones investigated the response to earth-vertical rotation about
al three axes by using a velocity step as the stimulus, and measured the elapsed time to
zero perceptual response. They obtained values of 6.1 seconds for the roll axis, 5.3
seconds for pitch, and 10.2 seconds for yaw.

Goldberg and Fernandez [20] determined average parameters for the semicircular
canals of the squirrel monkey by direct measurement of the afferent nerves due to various
angular acceleration inputs of different amplitudes and frequencies. Their transfer
function related the afferent firing rate of the vestibular nerve to the angular acceleration

input:

AFR(s) _ 80s (1+0.049s)
o(s) = 3-44[(1+ 805)}[(1+ 5.7s)(1+ 0.003s) . (3.4)

The model parameters were estimated with the exception of the short time
constant 7, which was determined analytically based on the physiology of the
endolymph. Goldberg and Fernandez [20] noted that the short time constant 7, is
estimated to be 0.005 seconds for humans.

It can be inferred that the long time constant 7z measured by Van Egmond, et a.,
Meiry, Guedry and Malcolm and Melvill-Jones, as reported by Zacharias [16], does not
actually represent the semicircular canal parameter in the model, but is an overal
dynamics parameter representing the rotational sensation response to an angular velocity
input. Zacharias [16] suggested that each axis of rotation has an equivalent “body axis’
canal pair with a distinct time constant. The psychophysical results show each of the
three axes having a distinct value for z.. However, physiological results based on

afferent responses by Goldberg and Fernandez show the same value for 7 for the three
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canal pairs. Zacharias [16] suggested the differences shown in the psychophysical results
could occur at acentral origin at the perceptual level.

From subjective pilot measurements of angular acceleration thresholds on a
moving base platform, Hosman and Van der Vaart [21] obtained the following
semicircular canals transfer function, neglecting gain sensitivity and adaptation:

1 + 0.1097s
(1 + 5.924s)(1 + 0.005s)’

Hee (S) = (3.5)

These results are based upon roll and pitch acceleration thresholds;, yaw
thresholds were not measured. The value for 7 agrees well with the value obtained by
Goldberg and Fernandez [20]. The value obtained for 7 compares to a value of 0.06
seconds that Zacharias [16] reported that Benson and Ormsby obtained in experiments
measuring nystagmus or involuntary eye movement due to motion.

Zacharias [16] assumed that the angular velocity @ from the semicircular canals
that is sensed by human subjects is proportional to the cupula deflection ¢, and is
expressed by the transfer function

a(s) 7,8
o(s)  (+7,8)(1+71,9)

(3.6)

where Zacharias [16] noted that the sensitivity gain is equal to the magnitude of the long
time constant 7z;. Goldberg and Fernandez [20] obtained gain sensitivity between the
input stimulus and the afferent firing rate that was estimated at 3.44 spikes/sec per
deg/sec®. Zacharias [16] noted that Ormsby suggested that the sensed angular velocity @
is proportional to the afferent firing rate. While no one to date has experimentally

obtained this parameter, Zacharias [16] reported that Curry, et a. provided an estimate of
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the overall gain between perceived and input angular velocity based on angular
acceleration thresholds.

From this research, a transfer function that can best relate the sensed angular
velocity to the acceleration stimulus is employed in the motion cueing algorithm

development:

a(s) 80s (1+0.06s)
a(s) 5'73’{(“ 805)}[(1+ 5.73s)(1+ 0.005s) | (3.7

The frequency response of the transfer function given in Eq. (3.7) is shown in
Figure 3.3. Both the torsion-pendulum model and the complete model with the lead and
adaptation mechanisms included are shown.
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Figure 3.3. Frequency Response of Semicircular Canals Transfer Function.

The sensory function of the semicircular canals can be described by observing the
frequency response of the torsion-pendulum model. In the range of normal head

movement from 0.1 to 1.0 Hz [22], the gain response decreases by 20 dB/decade with the
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phase close to minus 90 degrees. In this frequency range, the semicircular canas
function as “integrating accelerometers’ or angular velocity transducers. At very low
frequencies less than 0.01 Hz, the phase approaches zero degrees, thus functioning as an
accelerometer. At very high frequencies greater than 100 Hz, the phase approaches
minus 180 degrees, thus functioning as an angular displacement transducer. The effects
of adaptation and lead on rotational sensation are apparent; adaptation influences the
afferent response at low frequencies below 0.01 Hz while the lead component influences
high frequencies greater than 10 Hz.

For implementation into the optimal cueing agorithm, angular velocity is

employed as a stimulus, requiring the following transfer function:

a(s) 573 805’ (1+0.06s)
w(s) " (1+80s)(1+5.73s)(1+ 0.005s)’

(3.8)

In addition, numerical stability problems may result when integrating the transfer
function due to the small magnitude of the short time constant 7 in the denominator
relative to the simulation time step. Solely neglecting the short time constant would
result in an unrealizable transfer function, but the lead time constant 7z in the numerator
could also be neglected since its order of magnitude is the same as the cueing algorithm
time step. For numerical integration, the step size should be at least ten times smaller
than the smallest time constant. The effect of both 7, and 7 is aso well above the range
of normal head movements. For these reasons a reduced-order transfer function can be
utilized:

a(s) _ 80s
@ =57 (1+80s)(1+5.73s) (3.9)
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3.1.3. Physiological I nterpretation

Wu [13] presented a physiologica interpretation of the behavior of the
semicircular canals. He noted that the cupula-endolymph system first transforms an
acceleration input to the head into a displacement of the cupula. This displacement then
becomes an afferent response through a “mechano-neural” transduction system consisting
of sensory hair cells and both efferent and afferent nerves.

Many researchers have shown that an overdamped torsion-pendulum model could
represent the cupula-endolymph system. Wu [13] reported that the remaining terms
represent an adaptation-lead mechanism, noting the controversy over whether its origins
lie in either the cupula-endolymph or the mechano-neural system. Wu reported that
Goldberg and Fernandez [20] assumed that the origin of the adaptation mechanism might
be centered on the physiology of the hair cells and/or the afferent neurons. Wu then
noted that Goldberg and Fernandez suggested the lead mechanism may originate from
sensory hair cells that are sensitive to both cupula displacement and velocity, which is
reflected in the time constant 7. Wu [13] presented an interpretation by Schmid, et al. in
which the lead mechanism is represented by efferent pathways that modify the feed-
forward afferent dynamics by means of a negative feedback. Wu [13] demonstrated that
this approach would justify the difference in order-of-magnitude of the adaptation time
constant 7, and the lead time constant 7.

3.2. Otaliths
3.2.1. Introduction
The otolith organs are the elements of the vestibular system that provide linear

motion sensation in humans and mammals. These organs are responsive to specific
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force, responding to both linear acceleration and tilting of the head with respect to the
gravity vector. However, the otoliths cannot discriminate between acceleration and tilt,
requiring additional sensory information to resolve this ambiguity. There are two otolith
organs, the utricle and saccule, in each inner ear. The utricle primarily senses motion in
the horizontal plane, while the saccule primarily senses motion in the vertical plane. The
otolith organs are inclined by about 20 to 30 degrees above the earth-horizontal plane as
shown in Figure 3.1.

3.2.2. Physiological Description

The otolith organs consist of a two-layer structure known as the otolithic
membrane that is attached to a base containing sensory cells. The otolithic membrane is
composed of an upper layer, the otoconial layer, and a lower layer, the gelatinous layer.
The endolymph fluid is in contact with the upper surface of the otoconial layer. The
otoconial layer consists of calcium carbonate crystals embedded in a gelatinous material
that rests on a less dense and extremely deformable gelatinous layer. This gelatinous
layer isin turn attached to the sensory cell base known as the maculathat is incorporated
into the membranous tissue walls of the inner ear. The macula is rigidly attached to the
skull and therefore moves with the head.

There are two types of sensory cells located in the macula. The Type | cells are
enclosed in a nerve chalice and are innervated by fibers with alarge diameter. The Type
Il cells are cylindrical and are innervated by fibers with a small diameter. Fernandez and
Goldberg [23] reported that cells in the outer (peripheral) otolith region are primarily
Type |l célls, and in the central (striolar) region cells are primarily Type |. Both types of

cells have a series of small hairs that penetrate the lower portion of the gelatinous layer.
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Each hair cell has about 70 stereocilia and one kinocilium [15], with the stereocilia
graded in length toward the kinocilium.

The resulting displacement of the otolithic membrane due to forward linear
acceleration isillustrated in Figure 3.4. The arrow in the figure shows the direction of the
specific force acting upon the head. With a forward acceleration or backward tilting of
the head, the denser otoliths tend to lag behind the macula, with the relative motion
resulting in deformation of the gelatinous and otoconial layers in shear. When the shear
deformation is in the direction of the kinocilium, the cell will be excited, whereas when
the deformation is in the opposite direction, the cell will be inhibited. The directions of
the maximum excitation and inhibition of a hair cell are defined by its polarization axis.
In each macula, the central parting known as the striola separates oppositely polarized
regions. For each position due to translational movement, some cells will be maximally

excited, while others will be maximally inhibited.

Acceleration

Figure 3.4. Displacement of the Otolithic Membrane due to Forward Acceleration.
Reproduced with Permission from Purves, et al. [14].

Fernandez and Goldberg [24] identified two types of neurons that are
characterized by their variance or regularity of discharge, hereafter referred to as regular

and irregular units. From a sample population of units, they identified a ratio of regular
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to irregular units to be approximately three to one. The response of a neuron is the
afferent firing rate (AFR).

3.2.3. Mathematical Modeling

Zacharias [16] reported that Meiry first investigated subjective responses to linear
motion by using a cart to produce longitudinal sinusoidal motion. By measuring the
subjective indication of direction, he obtained a transfer function relating perceived

velocity v to stimulus velocity v:

\7(8) _ KOTOTlS
v(s) (zs+1)(7,8+1) (3.10

where the long time constant 7z and short time constant 7, are 10 and 0.66 seconds
respectively, and the gain Kqro IS undetermined since amplitude measurements were not
taken. Zacharias [16] then noted that Peters suggested the subjective response measured
by Meiry was perceived acceleration and not perceived velocity, since in response to an
acceleration step, the model predicted a perceived response that decays to zero with a
time constant of 10 seconds.

Young and Meiry [25] noted that the model proposed by Meiry correctly
predicted the phase of perceived velocity for lateral oscillation and time to detect motion
under constant acceleration, but failed to predict the otoliths' response to sustained tilt
angle as indicated by behaviora and physiologica data. They noted that the model
agreed with dynamic counter-rolling data (of the eye) at high frequencies, but
experimental counter-rolling at zero frequency showed a static component of otolith
output with no phase lag (the model assumed no static output and at zero frequency
approached 90 degrees of lead). They proposed the following revised model of specific

force sensation:



f(s) 15(s+0.076)
f

= , 311
(s) (s+0.19)(s+1.5) (.10
which, when rearranged in terms of the time constants, yields
f 0.4(13.2s+1
f (s)_ (13.25+1) (3.12)

(s) (5.33s+1)(0.665+1)

With asmaller long time constant (5.33 seconds) and an additional lead term, they
modeled both perceived tilt and acceleration in response to acceleration input. They
noted that the model acts as a velocity transducer over the frequency range of 0.19 to 1.5
rad/s, with the transfer function from specific force to perceived tilt or lateral acceleration
having a static sensitivity of 0.4. This model presumes the equivalence of linear
accel eration sensation with that of tilt.

Zacharias [16] noted that a lumped parameter model of otolith motion could be
used to represent the two lag time constants, similar to the torsion-pendulum model for
the semicircular canals. Ormsby [26] first developed this model, and Grant, et al. [27-30]
later refined the model as part of their theoretical analysis of the otolithic membrane.

Grant and Best [30] obtained the following transfer function for the model:

ﬁ _ _&\ 7,7,
f(s (1 0o J(1+7,8)(1+1,8)’ (3.13)

where X is the relative displacement of the otoconial layer with respect to the head, p. is
the density of the endolymph, p, is the density of the otoconial membrane, with p, > p..
For the otoliths, we again have an overdamped system with 1, >> 1,.

In determining the value of the short time constant z,, Grant and Best [30] first

examined the maximum displacement of the otoconial layer in response to a step change
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in linear velocity. The acceleration for alinear velocity step U is a, =-UJd(t), with g« =

0, where 6(t) isthe unit impulse function. The transient response to Eq. (3.13) isthen

x(t) =U (1— &jrz(e%l _e /). (3.14)

By assuming that the short exponential term in Eq. (3.14) has reached zero and
the long exponential term remains close to unity, the maximum displacement of the

otoconial layer X can be approximated as

X =U ( - &Jrz, (3.15)

The theoretical continuum mechanics analysis performed by Grant and Best [29]
first indicated that this short time constant 7, is 0.002 seconds or less. They later
demonstrate that this value turns out to be too large when reasonable values of the
maximum otolith displacement are considered. For p, = 2.0 and U = 25 cm/sec (a
reasonable value for normal head velocity), Eq. (3.15) becomes X = 12.5%. For 5, =
0.002 sec, the maximum displacement of the otolithic membrane resulted in X, = 250
um. It was assumed for shear deformation the maximum displacement should not exceed
the thickness of the otoconial layer (25 um), indicating the short time constant should be
one order of magnitude smaller, 7 = 0.0002 sec. Thisindicated that more damping was
needed in the lumped parameter model. Grant and Best [30] showed that additional
damping could be introduced by the inclusion of a viscoelastic gelatinous layer in the
continuum mechanics model.

Ormsby [26] neglected the short time constant 7z in Eq. (3.15), and after

rearranging terms, approximated the otolith mechanical dynamics by
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—= : (3.16)
f(s) s+A
and then proposed a model for the response of the otolith afferent dynamics:
Bs+(B+C)A
AFR(s) _ ( ) | (317)

f(s) s+A
where AFR is the change in afferent firing rate from the resting discharge, and the

constants A, B, and C are undetermined. This model assumes that higher centers process

the afferent response optimally to estimate the perceived specific force f as shown in

Figure 3.5.
f(s Bs+(B+C)A | AFR(s f(s
(5, (B+C) G (s) (s,
s+ A

Combined Processing by

Mechanical and Higher Centers

Afferent Otalith
Dynamics

Figure 3.5. Modéd of Otolith Specific force Sensation. Adapted from Ormsby [26].

The steady-state optimal processor H(s) is then determined by solving the
associated Wiener-Hopf equation [31], yielding a solution of the form

s+ A
(s+F)(s+G)

H(s)=M (3.18)

where F, G, and M are nonlinear functions of the independent variables A, B, and C in
Eqg. (3.17). H(s) is then cascaded with the otolith afferent dynamics to estimate the

perceptual dynamics associated with the otoliths:
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( (B+C)Aj
S+7B
BK (3.19)

(s+F)(s+G)’

f
f

which is equivaent to the Young-Meiry [25] model given in Eg. (3.11). Ormsby [26]
noted that Fernandez, Goldberg, and Abend found an average steady-state change in
afferent firing rate from the utricle due to a 1-g step to be 45 impulses per second (ips),
resulting in the condition that B + C = 45. Setting Eg. (3.19) equal to Eq. (3.11) and
including this constraint results in the following model for the afferent response:

AFR(s) _ 90 s+0.1

; (3.20)
f(s) s+0.2
This transfer function, when rearranged in terms of its time constants, becomes
AFR(s) _4 10s+1 (3.21)

f(s) Bs+1
Ormsby [26] noted the following about this model:

The approach taken here can yield a model which accounts reasonably

well for the available subjective data, the known physiological structure of

the sensor and makes reasonable predictions concerning the afferent
processes and the associated central processing.

Fernandez and Goldberg [23] studied the discharge of periphera otolith neurons
in response to sinusoidal force variations in the squirrel monkey. Both regularly and
irregularly discharging neurons were measured. The gain curves for the regular units
were flat, with a small phase lead at low frequencies and a larger phase lag at higher
frequencies. The irregular units showed a larger gain enhancement and phase lead at
high frequencies, which could not be represented by a first-order lead operator. They

noted on average, there is an increase by a factor of eighteen in gain enhancement in

irregular units but only an increase of afactor of two for regular units.

38



The frequency responses of regular and irregular units resulted in a transfer

function of the form

1+k,z,s1+ I(v(i'vs)kV 3 HV(S)

H(s)=K =K H,(s
() OoTO 1+TAS 1+TMS oTO A( )

(3.22)

In Eq. (3.22), the term H, is a velocity-sensitive operator with a fractional exponent (k, <
1) and provides most of the gain enhancement and phase lead found in the irregular units.
The value of k, reflects the effectiveness of the lead operator and is closely related to the
dlope of the gain curve. The term H, is an adaptation operator that contributes to low
frequency phase leads and increases of gain from static or zero frequency to 0.006 Hz.
The term Hy, is a first-order lag operator that Fernandez and Goldberg [23] noted might
reflect the mechanics of otolith motion. This lag term accounts for the high frequency
phase lags observed in regular units and for high frequency phase leads in irregular units
being smaller than would be predicted solely by afractional lead operator. The term Kgro
defines the static sensitivity in terms of afferent firing rate per unit of acceleration, i.e., in
units of impulses per second per g (ips/Q).

Fernandez and Goldberg [23] estimated parameters for the transfer function,

obtaining nearly equal results for various values of 7. The median parameters for both

regular and irregular unitsfor z, = 40 seconds are given in Table 3.1.

Table3.1. Median Parametersfor Regular and Irregular Units.

kv kA T ™ KOTo
Regular 0.188 112 69 sec 16 msec 25.6ips/g
Irregular 0.440 1.90 101 sec 9 msec 20.5ips/ g

Because of the fractional exponent in the transfer function of Eq. (3.22), an

elementary solution to its response cannot be readily obtained. However, an approximate
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solution to the response can be derived through the application of fractional calculus[32].
The derivation to obtain a response to a transfer function with fractional exponents is
given in Appendix A. Applying this derivation with the regular unit parameters given in
Table 3.1 results in the response to a unit step:

x(t) = 25.601- 28.673 " + 3.073¢ %
—10.786E, (-0.188, — 62.5) + 1.156E, (—0.188, — 0.014493) (3.23)

+96297
(v+1)

where I" is the gamma function.
Eq. (3.23) is an infinite series. For v equa to zero, Eq. (3.23) will reduce to the
Taylor series expansion of the exponential function. When v is not equa to zero,

E (v,a) is a transcendental function that can only be approximated. A recursion
formulawas derived, where the solution to the function E, (v, a) isgivenas

tV atV+l

+ e u"du. 3.24
r'(v+1) F(v+2 v+2 J; (3:24)

E (v.a)=

Similarly, the unit step response for the irregular unit parametersis derived:

x(t) = 20.308 — 35.588e 1 +18.280€ "
—86.063E, (—0.44, —111.1111) + 40.769E, (-0.44,-0.009901)  (3.25)

+ 45. 2947
r'(v+1)

Hosman [33] noted that the fractional exponent models are not easy to implement
in motion cueing algorithms due to the fractional exponent in the lead term. He reported
asimplified model of the same form developed by both Ormsby [26] and Grant and Best

[29]:
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AFR(s) .. (s+1)
f(s) (0.5s+1)(0.0165+1)

(3.26)

Note that the gain terms for the Fernandez-Goldberg model [23] from Table 3.1
are about one half that of the gain value used by Ormsby [26] to develop his model.
Hosman [33] proposed a gain term of less magnitude than that used by Ormsby [26] that
may provide an improved approximation to the Fernandez-Goldberg responses. Due to
the adaptation mechanism in the Fernandez-Goldberg model [23], these gains will require
a long duration step input to be redlized in steady state. Hosman [33] chose the short
time constant 7, to be equal to the otolith mechanics time constant 7, reported by
Fernandez and Goldberg [23] for the regular units. No basis, however, was given for the
values selected for the long time constant 7 and the lead time constant 7, which are one
order of magnitude less than those resulting from the model developed by Ormsby [26].

By using the long and lead time constants reported by Ormsby [26] in Eq. (3.21),
and selecting the short time constant and gain reported by Hosman [33] in Eg. (3.26), the

following transfer function results for the afferent otolith dynamics:

AFR(S) s 4 (10s+1)
f(s)  (5s+1)(0.016s5+1)

(3.27)

The response to a step input of 1-g magnitude (9.81 m/s?) will now be examined
for the Fernandez-Goldberg model [23] with both the regular and irregular unit
parameters. Figure 3.6 compares the step responses to the response for the proposed
afferent dynamics model given in Eq. (3.27) for both 1-second and 30-second durations.
Note that the onset for the proposed model is faster than the regular unit, but slower than
the irregular unit. There is no large overshoot as observed with the irregular unit

response. The steady-state response for the proposed model is less than the irregular unit
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response but greater than the regular unit response, and approaches the regular unit
response for the given time duration. Both the regular and irregular unit response will
slowly approach their respective gain values, and beyond about 80 seconds the irregular
unit response will decrease below that of the proposed model. The model more closely
represents the population-dominant regular units with a faster onset and higher magnitude

steady state effects that occur in the less prevalent irregular units.

400

—— Proposed Model
[0 F&G Regular Unit

350 ---- + F&G Irregular Unit H

a
o

Response (AFR)
Response (AFR)

(02
0 10 20 30
Time (sec) Time (sec)

Figure 3.6. Comparison of Otolith Models Responseto a 1-g Step I nput.
From this research, a transfer function that can best relate the sensed response to
the specific force stimulus is proposed:

(7,5+1)
(r,5+1)(7,5+1)

% (3.28)

= KOTo

with Koo = 0.4, 7 = 5 sec, , = 0.016 sec, and 7 = 10 sec. For implementation into the

motion cueing algorithms, Eq. (3.28) can be rewritten as

f_ , (s+A)
f Koro (s+B,)(s+B,)’ (3.29)
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where Ay =1/7,By =17, B =1z, and K, =Kgon?, /7, -

The frequency response of the proposed transfer function in Eq. (3.28) compared
to the Young-Meiry model [25] of Eg. (3.11) is shown in Figure 3.7. Note that the gain
and phase lag for the Young-Mery model [25] occur at a much lower frequency as
compared to the proposed model. Thisis due to the magnitude of the short time constant
7, for the Young-Meiry model [25] being an order of magnitude larger than the value
used in the proposed model that was obtained by Fernandez and Goldberg [23]. In the
range of norma head movements from 0.1 to 1.0 Hz [22], the gain for the proposed
model remains constant, with the phase close to zero degrees. In this frequency range,

the otolith functions as a specific force transducer.

Frequency Response of Otolith Models
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[| — Proposed Model ~
— — Young-Meiry Model ~
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Figure 3.7. Frequency Response of Proposed and Young-Meiry Otolith Models.

3.2.4. Physiological I nterpretation
Modern theories of the operation of the otolith receptors are based on the

assumption that the afferent responses are generated by the deflection of hairs in the
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sensory cells as aresult of the otolith displacement. A specific force input, in the form of
either linear acceleration or tilt, is transformed by the otolith-endolymph system into a
displacement of the otolith. This displacement is further transformed into an afferent
response by the mechano-neural transduction system consisting of sensory hair cells and
both efferent and afferent nerves.

Many researchers have shown that the otolith-endolymph system could be
represented by an overdamped mass-spring-damper system. Grant and Best [29] reported
that the magnitude of the long time constant z; is considered correct by most investigators
because the overall system (otolith organ, neural transmission, central nervous system
processing, and involuntary eye motion) could easily follow such a slow time constant.
The value Grant and Best [29] obtained for the short time constant 7, is a two order-of-
magnitude decrease in time constant as compared to the value obtained from the ocular
torsion responses measured by Young and Meiry [25]. This value is aso a one order-of-
magnitude decrease as compared to the value of 7, that Fernandez and Goldberg [23]
attribute to the afferent dynamics. The fast dynamic response of the otolith will decrease
to the slower ocular torsion response due to losses in neural transmission and central
Nervous system processing.

Young and Meiry [25] first noted that the origin of the lead term could be
neurological, either in central processing of the otolith displacement signals or through
the presence of two types of hair cellsin the macula. One type of hair cell would respond
to displacement and the other would respond to the rate of change of otolith
displacement. These hair cells could produce the lead term if they were of the slowly

adapting type postulated by several researchers. Fernandez and Goldberg [23] later show



that the degree of senditivity to the otolith velocity is a function of the fractional
derivative in the lead operator, i.e., irregular units are more velocity-sensitive than regular
units. They noted that this difference in sensitivity might be due to discrepancies that are
more noticeable in irregular units.

Fernandez and Goldberg [23] suggested that the difference between the expected
otolith displacement and afferent firing rate for both regular and irregular units may be
attributed to the mechanical linkages between the sensory hair bundles and the gelatinous
layer. They reported that these sensory hair bundles are not rigidly embedded in the
membrane, but are enclosed in a fluid-filled meshwork between the membrane and the
sensory epithelium. Motion could be transferred to the hairs either by directly contacting
the meshwork or indirectly by viscous coupling with the fluid. They also noted that the
irregular units correspond to thick afferents that stimulate the Type | hair cells in the
striola. Grant and Best [30] also suggested that the nonlinear stiffness of the gelatinous
layer could also contribute to these differences as well.

3.3. Motion Thresholds

Zacharias [16] reported that Clark reviewed twenty-five earlier studies that
attempted to define an absolute threshold for angular acceleration. Clark noted the wide
range in rotational devices, stimuli waveforms, psychophysical methods, and threshold
definitions employed by various researchers. The threshold measurements reported
showed a two order-of-magnitude range for yaw-axis earth-vertical rotation. Zacharias
aso noted that of the twenty-five studies that Clark reviewed, only one study was

reported for pitch and one for roll rotation.
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Clark and Stewart [34] later conducted a study with angular acceleration step
input stimuli. Using fifty-three test subjects, they found a mean threshold for the
perception of the yaw-axis earth-vertical rotation to be 0.41 deg/sec®>.  In a separate
study, Clark and Stewart [35] studied thresholds about al three earth-vertical axes for
eighteen subjects. The mean threshold for yaw and roll was about the same (0.41
deg/sec?), and was found to be larger for pitch (0.67 deg/sec?).

Zacharias [16] reported that Mulder first recognized that the product of
acceleration magnitude with detection or latency time (Mulder product) is approximately
a constant, thus suggesting the existence of an angular velocity threshold. Zacharias [16]
noted that Van Egmond demonstrated that the Mulder product could be derived from the
torsion-pendulum model, resulting in an estimated value of about 2 deg/sec. Meiry [36]
employed a step-response technique to measure latency time of subjects in a motion
simulator. For yaw-axis earth-vertical rotation, Meiry [36] obtained a value of 2.6
deg/sec. For roll-axis earth-vertical rotation, avalue of 3.0 deg/sec was obtained.

Zacharias [16] then demonstrated that given an infinite detection time
corresponding to acceleration below an absolute threshold, the velocity threshold is equal
to the acceleration threshold multiplied by the semicircular canals long time constant. He
then showed that multiplying the measured accelerations obtained by Clark and Stewart
[35] by the long time constants for the corresponding axis obtained by Melvill-Jones, et
al. resulted in estimated angular velocity thresholds for each earth-vertical body axis.
Zacharias noted that these values were in general agreement with those obtained by

Meiry [36].
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Benson, et al. [37] reported that threshold measurements were never made with an
angular motion stimulus having a trajectory similar to that of a natural head movement.
To address this, they performed threshold experiments on a turntable driven by a
precision torque motor that generated rotational stimuli about an earth-vertical axis,
carrying either a seat with the subject seated upright, or a stretcher that allowed the
subject to lay either supine or on their right side. The following resultsin Table 3.2 were
obtained for all three earth-vertical axes, and are compared to the thresholds reported by
Reid and Nahon [9] that include the roll and yaw thresholds reported by Meiry [36] and
the pitch threshold Zacharias [16] estimated from the acceleration thresholds obtained by

Clark and Stewart [35].

Table3.2. Comparison of Body Axis Angular Velocity Thresholdsin deg/sec.

Reference Roll Pitch Yaw
Reid and Nahon 3.0 3.6 2.6
Benson, et al. 2.0 2.0 1.6

Zacharias [16] reported areview of linear acceleration threshold studies by Peters,
in which Peters noted a one order-of-magnitude range in measured threshold (0.002 to
0.02 g). Possible contributions to this variation included the variability between subjects,
the type of stimulus used (e.g., sinusoidal vs. step), the definition of threshold, and the
head axis orientation with respect to the stimulus. Zacharias [16] noted that only one of
the reviewed studies used a linear acceleration stimulus in the earth-vertical direction, in
which Mach obtained an acceleration threshold of 0.012 g. Subsequent vertical motion
threshold measurements reported by Zacharias [16] show amost a one order-of-

magnitude difference, from 0.0085 g to 0.005 g.
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Zacharias [16] also reported threshold measurements with a linear acceleration
stimulus in the horizontal plane with subjects lying supine, noting that similar thresholds
to vertical motion are expected since this geometry implies an alignment of the stimulus
acceleration vector with the vertical body axis. Zacharias [16] noted that these results are
confirmed by an estimate of 0.01g obtained by Meiry [36] (using a linear motion cart and
acceleration step inputs). However, Zacharias [16] then noted that the most common test
protocol for threshold measurements of horizontal stimuli has been with subjects seated
upright. Meiry [36] noted that with the utricle inclined at about 30 degrees above the
horizontal head plane, horizontal thresholds might be expected to be lower than vertica
thresholds by a factor of cos 30/sin 30, or about a factor of 1.7.

Benson, et a. [38] performed threshold experiments with a test stimulus
consisting of a single discrete movement having an acceleration trgectory that
approximated a sine wave. This stimulus is similar to the trgjectory used by Benson, et
a. [37] in determining rotational thresholds. Motion stimuli were generated by a
horizontal linear oscillator guided by externally pressurized aerostatic bearings,
supporting a seat assembly that could be adjusted so that the stimuli axis was parallel to
the axis of motion of the carriage. Benson, et al. [38] obtained thresholds for the x-, y-,
and z-axes that are noted in Table 3.3, and are compared to thresholds reported by Reid
and Nahon [9]. Reid and Nahon [9] reported acceleration threshold values that were
based on the studies reported by Zacharias [16]. The z-axis threshold is about the same
as that Zacharias [16] reported was obtained from the Mach study reported by Peters.
The x- and y-axis acceleration is about a factor of 1.7 less than that noted for the z-axis,

which is consistent with the observation noted by Meiry [36]. Benson, et al. [38] noted
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that these thresholds are within the ranges reported in other studies; in particular the
results obtained by Meiry [36], who employed a step acceleration stimulus. The
significantly higher threshold for the z-axis was noted by Benson, et al. to be consistent

with the findings of studies employing sustained oscillatory or step acceleration stimuli.

Table 3.3. Body AxisLinear Acceleration Thresholdsin m/sec’.

Reference X-AXxis Y-Axis Z-AXis
Benson, et al. 0.0625 0.0569 0.154
Reid and Nahon 0.17 0.17 0.28

The linear and angular motion thresholds presented in Tables 3.2 and 3.3
respectively are effective, or “indifference”’ thresholds that are more appropriate for the
pilot-vehicle environment than absolute thresholds that result from the detection of a
single task in an ideal laboratory environment. Zacharias [16] noted that higher
indifference thresholds during active tracking are justified because of less attention given
to motion cues due to workload. Gundry [2] showed an increase of 40% when the
subject is loaded with an arithmetic task. Hosman and Van der Vaart [21] observed a
similar increase in roll and pitch thresholds when their subjects were loaded with either a
control task or an auditory discrimination task.

Zacharias [16] noted that a latency dependence on angular acceleration is
observed, and a velocity threshold model similar to angular motion can be proposed.
Meiry [36] measured detection latencies as a function of linear acceleration step size.
This model assumed a velocity threshold exists such that acceleration thresholds required
T seconds to be detected. In response to a velocity ramp input, the model predicted a
perceived velocity. For subjects seated upright, the model resulted in a linear velocity

threshold of 0.02 g-sec or about 0.2 m/sec for longitudinal motion. Zacharias [16] noted
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that Melvill-Jones and Y oung used a similar analysis of detection time and acceleration
from both their own experiments and those of Meiry [36]. Based on Meiry’s data, they
proposed a vaue of 0.22 m/sec for both longitudinal and vertical motion.

The angular velocity and linear acceleration thresholds given in Tables 3.2 and
3.3 are used in the development of the linear optimal agorithm discussed in Chapter 4.
The linear velocity thresholds mentioned in the last paragraph are incorporated in the
integrated human perception model discussed in Chapter 5 and implemented in the
nonlinear motion cueing algorithm developed in Chapter 6. The integrated perception

model also includes the angular velocity thresholds of Table 3.2.
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4. Linear Optimal Motion Cueing Algorithm
4.1. Problem Description
In developing a set of linear washout filters, the problem isto determine a transfer
function matrix W(s) that relates the desired simulator motion input to the aircraft input
such that a cost function constraining the pilot sensation error (between simulator and

aircraft) isminimized. The structure of this problem isillustrated in Figure 4.1.

Vestibular
> System
Aircraft Pilot
Aircraft Sensation
Statesu, % Error e
Simulator
Statesu ;
W(s) s Platfor.m ~N Vestibular [
Dynamics System

Simulator Pilot

Figure4.1. Linear Optimal Algorithm Problem Structure.

A mathematicadl model of the human vestibular system is used in the filter
development. The optimal agorithm generates the desired transfer functions W(s) by an
off-line program, which are then implemented on-line. W(s) will relate the ssimulator
motion states to the aircraft states by us = W(s) X u,. The simulator states us are then
used to generate the desired motion platform commands.

In the origina development, the washout filters were applied in the pilot head
reference frame. Reid and Nahon [9] noted that this frame selection was chosen to
eliminate sensation cross-couplings that made the development of W(s) more
complicated. Wu [13] demonstrated that this location of the center of rotation at the

pilot's head resulted in excessively large actuator extensions in some input cases. He
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suggested that the optimal algorithm be reformulated in the simulator reference frame
with the center of rotation located at the centroid of the simulator motion-base.

The question has arisen as to what aircraft and simulator control inputs are the
most appropriate for the optimal algorithm. The previous developments suggested a
control input for either the longitudinal or lateral mode with linear acceleration and
angular displacement as control inputs. Wu [13] developed an approach using linear
acceleration and angular acceleration for the longitudinal mode. This approach showed
advantages in controlling additional modes that were not available in the original
development. In addition, since the semicircular canals behave as a transducer for
angular velocity input in the range of normal head movements, an approach using angular
velocity as an input is desired. In this research an optimal algorithm based on simulated
aircraft angular velocity inputsis devel oped.

4.2. Algorithm Development
4.2.1. Longitudinal Mode
The agorithm development with angular velocity input for the longitudinal

(pitch/surge) mode is given below. Theinput u isformulated as

SN

where @ is angular velocity, and a, is the trandational acceleration, with each term

respectively set equal to u, and u,.

The sensed rotational motion & is related to u, by the semicircular canals model

of Eq. (3.8):
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5o G717, (14 7,9) ! 42)
(1+17,8)(1+7s)(1+17,8) '

where the semicircular canals time constants 7, %, %, and 7 are given in Eqg. (3.8), and
G« isthe angular velocity threshold that scales the response to threshold units. EQ. (4.2)
can be rewritten as

é: T8+ T8
S+T,8+Ts+T,

u, (4.3)

1 T.+7T, +7T

— _ Ya 1 2
T, = , T = , T,
Ta7172 Taflz-Z Taflz-Z

_Gn+%n(a+7)

, T,=CGg /7, and T, =Gg.7, /7,

and can be defined in state space notation as

Xsce = Asccxscc + Bsccu

- (4.4)
0 = CqcXee + DgccU,s
where in observer canonica form,
-T, 1.0 T,-T,T, O
Aic=|-T, 0 1|, Bec=| -TT, 0}, Csccz[l 0 O], and Dsccz[T4 O].
-T, 0 0 -T,T, O

The sensed specific force fx is related to the stimulus specific force fx by the

otolith model of Eq. (3.29):

R , (s+A)
f, () = Goro Koo (s+B,)(s+B,) f,(s), (4.5)

where A,, B,, B,, and K/, are computed parameters of the otolith model as given in Eq.
(3.29), and G, isthe linear acceleration threshold that scales the response to threshold

units.
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For the center of rotation at the centroid of the motion platform, the specific force

f =a+gf- R, (4.6)

where R, isthe radius from the motion platform centroid to the pilot’s head. In terms of

u,and u,, Eq. (4.6) istransformed into the Laplace domain, where

’

:GOTO oTo S+B S+Bl
(s+A) }
u.

{—R&s ~R,AS + g5+ gA
s(s+B,)(s+B,) (s+B)(s+B,)

fx(s):uz(s)+(gé—R&s)ul(s). (4.7)
Substituting (4.7) into (4.5) resultsin
£ : (stA) |, ( 1 j
f (S) = Goro Koro (s+B, S+Bl|_ g RS |u
(5+A) [ - }u (4.9)

= GOTO Koro
Note that in Eq. (4.8) the system equation becomes realizable with the inclusion
of the otolith break frequency B;, which was neglected by both Reid and Nahon [9] and

Wu [13] in their respective optimal agorithm formulations. Rearranging and taking

derivatives results in the differential equation

f +(B,+B)f, +BBf = 9
GoroKmo| Re (By + B = AU +(9+ RyByBy U, + 0A, fudt + 0, + A, |,
which can be rewritten as
(4.10)

f +aléx+bfxzcul+dul+ej'uldt+ fu, +gu,,

and can then be defined in state space notation as



)EOTO = AOTOXOTO + BOTOu (411)
fX = COTOXOTO + DOTOU’
where X, are the otoliths states, and
0 1 0 0 O] [ ¢ 0 ]
b -a 1 0 O d-ac 0
Aio={0 0 0 0 0] Byo=| € 0 |
0O 0 O 1 0 f
|0 0 0 -b -aj | 0 h—af |
Coro = [1 001 O]’ Doro = [_GOTOK(,DTOrSz O]-

The representations in Egs. (4.4) and (4.11) can be combined to form a single
representation for the human vestibular model:

Xy =A Xy +Byu

4.12
91:Cvxv+ Dvu’ ( )

where x,, and Y, are, respectively, the combined states and sensed responses, and A,,

By, Cy, and D, represent the vestibular models as one set of state equations:

A :{Ascc 0 } 5 {Bm} c {Cm 0} 5 {Dm}
Y 0 AOTO Y BOTO Y 0 COTO Y DOTO

It is assumed that the same sensation model can be applied to both the pilot in the
aircraft and the pilot in the simulator as shown in Figure 4.1. We then define the
vestibular state error xe = Xs— Xa (Where xs and X, are the respective vestibular states for
the ssmulator and aircraft), and the pilot sensation error e, resulting in

X, =A,X,+B,ug—Byu,

(4.13)
e=C,x,+Dyus-Dyu,,

where us and u, represent the simulator and aircraft inputs as givenin Eq. (4.1).
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In order to constrain the simulator motion, it is necessary for the control algorithm
to explicitly access states such as the linear velocity and displacement of the simulator
that will appear in the cost function. For this purpose, additional terms are included in
the state equations:

Xy =AX, +Byug, (4.14)

where X, represents the additional simulator states:

o= [Jlace flac fact o],

and is related to the simulator input us by

0100 00

0010 00
Ad: , Bd:

0 00O 01

0 00O 10

The aircraft input u, consists of filtered white noise, and can be expressed as

X, =A X, +B,w
U, =X,,

(4.15)

where X, are the filtered white noise states, w represents white noise, with A, and By,

An:|:_71 0 :|’ Bn:|:71:|’
0 -7 72

where y, and y, are the first-order filter break frequencies for each degree-of-freedom.

given as

The state equations given in Egs. (4.13), (4.14), and (4.15) can be combined to form the
desired system equation

X=AX+Bug +Hw
. (4.16)
y=[e X,] =Cx+Dug,
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n

wherey isthe desired output, and x =[x, X; X ]T represents the combined states.

The combined system matrices A, B, C, D, and H are then given by

A, 0 -B, B, 0
C, 0 -D, D,
A= 0 A, 0 |B=|B,[,H=[0| C= , D= :
0O | 0 0
0 0 A, 0 B,
A cost function J is then defined as
J= E{ f(eTQe+ X'R X, + ULR us)dt}, (4.17)

where E{ } is the mathematical mean of statistical variable, Q and R, are positive semi-
definite matrices, and R is a positive definite matrix. Eg. (4.17) implies that three
variables are to be constrained in the cost function: the sensation error e along with the
additional terms x4 and us which together define the linear and angular motion of the
platform. The cost function constrains both the sensation error and the platform motion.

The system equation and cost function can be transformed to the standard optimal
control form as shown in Kawkernaak and Sivan [39] and noted in Reid and Nahon [9]
by the following equations:

Xx=AX+Bu +Hw

J'= E{f:(xTRix + u’TRzu’)dt}, (4-18)
where
A’=A-BRIRL, U'=us+RIRLX, R,=R,-R,R}RL,
R,=C'GC, R,=C'GD, R,=R+D'GD, G=diag[Q,R,].
The cost function of EqQ. (4.18) is minimized when
U =-RIBPx, (4.19)

where P is the solution of the algebraic Riccati equation
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R; -PBR;B"P+A""P+PA’=0. (4.20)

Substituting Eq. (4.19) into Eq. (4.18) and solving for ug,
us=—[ R} (B"P+R})x, (4.21)

and defining amatrix K, where ug =Kx, resultsin K =R (B'P + Ry,).

K can be partitioned corresponding to the partition of x in Eq. (4.16):

X

us=-[K, K, K,]x,| (4.22)
X

n

Noting that X, = u,, remove the states corresponding to the x,, partition from Eq. (4.22):
X A 0 B Xe B
X -
cl=l Y Vol xg (] Y u. (4.23)
Xq 0O A, O By
uA

and substituting Eq. (4.22) into Eq. (4.23) resultsin

X A, -B,K -B,K X -B, (I +K
.e _ Y viNvy viN2 el 4 v( 3) U, (4.24)
Xy 'BdKl Ad - BdKZ Xy 'Bsz

After observing the state space form of Egs. (4.24) and (4.13), the following equations

are obtained in the Laplace domain:

us(s)=W(s)xu,(s), (4.25)
where
| -A, +B, K B, K -
W(s)=[K, KZ][S e vl } B+ Ka)|
B.K, sl -A, +B.K, B.K,

W(s) is a matrix of the optimized open-loop transfer functions linking the

simulator inputs ug to the aircraft inputs u, . The block diagram for the on-line optimal
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algorithm implementation is shown in Figure 4.2. Similar to the NASA adaptive
algorithm [7], there are separate filtering channels for the trandlationa and rotational
degrees of freedom with the cross-feed path providing the tilt coordination cues.

The aircraft acceleration input vector is first transformed from the aircraft body
frame Fr, to the inertial frame Fr, using Eq. (2.1). Nonlinear scaling in combination with

limiting as described in Section 2.5 is then applied to scale the aircraft inputs. The scaled

inertial acceleration a, is then filtered through the trandational filter W,, to produce a
simulator translational acceleration command S, . This acceleration isintegrated twice to
produce the simulator translational position command S, .

The aircraft angular velocity input o} is transformed to the Euler angular rate
vector B, using Eq. (2.2), and is limited and scaled similar to the trangational channel.
This input is then passed through the rotational filter W, to produce the vector f,. The
tilt coordination rate BST is formed from the acceleration a), being passed through the tilt
coordination filter Wy,. The summation of B, and Py yields Bs, which is then
integrated to generate B, the simulator angular position command.

The simulator translational position S' and the angular position B are then used

to transform the simulator motion from degree-of-freedom space to actuator space as
given in Egs. (2.6) and (2.7), generating the actuator commands required to achieve the

desired platform motion.
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Figure4.2. Optimal Algorithm Implementation for L ongitudinal Mode.

The desired motion cueing filter matrix W(s) is computed using a set of
MATLAB™ scripts. The weighting matrices Q, R, and Ry given in the cost function of
Eq. (4.17) are selected and adjusted to produce the desired motion platform commands.
From these weights and the vestibular models the standard optimal control matrices of
Eq. (4.18) are computed. The algebraic Riccati equation of Eg. (4.20) is solved with a
MATLAB™ function that uses a generalized eigenproblem formulation with a Newton-
type refinement presented by Arnold and Laub [40]. The solution for W(s) is then
computed. Common poles and zeros are cancelled in each transfer function, yielding a
set of seventh-order filters for the longitudinal mode. These filters are then used in a
SIMULINK™ model that generates the linear acceleration and angular velocity
responses. If the solution to W(s) is unsatisfactory, this procedure is repeated by
adjusting the elements of the weighting matrices Q, R, and R4 until the desired results are

obtained. The procedure for computing the solution to W(s) isillustrated in Figure 4.3.
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K =R} (B"P+Ry,) W(s)=f (K,A,,B,,A4,By)

Figure4.3. Linear Motion Cueing Filter Solution Procedure.

4.2.2. Lateral Mode

For the latera (roll/sway) mode, the agorithm development is analogous to the

longitudinal mode. In Eg. (4.1), the inputs @ and ax are replaced by ¢ and a,

respectively. The sensed rotational motion é in Eq. (4.2) isreplaced by ¢? The specific
force f, and sensed specific force fx become f, and fy respectively, with Eq. (4.6)
now computed as

f,=a,- g Ryf. (4.26)

These changes thus result in the differential equation given in Eq. (4.9) becoming
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Fy+(Bo+Bl) 1?y"LBoBﬂ:y:

(4.27)
GOTOKOTO [R&(Ab - Bo - Bl)ul _(g + RSZBOBl)ul - gAb Iuldt + uz + Abu2:|’
which when rewritten as Eq. (4.10) , will produce the state equation representation for the

otolith  model smilar to Eg. (4.11), with the same system matrices except

Doro =[GoroKémols 0] The state equation representation for the vestibular model of

the form of Eq. (4.13) ultimately results. For this mode the additional platform states

givenin Eq. (4.14) are now X, = “ﬂaydt3 J‘J‘aydt2 Iaydt ¢]T.

The remaining development is identical in form to Egs. (4.15) to (4.25), resulting
in a matrix of seventh-order transfer functions W(s) for the lateral mode. The on-line
implementation of this mode is identical to Figure 4.2.

4.2.3. Vertical Mode

For the vertical, or heave mode, the single degree-of-freedom input u = a,, with

the specific forcef, = a, —g. The otolith model givenin Eq. (4.5) then becomes

R , (s+A)
f,(S)=GoroKéro (s+B,)(s+B,) f,(s), (4.28)

and can then be defined in state space notation as

+B. ..U

XOTO - AOTOXOTO oTo

A (4.29)
f, =CoroXoro T Dorol

OTO“"0TO oTOo ™!

where X, arethe otolith states for this mode, and

A _{ 0 1 } 5 _{ G,
ore _BoBl _(Bo + Bl) ’ o GOTOKéTO (Ab - Bo - Bl) ’
COTO = [1 O]’ DOTO = O
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Since this mode consists of a single trandationa degree-of-freedom, the formulation does
not include the semicircular canals model, therefore A, = Agro, By = Boro, and C, =
Coro. Thisresultsin a sensation model of the same form as Eq. (4.13):

X, =A X, +B,us—-Byu,

4.30
e=C,X,. (4:30)

Similar to the longitudina mode, additional motion platform states are included in the
state equations:
Xy =AgXy +Byug, (4.31)

where X, represents the additional motion platform states:

o [l Jlas fac].

and A, and B, now become

The aircraft input u, now consists of a single channel of filtered white noise with break

frequency 3 and can be expressed as

VXn + YW

n*

X =-
(4.32)
U, =X

The state equations given in Egs. (4.30), (4.31), and (4.32) can then be combined
to form the desired system equation of the same form as Eq. (4.16), wherey isthe desired

output, and x=[x, X, xn]T represents the combined states. The remaining

development isidentical in form to Egs. (4.16) to (4.25), resulting in a single fourth-order
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transfer function W,, for the verticd mode. The block diagram of the on-line

implementation of this mode is shown in Figure 4.4.

By
A l I
a a 4 \
A Nonlinear A SI 1 St
| 4 ¥ % ll"" -
—% Lu ™ Scaling Wa > 5 g

Figure4.4. Optimal Algorithm Implementation for Vertical M ode.

4.2.4. Yaw Mode

For the yaw mode, the single degree-of-freedom input isu = . The state space

representation is the same as Eq. (4.4) with output 1} replacing é

).’(:SCC = ASCCXSCC + BSCCU (433)
W =CgcXpg + Dyl

Since this mode consists of a single rotational input, the formulation does include the
otolith model, therefore Ay = Agcc, By = Bsee, Cy = Csee, @and Dy = Dgee. Thisresultsin a
sensation model of the same form as Eq. (4.13):

X, =A X, +B,us—B,u,

(4.34)
e=CyX,+Dyug—-Dyu,.

Similar to the longitudina mode, additional motion platform states are included in the
state equations

Xy =AX, +Byug, (4.35)
where x4 represents the additional motion platform states x, = [ I wdt 1//}, and A, and

B, now become



RN

The aircraft input u, now consists of asingle channel of filtered white noise with break
frequency 3 and can be expressed as

VXn + YW

n*

X, =-
(4.36)

U, =X
The state equations given in Egs. (4.34), (4.35), and (4.36) can then be combined
to form the desired system equation of the same form as Eq. (4.16), wherey isthe desired

output, and x=[x, X, xn]T represents the combined states. The remaining

development isidentical in form to Egs. (4.16) to (4.25), resulting in a single fourth-order
transfer function W,, for the yaw mode. The block diagram for the on-line

implementation for this mode is shown in Figure 4.5.

i
A l 0 0
ALY BA Nonlinear BS i ﬁS
—» T, = Scaling and > W, > - —e
Limiting #

Figure4.5. Optimal Algorithm Implementation for Yaw Mode.

4.3. Pilot Tuning of the Algorithm
A set of motion cueing filters for the longitudinal, lateral, vertical, and yaw modes
was developed using the solution procedure given in Figure 4.3. The new semicircular
canals model given in Eg. (3.8) was implemented, along with the Y oung-Meiry otolith
model from Eq. (3.11) that was previously implemented [13], [9]. Filtered white noise
break frequencies were initially set at 1 rad/sec for each degree-of-freedom. In some

instances, the MATLAB™ error message “cannot order eigenvalues; spectrum too near
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imaginary axis’ resulted from the motion cueing filter development. This error occurs
when the Hamiltonian matrix for the Riccati equation has eigenvalues on or very near the
imaginary axis. To resolve this, a small change to any of the weights was needed to
obtain a successful solution to the Riccati equation as suggested by Brogan [41].
Nonlinear scaling coefficients for each degree-of-freedom were based upon those chosen
by Wu [13].
In order to determine the nonlinear gain coefficients for each degree-of-freedom

that resulted in the most desired pilot performance, a trained ssmulator pilot executed a
series of pilot controlled maneuvers with the optimal algorithm on the NASA Langley
Visual Motion Simulator (VMS) described in Section 2.1. A series of maneuvers were
first executed with the coefficients determined prior to testing. Coefficients for each
degree-of-freedom were then adjusted until the simulator pilot subjectively felt the
desired perception and performance were reached, while ensuring that the simulator
motion platform limits were not exceeded. The following maneuvers were executed for
the algorithm:

Straight Approach and Landing (with varying wind from head to tail)

Offset Approach and Landing (with and without turbulence)

Pitch, Roll, and Y aw Doublets

Throttle Increase and Decrease

Coordinated Turn

Ground Maneuvers (taxiing, effect of aircraft brakes)

Takeoff from Full Stop.

The optimal agorithm resulted in motion cues with which the simulator pilot

commented he had more control and confidence as compared to the NASA adaptive

algorithm. For both pitch and roll doublets, a fast response was observed when changing

directions. On takeoffs, the optimal algorithm was found to be easier to pitch up to the
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desired attitude and control the aircraft. A noticeably large side force was observed with
the coordinated turn maneuver. By reducing the gains for the roll degree-of-freedom, this
side force was reduced to a minimal sensation. The pitch gains were decreased to reduce
the likelihood of entering the braking region or exceeding the actuator limits. Reducing
the gains for both roll and pitch degrees-of-freedom still yielded desirable motion cues.

The severe turbulence effects that were included with the offset approach and
landing maneuver were hardly noticeable.  An increase of the vertical gain coefficients
resulted in increased cues, but still less than satisfactory. This increase in the vertical
gains (coupled with an increase of the surge gains) resulted in forward surge cues that are
more coordinated with the pitch cues, and alarger aft surge cue (initialy, the aft cue was
noticeably smaller than the forward cue).

The effect of the otolith model upon the vertical filter characteristics was
investigated. Figure 4.6 compares the frequency response of the original heave filter
using the Y oung-Meiry model with the response using the proposed otolith model given
in Eq. (3.29). Note that the original filter results in a gain decrease starting at about 5
rad/sec, while the proposed model filter shows the gain unchanged for the same high
frequencies. For the original filter, the filtered white noise break frequency y was
increased to 4rn rad/sec (2 Hz) to remove a right-half plane zero that resulted in a large
false cue at both the onset and end of the pulse. For the revised filter with the proposed
otolith model, this break frequency was reduced to 1 rad/sec, resulting in the specific
force cue shown in Figure 4.7. The proposed model filter resultsin afaster onset cue that
approaches the aircraft step input, and a faster washout that reduces the maximum

simulator displacement while sustaining the peak onset magnitude.
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Figure4.6. Vertical Filter Frequency Responses with Young-Meiry and Proposed
Otolith Models.
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Figure4.7. Specific Force Responseswith Young-Meiry and Proposed Vertical
Filters.
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A filter matrix W(s) is then generated for the pitch/surge mode using the proposed
otolith model. In order to eliminate a singular response, both the lead time constant 7
and the short time constant 7 are removed from the semicircular canals model

implemented in the motion cueing algorithm:

A 2
— G&:C Tlras ul ) ( 4 37)
(1+7,5)(1+7,5)
Eq. (4.37) can be rewritten as
~ 2
= CxcS (4.38)
S +Ts+T,
where T, and T, become
T, = 1 ’ Tl:ra+rl |
Tafl Tafl

and can be defined in state space notation as

Xsce = Asccxscc + Bsccu
- (4.39)
0 = CqcXsee + DgccU,s

where in observer canonical form,

-1, 1 —Gg..; O
Ascc:|: 1 :|’ scc:{ scc

T 0 Got, O}’ Cec =[1 0], and Dy =[Gy O]
There is one less state as compared to Eq. (4.4), which in turn results in a matrix
of sixth-order filtersfor W(s). Thetrandational break frequency v, was increased from 1
to 4n rad/sec for the original filters, eliminating a false specific force cue at onset. For
the proposed model filters, v, is reduced to r rad/sec to produce a faster onset cue. The

semicircular canals threshold G was reduced to 2.0 deg/sec, the value obtained by

Benson, et al. [37], to reduce the magnitude of the tilt coordination rate. Figure 4.8
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compares the responses to a ramp to step input for both filters. Using the proposed
otolith model in the filter development results in afaster onset ramp for the specific force
response, with a faster onset and reduced magnitude for the tilt coordination rate. For
both the original and revised filters, the weight component Q(2,2) needed to be increased

from 1 to 10 to produce the magnitude of the specific force cues shown in Figure 4.8.
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Figure 4.8. Responsesto a Surge Ramp to Step Input with Original and Revised
Longitudinal Filters.
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Figure 4.9 compares responses to a lateral (sway) haf sine input for both the
origina and revised filters. Since the algorithm development is similar to the
longitudinal mode, the effect of the change of otolith models upon the motion cues is
expected to be the same as the longitudinal mode. Note that the revised filter has a faster

onset ramp with alarger specific force cue.
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Figure4.9. Responsesto a Sway Half Sine Input with Original and Revised L ateral
Filters.

A summary of the optimal agorithm parameters for each of the four modes
(longitudinal, lateral, vertical, and yaw) is given in Appendix B, Table B.1. The filter
characteristics for both the original and revised linear motion cueing filters W(s) are also

givenin Appendix B, in Tables B.2 and B.3 respectively.
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5. Integrated Human Perception M odel

The purpose of this study is to develop a model of human motion perception that
can be readily implemented into the nonlinear motion cueing algorithm discussed in the
next chapter. This integrated human perception model includes both vestibular and
visual motion stimuli and incorporates the interaction between the vestibular and visual
stimuli. This study is based on the literature presented by several researchers who
investigated both the characteristics of visually induced motion sensation and the visual-
vestibular interaction.

5.1. Visually Induced Self-motion

The visualy induced effect on self-motion perception is commonly known as
vection. Circularvection refers to visually induced rotational motion, in particular yaw,
but also visually induced pitch and roll. Linearvection refers to visualy induced
translational motion. One common experience of linearvection is the illusion of moving
backwards when seated in a stationary train car as the adjacent train in the station begins
to slowly move forward. The self-motion response to afull visual field surround rotating
about avertical axis has been described by Y oung [42]:

The response to a full field surround which suddenly begins to move at

constant velocity is rather startling, although quite repeatable. At first, the

veridical motion is sensed — the surround appears to be moving and the

subject feels himself stationary. After a period of typicaly two to five

seconds, the visual field appears to sow down, often to a stop, and the

subject perceives himself as rotating in the opposite direction. The

sensation of rotation builds to a maximum over a period of three to ten

seconds, rising approximately as an exponential.

Young [42] then noted that in order to achieve a complete “saturation” of this

effect, in which the visual field is perceived to be entirely stationary, it is useful to have a

wide, compelling field of view in the periphery, moving uniformly at speeds less than 60

73



degrees per second. Y oung then noted that if the visual surround is allowed to accelerate
smoothly to its final velocity, at accelerations comparable to the acceleration thresholds
of the semicircular canas, then the self-motion is more likely to be perceived as a
smooth, continuous development of circularvection.

Visually induced self-motion has been explored for rotations about both the earth-
horizontal and earth-vertical axes, and aong all three linear axes. The generd
characteristics of visualy induced self-motion in the absence of confirming vestibular
stimuli have been reported by Young [43] and supported by other researchers. Young
noted two distinct classes of visual cues for flight ssmulation: the foveal cues, the high
acuity, high information-dense central field cues that must be “read” to be interpreted,
and the periphera cues, the wide-field, lower acuity, rapidly moving cues that generate
non-cognitive motion perception. These cues correspond respectively to the high static
acuity, cone-filled fovea, and the high dynamic sensitivity, rod-filled periphery of the
retina.

Brandt, et al. [44] demonstrated that the peripheral visua field was of primary
importance in stimulating self-motion over the centra visua field. They observed that
when the central visual field is masked up to 120 degrees in diameter, circularvection
diminished very little. Conversely, if periphera vision was precluded, stimulation of the
central field of up to 60 degrees in diameter produced an almost exclusive exocentric
perception of the moving visual surround and a very weak self-motion perception. They
also found that when equal stimulus areas are presented either foveally or peripherally,
that stimulation of the periphera visual field is more favorable to stimulate self-motion

perception.
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Brandt, et a. [45] demonstrated that for circularvection, background stimulation
is dominant over foreground stimulation. They showed that movement in the background
induced the apparent self-motion, while if the foreground moved the stationary
background inhibited circularvection. They showed that if a stationary pattern is attached
to the background, the circularvection latencies are increased significantly, thus
indicating an inhibitory effect of circularvection due to the presence of stationary
contrasts in the background. Howard and Howard [46] later demonstrated that the
presence of stationary objects in the foreground significantly increases circularvection
and reduces the latency of onset to circularvection.

The spatial frequency of the scene determines its effectiveness in generating self-
motion. Held, et a. [47] demonstrated this by quantifying the visual border placement
and velocity necessary to achieve a visually induced roll. In their experiment the
observer viewed a circular disc through a monocular color-corrected lens, effectively
producing an extended visual field. The disc was covered with a random pattern of spots
with areas that were masked off, producing a set of ring-shaped displays. They found
that, in general, the magnitude of visually induced tilt increased with field size, with the
use of alarge number of rings subtending small solid angles in the peripheral areas being
more effective than the same for central areas. Young [43] commented that the
peripheral field display should also have a sufficient number of borders such as stars,
clouds, or ground features to induce the perceived self-motion.

The visua field velocity determines the magnitude of the self-motion up to a
saturation velocity that most likely corresponds to the blurring of the visua field

associated with increased dynamic acuity [43]. Saturation of vection occurs when the
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field appears stationary in space and al motion is perceived self-motion or egocentric.
Brandt, et al. [45] observed that the velocity of apparent yaw self-motion matches the
stimulus speeds up to 90 to 120 degrees per second. Y oung and Oman [48] observed for
a pitch stimulus, the visually induced pitch increases with field speed up to a stimulus of
about 40 to 60 degrees per second. They also observed a limit of about 40 to 60 degrees
per second for visually induced roll that was confirmed by Held, et a. [47]. Young [43]
noted that saturation occurs for linearvection up to 1 meter per second, which was the
maximum stimulus velocity tested Berthoz, et dl., [49].

Young [43] found that the approximate frequency response for both
circularvection and linearvection is flat from static inputs up to a frequency of 0.1 Hz,
beyond which it decreases at least as rapidly as a first-order filter. Berthoz, et a. [49]
confirmed these results for forward linearvection, with similar results obtained for
visually induced pitch [50] and for yaw circularvection [51].

5.2. Latency of Onset to Vection

Y oung [43] noted that the onset delay, or the latency, of visually induced motion
is highly variable among individuals. Repeated exposures will reduce this latency, as
does the development of the appropriate mental set, thus allowing for the development of
vection. The latency of onset to either circularvection or linearvection has an impact on
the perception of motion in flight smulation. Several experimenters have quantified this
phenomenon.

Brandt, et al. [44] conducted experiments using a rotating chair located in the
center of a closed cylindrical drum 1.5 meters in diameter, whose inner walls were

painted with aternating vertical black and white stripes subtending 7 degrees of visual
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angle. To stabilize the direction of the chair, the subjects were asked to fixate on a one-
degree luminous spot mounted on the chair and presented in a position straight ahead of
the subject. The yaw stimuli consisted of drum rotations moving at either constant
velocity (10 to 180 deg/sec) or at constant acceleration (1 deg/sec?). The latency of
onset was measured using a stopwatch from the sudden onset of optokinetic stimulation
(lights on) to the beginning of circularvection. Following the stimulus onset,
circularvection began after alatency of about 3 to 4 seconds. The latencies were found to
be independent of the stimulus velocities tested.

Young and Oman [48] carried out experiments in one of the differentia
maneuvering simulators (DMS) at the NASA Langley Research Center. Each simulator
consisted of a jet cockpit mounted on a fixed-base platform inside of a forty-foot
diameter projection sphere. Visua scenes were projected on the interior of the sphere
wall by a computer controlled projection system that consisted of two servo-driven
transparent plastic hemispheres on which the scenes to be projected were painted. A high
intensity point light source mounted near the center of each hemisphere projected the
scene onto the interior walls of the smulator sphere. The hemispheres projected a pattern
of randomly spaced and oriented black rectangles of 2 to 3 degrees in subtended angle
against a white background, with a black-white ratio of approximately 25%. A series of
constant velocity yaw stimuli were presented randomly left and right at speeds of 5 to
120 deg/sec. The latency of onset was recorded using a stopwatch. A rapid decrease in
time to onset of circularvection with increasing pattern speed (from 11 seconds at 5

deg/sec to 6 to 2 seconds from 10 to 120 deg/sec) was observed.
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Howard and Howard [46] performed tests using an apparatus consisting of a
vertical cylinder of tranglucent plastic, with an inner surface covered with adhesive black
vinyl and perforated with round holes randomly distributed over the surface. The
cylinder was illuminated from outside by diffuse tungsten light. The visual field of the
subject inside the cylinder was filled with a random array of white spots subtending
approximately 0.5 and 1 degree respectively. The cylinder rotated from left to right, from
the subject’ s point of view, about its mid-vertical axis. Six stimulus field conditions were
tested at angular velocities of 5, 10, and 25 deg/sec. The field conditions consisted of a
full field condition where subjects saw only a moving display without stationary objects,
a set of conditions with two vertical rods placed symmetrically at central, intermediate,
and peripheral locations in front of the moving display (each presented separately and all
presented together), and a condition with a frame placed in front of the moving display
similar to the “window bars’ that frame the video monitors in a ssmulator cockpit. Each
field condition at each velocity was tested once with the subject looking straight ahead
with relaxed gaze, and once with the gaze fixated on a stationary white spot projected
from a laser and positioned at eye level straight ahead of the subject. The latency of
vection was measured by having the subject press a switch at the first sign of vection.

The results obtained by Howard and Howard [46] showed that latency is longer
when there are no stationary objectsin view. They note that this effect is most evident at
the lowest stimulus velocity, where subjects were usually unaware that the display was
moving. They reasoned that at this velocity the eyes reflexively pursue a moving display
without the presence of stationary objects. Fixation upon a small laser point was aso

sufficient to increase the vection magnitude significantly. At 5 deg/sec, the presence of
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the visual frame reduced latency for the full field condition from 48.4 seconds to 8
seconds with no fixation. With fixation, the presence of the visual frame reduced latency
from 14.3 seconds to 5.4 seconds, with the latency relatively unchanged for this condition
(5.2 sec) for 10 and 25 deg/sec. The condition of central vertical rods without fixation
also yielded results within the ranges reported by Y oung and Oman [48]; a latency of 9.4
seconds was found for a stimulus of 5 deg/sec that decreased to 5.6 seconds for 25
deg/sec.

Berthoz, et a. [49] tested the latency to onset of forward linearvection. The
experimental apparatus they used allowed the projection of a moving 35-mm film loop of
randomly distributed images on a screen that was fixed on a mobile cart. The screen
image was projected via two mirrors to produce two peripheral images paralel to the
sagittal plane of the head. The subject, whose head position was fixed by a chin rest,
could view the moving images through a black box with side windows that limited the
visual field between 20 and 70 degrees away from the sagittal plane on each side. The
sensation of self-motion experienced by the subject was measured by the method of
magnitude estimation by adjusting a lever fixed to the cart that could rotate forward or
backward starting from a zero position. Both the lever rotation and the image velocity
were recorded with a potentiometer.

In the experiment, latencies of about 1 to 1.5 seconds were observed for velocities
measured between 0.2 and 1 m/sec. This significant difference in latency between
linearvection and circularvection may be related to the differences in response dynamics

associated with the otolith and semicircular canals respectively.
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5.3. Visual-Vestibular Interaction Models

Zacharias [52] reported that both psychophysical and neurophysiological studies
support the theory that visual and vestibular cues are jointly processed to provide for a
perceived sense of self-motion. The vestibular nucleus complex was identified as a
possible interaction for the convergence of sensory inputs. Zacharias [52] then noted that
experiments reported by Dichgans, et a. on the single unit recordings from the vestibular
nuclei of goldfish indicated that the maority of cells respond to both vestibular and
moving visual field inputs. When both visual and vestibular stimuli were presented in
opposing directions consistent with rotation in the presence of a physically stationary
visual surround, the afferent firing rate was characterized by the faster response and
greater sensitivity of vestibular stimulation combined with the non-adapting behavior of
visual stimulation. The result was a signal that accurately indicated the perceived angular
velocity.

A study by Young, et a. was also reported by Zacharias [52] in which subjective
velocity and acceleration were measured in response to combined yaw-axis rotational
cues. The study showed that the subjective velocity response was biased in the direction
of the induced circularvection, but not to the extent of a simple summation of
circularvection and expected vestibular response. These studies indicated that a smple
linear summation of the visual and vestibular cues failed to predict the response when
both cues are simultaneously presented.

Visua motion cues dominate the perception of velocity and orientation in the
steady state and at frequencies below 0.1 Hz [43]. At higher frequencies, the vestibular

cues will tend to dominate. Confirming vestibular cues, in the direction opposite to the
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visual field, can produce a rapid onset of the visual self-motion that is sustained by vision
after the vestibular cues have been washed out. When visual and vestibular motion cues
are in conflict, either due to the direction of motion or to a difference in magnitude, the
vestibular cues will initially dominate. Young [43] suggested that when both inputs are
presented to a subject simultaneously, he or she would combine or “mix” the two cuesin
anonlinear manner, favoring the visual input for confirming cues and the vestibular input
for conflicting cues.

Young [53] first proposed that visual and vestibular cues are independently
processed to produce two estimates of motion that are compared with one another to
provide some means of cue conflict. For low conflict, such as when the cues confirm one
another, the perceived motion is calculated from the weighted sum of the two estimates.
This weighting is dependent on the sensory cue characteristics in the given situation and
would be chosen to minimize the error in the combined cue estimate. For high conflict,
that is when the cues fail to confirm one another, the weighting is then shifted based upon
the reliability of each cue.

Zacharias [52] developed a cue conflict model for yaw perception that was based
on the switching concept first proposed by Young [53]. This model is illustrated in
Figure 5.1. For low conflict, that is when the visual and vestibular cues are confirming,
the perceived motion is calculated from a weighted sum of the two estimates. For high
conflict, that is when the cues fail to confirm one another, the weighting on the visual

input is reduced and that on the vestibular input isincreased until the conflict is reduced.
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Figure5.1. Visual-Vestibular Conflict Estimator Model. (Zacharias, [52])

The visua cue is passed through an internal model of the vestibular dynamics (a
reduced model with only the long time constant was used) to produce an “expected”
vestibular signal that is then subtracted from the actual vestibular signal. To allow for
long-term resolution of steady-state conflict, the absolute value of this error is passed
through an adaptation operator to generate the conflict signal. The adaptation operator
determines how long a steady state conflict is alowed to continue by washing out the
conflict signal, ultimately alowing for an averaging of the two cues. Zacharias [52]
chose a value of 10 seconds for the adaptation time constant based on typical trainer
acceleration latencies observed for a conflicting visual field.

The weighting of each cue is governed by a gain K that is derived directly from
the two cues, and varies between zero and one. The gain K is computed from symmetric
weighting functions that are applied to the vestibular and the washed out conflict signal
wy,. Zacharias [52] noted that “for ssmplicity” a cosine bell operator was chosen for the

weighting function. A large conflict signal will drive the gain K to zero, gating out the
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visual path, while a small conflict signal will drive K to a peak weighting value between
0.5 and 1, depending on the amplitude of the vestibular signal. In alow conflict situation
the cues are either averaged or the visual cue is passed straight through and the vestibular
Cue is gated, depending on the magnitude of the vestibular cue. Zacharias [52] then
noted that the value of the conflict threshold & was determined by appealing to past work
in defining threshold behavior. He presumed that the same type of behavior associated
with the vestibular motion thresholds characterized cue conflict detection.

A second approach to modeling the visual-vestibular interaction was developed
by Borah, et a. [54]. This approach involves the implementation of an optimal estimator
as a “central processor” representation for the central nervous system processing of
sensory inputs. Individual sensory dynamic models represent the visual and vestibular
systems, and this concept can be extended to include proprioceptive and tactile models.
The sensors respond to input stimuli and send signals to a central processor represented
by a steady-state Kalman filter, which combines the sensory information to generate an
estimate of the perceived motion. In this model, a modified version of the cue conflict
estimator proposed by Zacharias [52] was also implemented.

Van der Steen [51] proposed a self-motion perception model in which vestibular
and visual stimuli are combined to describe perceived self-motion. This model is shown
in Figure 5.2. The model can describe perceived self-motion induced by either vestibular
or visual stimuli alone, or a combination of both. However, unlike the model proposed

by Zacharias [52], cue conflict estimation is not considered in this model.
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Van der Steen [51] introduced the concept of a neurd filter in the model. The
neural filter transfers the afferent response of either the visua or vestibular sensor to a
perceptual physical variable. In other words, the neura filter models the process of
assigning a perceptual meaning to a sensory output signal. Van der Steen then noted that,
in general, neural filters are not explicitly described in the literature but are either
represented as a constant that relates the afferent response to the perceived response, or
are implicitly imbedded in the sensory dynamics. For example, the vestibular transfer
function Hesr cascaded with the vestibular neural filter NFesr represents the perceived
self-motion estimate from vestibular stimuli.

Van der Steen [51] then noted that psychophysical experiments concerning
vection showed that, depending on self-motion that the visual scene suggests, the visual
estimate of self-motion “attracts’ the vestibular estimate of self-motion. He suggested
that the self-motion perception model needs a component that handles this “attraction”
towards the visual system’s estimate of self-motion. This component was referred to as

the “visual attractor”.



The visual attractor uses the visual and vestibular system’s estimates of perceived
self-motion. The difference between these cues is then filtered as shown in Figure 5.2,
forming an optokinetic influence that is an estimate of perceived self-motion from visual
stimuli. Van der Steen [51] noted that the filter Hox represents the gradual build-up of
perceived self-velocity when exposed to a constant visual scene velocity as observed in
psychophysical experiments, and can be represented by a first-order low-pass filter of the
form

1
H. = ) 51
1+ r,s (1)

The perceived self-motion yielded by the model is then the sum of the optokinetic
influence and the vestibular system’s estimates of perceived self-motion.

Van der Steen [51] determined values for the optokinetic time constant 7z from
experiments conducted using an optokinetic drum. The apparatus consisted of a rotating
chair surrounded by a closed cylindrical drum, the inside of which contained alternating
black and white stripes. Each test subject was asked to fixate on a stripe edge near the
middle of the drum to indicate left or right drum motion. Two experiments were
performed using this apparatus. In experiment 1, six visual acceleration amplitudes were
tested with the chair stationary, and fourteen inertial acceleration amplitudes were
provided with three constant magnitude drum accelerations. In experiment 2, the drum
was accelerated for one second to a constant velocity of either 10 or 20 deg/sec, with the
chair remaining stationary. After 17 seconds, the drum decelerated for three seconds.
Four acceleration amplitudes were tested. In both experiments, the subject indicated
perceived drum motion by pushing a button, with the elapsed time recorded

electronically.
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Van der Steen [51] then performed a series of simulations of the self-motion
perception model with the data from both experiments. It was found that the model could
be more accurately described with different optokinetic time constants for each
experiment; the value for zx was chosen smaller for experiment 1 (2 seconds) and larger
for experiment 2 (10 seconds). A smaller time constant for smaller drum accelerations
also resulted. Van der Steen concluded that the model dynamics using fixed parameters
might not completely describe results for each combination of stimuli.

5.4. Visual Sensory Dynamics Models

Each visual-vestibular interaction model examined incorporates a model of the
visual receptor dynamics that in turn produces a perceptual estimate of the visual scene
motion. Zacharias [52] did not model visua sensory dynamics due to the lack of
experimental data for single channel visual response, and assumed that the visual system
has a relatively wide-band response. The negative sign in Figure 5.1 reflects the fact that
the visual field motion is opposite in direction to the perceived self-motion, i.e., a visual
field moving to the left induces self-motion of the subject to the right.

Borah, et a. [54] modeled the dynamics of the visual sensor as unity, noting that
the eye detects the visua field motion almost immediately after a short neural
transmission delay. Van der Steen [51] modeled the perceptual dynamics as a cascade of

the visual receptor transfer function and neural filter with aunity gain and adelay z;:
NF,sHys =—€™. (5.2)
Hosman and Van der Vaart [55] noted that 7 is due to the delay of the visua

receptors along with the delays due to both neural transmissions from the retina to the

visua cortex and information processing during motion perception. From experimentsin
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roll rate perception with visual displays only, Hosman and Van der Vaart found values
for 7, to be about 90 msec for periphera visua field stimulation and about 150 msec for
central visual field stimulation.

5.5. Proposed Rotational Model

A revised visual-vestibular interaction model will now be constructed for
rotational motion. This model can be used to estimate perceived motion for yaw, roll,
and pitch stimuli. As suggested by Borah, et al. [54], the visual motion cues considered
will be limited to peripheral visual scenes provided by a flight simulator with a wide
visual scene field. These peripheral cues would be equivalent to the passage of stars or
clouds in awide field simulation. The cues do not include any elements in the structure
of the scene such as landmarks, orientation cues, or avisual horizon.

A visua-vestibular interaction model for rotational motion is proposed and is
shown in Figure 5.3. The proposed semicircular canals model given in Eq. (3.9) is used.
The vestibular model combines the afferent dynamics model with the neura filter gain
proposed by Van der Steen [51], resulting in a model with a perceived response to
vestibular stimuli. Since the visual motion cues are assumed to be peripheral, the visual
delay 7, = 90 msec obtained by Hosman and Van der Vaart [55] is chosen. The

optokinetic influence proposed by Van der Steen [51] is also implemented.
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Figure5.3. Proposed Visual-Vestibular Interaction Model for Rotational M otion.

As first proposed by Zacharias [52], the model produces a washed out conflict
signal ay,. The weighting of the optokinetic gain Ko« is then computed by a modified
cosine bell function suggested by Borah, et al. [54] as shown in Figure 5.4. The gain Kok
varies between zero and one. A conflict signal greater than the threshold value € (@ >
g€), will drive the optokinetic gain to zero, whereas a signa below the threshold value
(@ < €) will drive the gain to a value between zero and one, approaching one as @y
approaches zero. For anr < O, the gain remains at one. As previously suggested by
Borah, et al. [54], the vestibular path gain remains fixed at unity.

The conflict threshold ¢ is chosen to equal the vestibular indifference motion
threshold [52]. The angular velocity thresholds obtained by Benson, et a. [37], 1.6
deg/sec for yaw stimuli, and 2.0 deg/sec for roll and pitch stimuli, will be used in the

model.
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Figure5.4. Modified Cosine Bell Operator for Optokinetic Gain.

In order to examine model responses to various stimuli, a MATLAB/SIMULINK
representation of the proposed rotational model shown in Figure 5.3 was developed.
Time constants 7« = 2 seconds and % = 5 seconds were chosen to produce the latencies
noted in the literature. In the model, the latency is defined as the amount of time to
perceive motion above a visual indifference threshold of 3 deg/sec. Model responses to
yaw inputs with either visual cues alone or confirming visual and vestibular cues were
examined.

Figure 5.5 shows the responses to a visual field step input of 10 deg/sec. Since
there is no vestibular input, the rectified error is the magnitude of the visual input filtered
through the internal model of the semicircular canals. The adaptation operator then
generates the washout error a,,. Due to the large value of a,, the cosine bell function
will produce a gain of zero for nearly five seconds. This results in a corresponding

latency in the perceived angular velocity response.
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Figure5.5. Rotational Perception Model Responsesto Visual Step Input of 10
deg/sec.

Once @, decreases below the conflict threshold &, the optokinetic gain will vary
between zero and one, resulting in the onset of perceived motion or circularvection. This
gain will rapidly rise to a value of one once a, reaches zero. As a, becomes negative,
the gain Ko« remains at one. If a cosine bell operator were applied to this negative
response, the gain would decrease back to zero, resulting in a large sag in the perceived
response. The perceived motion reaches its maximum value with a rise time of about ten
seconds, as governed by the time constant 7.

Various magnitudes of angular velocity inputs were examined in order to compare
latency responses with those obtained from psychophysical experiments in the literature.

Figure 5.6 compares the model responses to visual step inputs of 5, 10, and 25 deg/sec.
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Rotational Model Response to Visual Step Inputs
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Figure5.6. Rotational Model Responsesto Visual Step Inputs of 5, 10, and 25
deg/sec.

Due to the conflict estimator, the responses in Figure 5.6 produce a “dead zone”,
of which the duration increases with increasing step input. Assuming this phenomenon
as latency alone contradicts the experimenta results obtained by Howard and Howard
[48] and Y oung and Oman [46] that showed the latency decreases with increasing stimuli
magnitudes. However, assuming latency to onset occurs until an indifference threshold is
reached reveal s the latency decreasing with increasing step inputs.

The latencies resulting for the proposed rotational model are shown in Table 5.1.
The latencies obtained with a threshold of 3 deg/sec result in values that are near those
obtained by Howard and Howard [46] (5.2 to 5.4 seconds) for the stationary visual frame
condition with fixation. As seen in Figure 5.6, increasing the visual threshold to 4
deg/sec for a 5 deg/sec step input would result in a latency of 7 seconds, which
approaches the value of 8 seconds obtained by Howard and Howard [46] for the same

condition with no fixation.

91



Table5.1. Model Resultsfor Latency to Onset of Circularvection.

Latency (sec)
wis (deg/sec) Model Howard and Howard
5 5.525 5.4
10 5.0 5.2
25 5.0 5.2

Figure 5.7 shows the model responses to a confirming visual and vestibular step
inputs of 10 deg/sec. Due to the visual delay 7, alarge value of @, results at the onset
that is rapidly washed out in a fraction of a second, resulting in the optokinetic gain Kok
increasing from zero to one during this instant and remaining at one for the duration of
the response. Due to the rapid onset of the semicircular canals, the visual delay will have
a negligible effect on the perceived response. After the vestibular cue decays, the

optokinetic influence will gradually increase until the maximum response is achieved.
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Figure5.7. Rotational Perception Model Responsesto Confirming Step Inputsof 10
deg/sec.
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5.6. Proposed Trandational Model

A visual-vestibular interaction model was developed to estimate motion in al
three trandational axes. The same assumptions applied to the rotational cues were
considered. The proposed visual-vestibular motion model for trandational motion is
shown in Figure 5.8. The model structure is similar to the rotational model. The same
values for visual delay z; and optokinetic time constant 7« as proposed for the rotational
model will be used. In this model the washout error Ve, is used to estimate the
optokinetic gain Ko. Vestibular and optokinetic responses are combined to produce

perceived linear velocity.

Perceived
Linear
Velocit
fieg | Koro(ns+d) | |1 . y
(zs+1)(zs+) [ |'s T
Otolith Dynamics + | Optokinetic
+ Influence
e 7S Vo Cosine
abs(e) (zs+1) > Bl
c Function
Adaptation
Operator
Internal Model of | Koro (75+1) 1
Otolith Dynamics | (zs+1)(z,s+1) (z,.5+1)
A /
Y
a\/is -e'TdS + > > KOK
s
Visual Receptor Gain
Dynamics

Figure5.8. Proposed Visual-Vestibular Interaction Model for Tranglational
Motion.

A MATLAB™/SIMULINK™ representation of the model shown in Figure 5.8
was developed. Figure 5.9 shows responses to a visual field step input of 1 m/sec. An

adaptation time constant z. = 0.2 seconds was chosen to generate latencies close to those
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obtained by Berthoz, et a. [49]. The rectified error is the magnitude of the visual
velocity response filtered through the internal model of the otoliths. As a result of this
fast time constant, the washout error decays very quickly, resulting in a small latency of
about 1.5 seconds. The perceived linear velocity then reaches its maximum value in

about ten seconds, as governed by the time constant 7.

Vestib Response Optokinetic Gain
il I o | | |
— | | | 1+ I -
i T 4
= 057"~ - 0.8H----7----""-"---7---- -
E 1 l l v | l i
g | | ‘ £ 06H----7----- R
g 0 i i 1 8 l l l
=3 l l l 041 ———1--—-- EREEREEEEE
Qo O05F----4-———- I | | |
e | | | U S RRERE tEEEEEEEEEE
| | | | | |
-1 1 1 | 0 | | |
0 5 10 15 20 5 10 15 20
Visual-Vestib Error
‘ ‘ ‘
I —— Rectified Error
@0'8”77777 - - Conflict Error || @
E E
) )
(2] (2]
c oy
S S
2 2
& & 02bi-__ .| — Perceived Lin Vel | |
|| - - - Visual Response
O 1 1 1
0 5 10 15 20
Time (sec) Time (sec)

Figure5.9. Trandational Perception Model Responsesto Visual Field Step Input of
1 m/sec.

Various magnitudes of linear velocity inputs were examined in order to compare
latency responses with those obtained from psychophysical experiments in the literature.
The latencies for 7z = 0.2 seconds and & = 0.2 m/sec result in values that fall within the
range (1 to 2 m/sec) reported by Berthoz, et a. [49] for velocity inputs from 0.4 m/sec to

1 m/sec. Asthe input is reduced towards the 0.2 m/sec threshold, the latency increases
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beyond the reported experimental range. Table 5.2 lists the latencies the model generates

for inputs from 0.2 to 1 m/sec.

Table5.2. Model Resultsfor Latency to Onset of Linearvection.

Wis (M/sec) Latency (sec)
0.4 1.75
0.6 1.25
0.8 1.05
1.0 0.975

Figure 5.10 shows the model responses to confirming visual and vestibular step
pulse inputs of 1 m/s* magnitude and 1-second duration, which produces a ramp to step
velocity input of 1 m/s. Due to the visual delay 7, a sub-threshold value of @y, is
generated at the onset that will result in the optokinetic gain Ko« being slightly less than

one for about one second.
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Figure5.10. Tranglational Perception M odel Responsesto 100% Confirming Pulse
I nputs of 1 m/sec Magnitude and 1 second Duration.

95



Due to the rapid onset of the otoliths, the visual delay will have a negligible effect
on the perceived response. After the initial otolith onset decays to its steady state value,
the optokinetic influence then gradually increases until the maximum response is

achieved.
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6. Nonlinear Motion Cueing Algorithm
6.1. Problem Description

The motion perception process depends on the interaction between visual and
vestibular sensation. Based on this, the problem is to develop a set of motion cueing
filters that minimize the pilot perceptual error. A nonlinear approach is desired to further
maximize the available motion cues within the hardware limitations of the motion
system. This algorithm must be efficient enough to update filter characteristics in real
time. Cardullo and Kosut [56] suggested this approach, and Ish-Shalom [57] also
proposed a similar algorithm structure. The structure of the proposed solution is

illustrated in Figure 6.1.

Per ceptual
System

Aircraft Pilot
Aircraft —1 Perceptual

Statesu,, Error e
+
Simulator
Nonlinear Statesu
. S| Platform Per ceptual
> C_uemg Dynamics > System
Filters
T l Simulator Pilot

Riccati Egn Control

Solver Law

Figure6.1. Proposed Solution for Nonlinear Motion Cueing Algorithm.

The nonlinear algorithm incorporates models of the human vestibular sensation
system, the new semicircular canals and otolith models, along with the new integrated
visua-vestibular perception model. A nonlinear control law isimplemented to generate a

scalar coefficient o that is a function of the motion platform states. The matrix Riccati
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equation is then solved in real time as a function of ¢, resulting in the feedback matrix
needed to compute the desired motion cues. This resultsin nonlinear filter characteristics
that sustain small motion cues for longer durations, and generates faster washout of large
platform motions.
6.2. Algorithm Development
6.2.1. Longitudinal Mode
The agorithm development for the longitudinal (pitch/surge) mode is given

below. The input u is the same as given in Eqg. (4.1) for the linear agorithm

SHiN

where @ is angular velocity, and a, is the trandlational acceleration, with each term

devel opment:

respectively set equal to u, and u,. The reduced-order semicircular canals model given
in EQ. (4.38) is used:

~ 2
9':2G‘Lsul, (6.2)
S +Ts+T,

where T, and T, become

1 T.+7T
— _ Ya 1
T, = , T =—2—=,

7,7, 7,7,

a

where 7, and 7, are the same as those used in the optimal algorithm and given in the

semicircular canals model of Eq. (3.8). Gg. isthe angular velocity threshold that scales
the response to threshold units, using the threshold of 2.0 deg/sec obtained by Benson, et

a.[37]. Eq. (6.2) isdefined in state space notation as
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Xsce = AsccXsee T Bl
5 (63)
0 =Cgq X + DgecU,

where in observer canonical form,

-, 1 —Ggc; O
» Pgce =

, Ceec =[1 0], and Dy =|G 0.
T, 0 ~Gg T, O} scc [ ] and Dsce [ sce ]

Ascc:|:

In an attempt to produce the desired motion cues that most closely represent the
perceptual behavior of the aircraft pilot, the confirming case of the integrated perceptua
model (neglecting conflict estimation) will be incorporated into the perceptual channel.
The visua delay was also neglected since it has only a small effect on the perceptual
response.

For a simulator pilot, the perceptual input u = us and for the aircraft pilot isu =
u.. Therefore, u = us — U, can be considered as input to the cueing algorithm. For the
perceptual error states X, = Xs — Xa, the input to the optokinetic influence of the integrated

perception model given in Eq. (5.1) becomes

A A

962(9A_95)_(9A_9A):9A_93

= (XlA + Gsccum) - (XlS + GSCCulS) (6.4)
= Gsccu1A - X - Gscculs-

The output of the optokinetic influence given in Eg. (5.1) (for gain Ko« = 1) becomes

90K = 1 ée = T26€ ’ (65)
ToS+1 s+T,

where T, =1/7,, . This can be defined as an additional state space term X:

X =—1% +T290K
=—LX+ T2 (GsccuAl - X = Gsccu51) (6-6)
=—1L% _szs - GsccTzul-
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Eq. (6.3) now becomes

Xscec = AsccXsee T Bsccl

, (6.7
Ope = CoccXsce + Deccls
with
-T, 1 0 ~GgcT; O
Ascc=|-To 0 0 |, Bge=|-Cgl, 0] Cscc:[l 0 1]’ DSCC:[GSCC O]'
—T2 O —T2 _ngcTz O

The sensed velocity V, is related to the stimulus specific force fy by the otolith

model of Eq. (3.29):

A

Y, (8) = GoroKoro ﬂ f.(s), (6.8)

X

where the break frequency B, is neglected, and Goro is the linear velocity threshold that

scales the response to threshold units. Aswith the linear algorithm, the specific forceis
f =a+gf+RJ0. (6.9)

Interms of u, and u,, Eq. (6.9) istransformed into the Laplace domain, where

fx(s):uz(s)+(g§—R&sjul(s). (6.10)

Note that the form of the transfer function of Eq. (6.8) is similar to the form of the otolith

A

model given in Eq. (4.5), with vV replacing f as output, and the integrator replacing the

short time constant term (s+ B,). Thus, Eq. (4.10) from the linear algorithm becomes

+

Vx BOVx
4
GOTO K (¢)

TO[R&(BO_A))U1+gul+gAb juldt+u2+pbu2]’ (6.12)
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and can be rewritten as ¥, +aV=cu, +du, +e[udt + fu, + gu,, and is then defined in

state space notation as

Xoto = AoroXoro t Borol
Vi = COTOXOTO + DOTOU'

with
0 1 0 0 O] e 0 ]
0O -a 1 0 O d-ac 0
Agro=l0 0 0 0 O, Bgo= e o |,
O 0 0O 0 1 0 f
' 0 0 0 0 -aj | 0  h-af]

COTO:[l 001 O]' DOTO:[_GOTOrSz O]'

The output of the optokinetic influence (for gain Kok equal to 1) becomes

_ 1 \7:T2Ve
TocSt1 s+T,

V><OK e

where T, =1/7,, . This can be defined as an additional state space term

X =—TyXg +Tz (_X4 =X+ GOTOKéTOrzul)
=—T%, = Tp% = TpX + T,G510 KéTOrzul'

Eq. (6.12) now becomes

Xoto = AOTOXOTO + BOTou

Viee = COTOXOTO + Dorols

with
0 1 0 0 0 O] ¢
O -al1l 0 0 O d-ac
A 0O 00 0O 0 O B - e
°©° 1o o0 0 0o 1 o °° 0
0O 00 0 -a o0 0
-, 0 0 -T, 0 -T, | T,.Gorols
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Xo:

Doro = [_GOTO KéTOrSz 0]'

(6.12)

(6.13)

(6.14)

(6.15)



The representations in Egs. (6.7) and (6.15) can be combined to form a single
representation for the human perceptual model:

Xy =AyX, +Byu

6.16
Yee =CyX, +Dyu, ( )

where x,, and y.. are, respectively, the combined states and perceived responses, and

Ay, By, Cy, and D, represent the perceptual models as one set of state equations:

AV:ASCC 0 ,BV:BSCC,CV:CSCC 0 ,DV: DSCCl
0 AOTO BOTO 0 COTO DOTO

It is assumed that the same perceptual model can be applied to both the pilot in
the aircraft and the pilot in the simulator as shown in Figure 6.1. We define the pilot
perceptual error e, resulting in

X, =A X, +B,ugs—B,u,

(6.17)
e=C,X,+Dyug—D,u,.

Additional motion platform states and filtered white noise states defined in the
linear algorithm development in Egs. (4.14) and (4.15) are again used. The desired
system equation given in Eq. (4.16) is then formed, with the cost function J given in Eq.
(4.17). The system equation and cost function are then transformed to the standard

optimal control form given in Eqg. (4.18). The cost function is augmented with an

additional term € proposed by Anderson and Moore [58]:
J = E{ fl e (X'Ryx+ u’TRzu’)dt}, (6.18)

where R’ is positive definite, R, is positive semi-definite, and the scalar coefficient o

represents a minimum degree of stability in the closed-loop system where o > 0.
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Anderson and Moore [58] showed that the system equation and cost function can

be transformed to the standard optimal control form [39]:
X=(A"+al)X+Bl+Hw

6.19
¥= E{f(xTRgmaTRza)dt}, (619

where X =¢e"x and 0 =€"u’. We now wish to compute the simulator control input u,

that minimizes the cost function given in Eg. (6.19). Anderson and Moore note that for

this problem, A’ + ol is positive definite, (A" + a1, B) iscontrollableand (A" + o, R})
is observable. Under these conditions, the cost function is minimized when

us=-K(a)x, (6.20)

where K (o) =R; (B'P(a)+R,,), and P(«) is the solution of the algebraic Riccati

eguation
(A"+al) P(a)+P(a)(A"+al) - P()BRIB"P () + R, =0. (6.21)
The feedback matrix K () is partitioned corresponding to the partition of x in

Eq. (4.16) of the linear agorithm devel opment:

X

|

XJ K, (a)u,, (6.22)

and the Riccati equation solution P(¢r) can be partitioned as

R
B-U
R

P, P,
P(a)=|Pu(a) Py(a) Px(e)|, (6.23)
P, P,

where the partitions correspond to the partitions of the system matrix A. Reid and Nahon

[9] noted that when computing K, only a subset of the elements of P is needed.
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Substituting Eq. (6.23) and the expression for R,, from Eq. (4.18) into the expression for
K givenin Eq. (6.20) resultsin

,(@)=R}[B}P, +B{P, + D/QC, ]

(o) = R I:Bc P, + ngzz] (6.24)
s(a)= R I:B\T/ P, +BgPy - D,QC, :I’

N

K
K
K

where, by symmetry, P, =P, .
Noting that X, = u,, remove the states corresponding to the x,, partition:
X A 0O -B Xe B
=Y Vx| | Y us, (6.25)
X4 0O A, O B,
uA

and substituting Eq. (6.22) into EQ. (6.25) resultsin

H[A B, (@) BUK,(@) }H . {-Bvo K@)

X, BK,(@)  Ay-BK, (@) | %, -B,K () }UA' (6:26)
A nonlinear control law is chosen to make o« dependent upon the system states:

a= X;Q,X,, (6.27)
where Q. is a weighting matrix that is at least positive semi-definite. As the system
states increase in magnitude, i.e. with large commanded platform displacements and
velocities, then « increases, resulting in faster control action to quickly wash out the

platform to its neutral state. For small commands there will be limited control action,

resulting in motion cues being sustained for longer durations. The feedback matrix

K (o) is then determined by solving the Riccati equation of Eq. (6.19) in rea time as a

function of ¢.
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The block diagram for the on-line nonlinear agorithm implementation is shown
in Figure 6.2. Due to thetilt coordination limit of 5 deg/sec that is needed for responses
to surge inputs, a separate set of state equations as given in Eqg. (6.26) and Riccati solver

for Eq. (6.21) are needed for the pitch cues.

B Riccati -
A K(u) Solver -
Y S _
A l T 1 1
Ay L _ SM]":"“TL A | st > Sy ol ! S
Al w oeaned | Equations 5 N o
Limiting
Y
Tilt Rate
B Limit
l lﬁST
N . _ . + .
) By | Nonlinear | Bep [T Siare + B 1 By
—» T, »| Scaling and > uations —»@—r - -
L quations 5
Limiting \
A
K[u] Riccati _
Solver |

Figure6.2. Nonlinear Algorithm Implementation for Longitudinal Mode.

6.2.2. Lateral Mode

For the latera (roll/sway) mode, the agorithm development is analogous to the

longitudina mode. The inputs are the same as given in Section 4.2.2 for the linear
agorithm. The specific force f, is given in Eq. (4.26). With \'7y replacing @X, the
differential equation given in Eqg. (6.8) becomes

v, + By, =

Go| Re (A — By)ty — gu; - A, [udt+ 1, + Au, |, (629

which when rewritten as Eq. (6.11), will produce the state equation representation for the

otolith model similar to Eqg. (6.12), with the same system matrices except

105



Doro =[Gorofs 0] The state space representation for the vestibular model of the form

of Eq. (6.13) ultimately results. Similar to EqQ. (6.14), the additional state resulting from

the optokinetic influence becomes

X ==T,% +T, (_X4 —X; = GOTOrZul)
= _T2X4 _T2X7 _T2X9 _TZGOTOrzul'

(6.29)

The perceptual model representation of the same form as Egs. (6.16) and (6.17)
will then result. Additional motion platform states and filtered white noise states defined
in Section 4.2.2 are again used. The remaining development is identical in form to
Egs.(6.18) to (6.27), resulting in state equations with a nonlinear control law and a time-
varying feedback matrix dependent upon solution of the Riccati equation. The on-line
implementation for thismodeisidentical to Figure6.2.

6.2.3. Vertical Mode

For the vertical (heave) mode, the single degree-of-freedom input u = a,, with the

specific force f, = a,— g. The otolith model given in Eg. (6.8) then becomes

v, (S) = GoroKoro ﬂ f, (S) ' (6.30)

S(s+B,)
which can then be defined in state space notation as Xo;o = AgroXoro + BoroU, Where

Xoro aretheotolith states for this mode with x, =v,, and

AOTO _ |:_Bo O:|’ BOTO _ |:GOTO (Ab - Bo )}
1 O

OTO

Similar to Eg. (6.14), the additional state resulting from the optokinetic influence

becomesx, =-T,X, + T,u. The state space perceptual model now becomes:
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Xoto = AoroXoro t Borol

(6.31)

Ve = COTOXOTO '

with
-B, O 0 GOTO(Ab_BO)
Aoro=| 1 0 0| Boro= Goro , Coro = [O 1 1]'
o -1, -T, 0

Since this mode consists of a single trandational degree-of-freedom, A, = Aoro,
By = Boro, and Cy = Coro. This results in a perceptual model of the same form as Eq.
(6.17). Additional motion platform states and filtered white noise states defined in the
linear algorithm development in Egs. (4.31) and (4.32) are again used. The remaining
development isidentical in form to Egs. (6.18) to (6.27), resulting in state equations with
a nonlinear control law and a time-varying feedback matrix dependent upon solution of
the Riccati equation. The block diagram for the on-line implementation for this mode is

shown in Figure 6.3.

B Riccati <
A K(u) Solver -t
A l Tonl: I Y &
ay _ Tff”.']'"'?“' As | Stae St | S| Sp
— La o SLd.]II'I.g.dI’Id " | Equations 1 5 . o
Limiting -

Figure 6.3. Nonlinear Algorithm Implementation for Vertical Mode.

6.2.4. Yaw Mode

For the yaw mode, the single degree-of-freedom input is u = . The state

equations given in Eqg. (6.3) apply, with output l/} replacing é The additiona state

resulting from the optokinetic influence follows a development similar to Egs. (6.4) to
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(6.7), with vy, replacing 6, asoutput. Since this mode consists of a single rotational
input, Ay = Agcc, By = Bseey, Cy = Csee, @nd Dy = Dgee. Thisresults in a perceptual model
of the same form as EQ. (6.17). Additional motion platform states and filtered white
noise states defined in the linear algorithm development in Egs. (4.35) and (4.36) are
again used. The remaining development is identical in form to Egs. (6.18) to (6.27),
resulting in state equations with a nonlinear control law and a time-varying feedback
matrix dependent upon solution of the Riccati equation. The block diagram for the on-

line implementation for this mode is shown in Figure 6.4.

Riccati
ﬁ[" K [ﬂ] Solver
(’Ji BA Nonlinear State ﬂs 1 ﬁs
—_—a T 1 . 1 . — - -
A Sealing Equations 5

Figure 6.4. Nonlinear Algorithm Implementation for Yaw M ode.

6.3. Real Time Solution of the Riccati Equation

Solving the nonlinear Riccati equation in Eq. (6.21) is a computational challenge
in real time as a new solution is required at each time step. Since the solution to the
preceding time step is available, it is advantageous to use this as an initial solution when
computing the solution for the current time step. This would result in a more refined
computationa solution that can be produced within the real time requirement, i.e., within
atime step. Theinitial Riccati equation solution to the linear optimal algorithm that is
computed off-linein MATLAB is available and can be used as the initial solution for the
first time step. To this end we desire a technique that assumes the initial solution is

“close” to the computational solution at a given time step. Two techniques were
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investigated: a Newton-Raphson method and a neurocomputing approach using a
structured neural network.
Blackburn [59] developed a method of solution using a Newton-Raphson
iteration. The Riccati equation givenin Eq. (6.21) isfirst generalized as
G(P) =PSP-PA, —-A"P-R], (6.32)
where Al =A’+al and S=B'R;B. If we map the square matrices G and P into

column vectors

(6.33)

then it is shown that given an initial Riccati solution p(k), the Newton-Raphson method

can then be used to obtain a refined solution
-1
p(k+1)=p(k) {9/ [p(K)]} o[p(K)] (6.34)
where 0G/dP is the Jacobian matrix, which is shown to be
’ T ’ T
G/ n=-1 ® (A, -SP) +(A,-SP) ®1 ], (6.35)
and ® isthe Kronecker product, where A® B=3g,B.

Structured neural networks, first introduced by Wang and Mendel [60], are a
specia neural architecture that is customized to fit the specific matrix algebra application.
An efficient method is employed that can take advantage of the matrix structure
associated with the algorithm. Ham and Kostanic [61] have demonstrated this approach
in solving a wide variety of matrix algebra problems such as matrix inversion, LU

decomposition, and solving the algebraic matrix Lyapunov equation.
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Ham and Collins [62] developed an approach for solving the algebraic matrix

Riccati equation. A structured neural network is used for obtaining the computational

solution P(t) and is shown in Figure 6.5.

—» S —— P |

p
> P AT
+ +
2(t) ——> AL ——» P LE . v(t)
+
—» R

Figure6.5. Structured Neural Network for Solving the Riccati Equation.
Theerror signal v(t) inFigure 6.5isgiven as

v(t)=| P(t)SP(t)- A,'P(t) - P()A, — R} |2(1), (6.36)

a

where z(t) is an excitatory input signal. An energy function is then formulated as

E(P) :%||v||§ (where |v|, is the Euclidean norm of v), which is minimized using the

method of steepest descent, resulting in a system of first-order matrix differential

eguations
P(t)=u[ A, (t)v(t)z(t)+ v(t)Z" () A, (t) - v(t)p (1)S] (6.37)
where 4 > 0 is the learning rate parameter, and p(t)=P(t)z(t) as shown in Figure 6.5.

In discrete-time form (the time step At is absorbed into the learning rate i ), the learning
rule for each training step k becomes

P(k+1) = P(k) + uAP(K), (6.38)
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with the update term AP (k) given as

AP(K)=[ Ay (k) v(K)z(k)+v(k)Z" (k)A, (k)-v(k)p" (k)S].  (6.39)
Ham and Collins [62] noted that even though the update term is not symmetric,
the learning rule would still converge to the positive definite, symmetric solution. They

noted, however, that performing an additional computation resulting in a symmetric

update term would improve convergence:
P(k+1):P(k)+%[AP(k)+APT(k)]. (6.40)

Ham and Collins [62] noted that the external excitatory vector input signals z(t)

are aset of linearly independent bi-polar vectors given as
%=1 -1 .. -1,2%=[-11 - -1, 2"=[-1 -1 - 1], (641

where each vector 2 is presented once to the neural network in an iteration, i.e. for one

iteration there is atotal of n presentations of the training step given in Eqg. (6.40), with the
solution P(k) updated with each training step.

The structured neural network offers some advantages over the Newton-Raphson
method for solutions to higher-order systems. The Newton-Raphson method requires
matrix inversion, which resulted in singular solutions for ill-conditioned systems. Matrix
inversion is not required for the structured neural network. Eliminating both matrix
inversion and computation of the Jacobian matrix as a Kronecker product in turn reduces
the computational burden. For these reasons the structured network approach is selected

for implementation into the nonlinear algorithm.
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6.4. Algorithm Evaluation

The nonlinear agorithm is developed to achieve the desired motion cues at an
update rate of 60 Hz. Since the computer image generator, which provides the out-the-
window visual imagery to the simulator pilot, aso runs at 60 Hz, the motion cues would
be synchronous with the visual cues. However, because of the computer operating
system, the real time operating system and the 1/O system on the Langley rea time
computing system, the minimum interval must be an integer multiple of 125 usec and a
power of 2. Therefore, atime step of 16 msec or an update rate of 62.5 Hz was selected
for the real time implementation and the pilot tests.

For the vertical mode based upon the integrated perception model, the off-line
solution of the Riccati equation initially produced one closed-loop eigenvalue of zero,
which resulted in the linear optimal control weights being very difficult to tune, resulting
in undesirable motion cues. This eigenvalue was a result of the inclusion of the
optokinetic channel in the heave mode algorithm formulation given in Section 6.2.3; the
formulation based on the vestibular model alone did not produce a zero eigenvalue.
Kalman decomposition [41] was performed on the perceptual state space model of Eq.
(6.31), resulting in amodel with one less state, with no change to the perceptual response.
Implementation of this reduced-order model removed the uncontrollable state and in turn
eliminated the closed-loop eigenvalue of zero. The linear optimal control weights could
then be tuned to produce the desired specific force cue; matrices Q and Ry were increased
to produce the desired onset ramp and magnitude while the filtered white noise break

frequency y was increased to 20 rad/sto eliminate fal se cues.
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In Figure 6.6, the vertical mode responses for a square pulse input from the
nonlinear algorithm are compared to the linear algorithm based upon the integrated
perception model. A learning rate parameter u = 2 x 107 is used in computing the
Riccati equation solution. The nonlinear weight parameters Q, = diag(1.0,2.0) result in
the desired washout characteristics. The first diagonal term Q,(1,1) acts upon the
simulator displacement, reducing the z-axis displacement. The second term Q,(2,2) acts
upon the ssimulator velocity, reducing the offset response that follows the onset cue to an
imperceptible magnitude.
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Figure 6.6. Nonlinear Algorithm Vertical Mode Responses.

A further increase of Q,(1,1) does not reduce the displacement, but reduces the
negative cue at the end of the pulse. An additional increase of Q,(2,2) decreases the

offset, but the magnitude of the negative cue remains unchanged. Figure 6.6 also shows
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the nonlinearity o and the energy norm E(P) for the heave response. The variations
resulting for o will in turn affect the vertical response. The energy norm reaches peak
values at the start and end of the pulse, and approaches zero as the response is washed out
and the platform returns to a neutral position.

The yaw mode responses for an angular acceleration pulse doublet are shown in
Figure 6.7. Since all closed-loop eigenvalues were nonzero, Kalman decomposition of
the perceptual model was not required. The weight R, that acts upon the simulator yaw
displacement was reduced to 200 to produce a faster onset cue. The nonlinear weight

parameter Q, = 120 reduces the false cue at the end of the pulse.
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Figure6.7. Nonlinear Algorithm Yaw Mode Responses.

In this mode an upper limit o, equal to 1 is placed on « that restricts the yaw

displacement. Increasing ;.. will result in alonger sustained cue, but with an increase
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in the yaw displacement beyond 12 degrees. Note that after o IS reached, the energy
norm E(P) rapidly decreases, increasing again when « starts to decrease below its upper
limit. A learning rate parameter x = 2 x 10° is used in computing the Riccati equation
solution; increasing u by one order-of-magnitude results in a discontinuity in the angular
velocity cue when o, is reached.

For the two-degree-of-freedom longitudinal mode, the initial formulation with the
integrated perception model resulted in a higher-order system (15™-order) that is much
larger than either heave (6™-order) or yaw (5™-order). Two closed-loop eigenvalues of
zero resulted from the off-line solution of the Riccati equation. The first originated from
the additional simulator state 8. The second resulted from the optokinetic channel for the
translational degree-of-freedom. Removal of the additional platform state combined with
Kaman decomposition of the perceptual model given in Eq. (6.7) eliminates the two
closed-loop eigenvalues of zero, reducing the system to 11"™-order.

The longitudinal mode responses for a surge ramp to step input of 1 m/s’
magnitude and 3 m/s’/s slope are shown in Figure 6.8. Note that the nonlinear agorithm
produces a specific force cue very close to the linear case, but with a reduction in the x-
axis displacement. The percent reduction in displacement compared to the linear case
increases as a function of the aircraft surge input magnitude. The peak angular velocity is
dlightly larger than the linear case, resulting in a slight increase of the pitch angle. The
responses for both « and the energy norm (not shown) are similar to the heave and yaw
modes in that the nonlinearity primarily affects the cue onset, with the energy norm

washing out to zero over time.
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Figure 6.8. Nonlinear Algorithm Longitudinal M ode Responsesto Surge I nput.

The nonlinear weight parameters Q, = diag(0,0.6) result in the desired washout
characteristics. Increasing the first diagona term Q,(1,1) that acts upon the x-axis
simulator displacement from O to 0.1 will result in increasing magnitudes of x-axis
displacement and tilt with additional oscillatory responses. A further increase of the
second diagonal term Q,(2,2) results in an increase of the peak angular velocity. A
learning rate parameter 1 = 2 x 10° is used in computing the solution of the Riccati
equation; the responses are unchanged with an increase of « by one order-of-magnitude.

Figure 6.9 shows the algorithm lateral mode responses to an aircraft half-sine
input of 3 m/s® peak and 5-second duration. As with the longitudinal mode, Kalman
decomposition was performed on the integrated perception model to eliminate one zero

eigenvalue, and the additiona simulator state ¢ was removed from the algorithm

116



formulation. As with the surge response, the nonlinear algorithm produces a specific
force cue very close to the linear case, but with a 0.1-m reduction in the y-axis
displacement. Similar to the longitudinal mode, the peak angular velocity is slightly

larger than the linear case, but in this case the peak roll angleis slightly smaller.
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Figure6.9. Nonlinear Algorithm Lateral Mode Responsesto Sway Input.

A learning rate parameter 1 = 2 x 10°® was again used; again the responses are
unchanged with an increase of ¢ by one order-of-magnitude. The nonlinear weight
parameters Q, = diag(0,0.8) produce the desired washout characteristics. The effects of
increasing the weights are the same as with the longitudinal mode.

The responses for a pitch doublet input of 0.1 rad/sec’ are shown in Figure 6.10.
A learning rate parameter 1 = 2 x 10 is used in computing the solution of the Riccati

equation. The nonlinear weight parameter Q, = 1 results in a large value for ¢, but does
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not produce any noticeable change in the angular velocity response. Note that the
response is scaled (by the pitch degree-of-freedom nonlinear gain), but closely follows

the shape of the aircraft input.
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Figure 6.10. Nonlinear Algorithm Pitch Degree-of-Freedom Responses.

The frequency characteristics of the linear state space filter are very close to a
unity-gain filter. Since there is no benefit from solving the Riccati equation in real time,
the formulations shown in Egs. (6.1) to (6.23) are replaced by unity-gain filters for both
the pitch and roll degree-of-freedom. Figure 6.11 shows the revised implementation for

the longitudinal and lateral modes.
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The systems of first-order differential equations given for the neurocomputing
solver in EQ. (6.40) require a numerical integration algorithm. A series of algorithms
(Euler, 2"-order Adams-Bashforth, 2"~ and 4™-order Runge-Kutta) were evaluated. No
improvement was noticed with the higher-order methods as compared to the Euler
method. However, for the system state equations in Eq. (6.26), the Euler method was
found unstable for low sampling frequencies; the 2"-order Runge-K utta method resulted
in stable results for sample rates as low as 32 Hz.

The responses using a second neurocomputing solver developed by Wang and Wu
[63] are senditive to the magnitude and stiffness of the closed-loop eigenvalues, with the
responses dependent upon the choice and structure of the activation functions. The
approach proposed by Ham and Collins [62] utilizes a structured network without
activation functions; the responses are more robust with respect to the closed-loop
eigenvalues. This solver yields improved responses and convergence with less

computational burden; only one solver iteration is required per time step.
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During implementation on the NASA Langley real time computing system, it was
discovered that for a time step of 16 msec, the real time requirement for the nonlinear

algorithm was not being met. The baseline software for the nonlinear algorithm, with all
presentations of the excitatory vector z(t) given in Eq. (6.41) for each mode, i.e. n
presentations for an n™-order system, resulted in an average CPU time of 34 msec. This
CPU time also includes the contributions of the aircraft model and control loader.
Optimizing matrix operations by taking advantage of symmetry and sparse matrices in
the state equations and solution of the Riccati equation resulted in an average CPU time
of 24 msec. Reducing the number of presentations of the vector z(t) for each mode to
the first three vectors produced a CPU time of 12 msec, which met the real time

requirement.

This change is reflected in the nonlinear algorithm results shown in this Section.
The results for the yaw mode were about the same as the case of 5 presentations of z(t).
For the heave mode, the learning rate 2 was reduced from 2 x 10° to 2 x 10 to remove a
false cue at the end of the square pulse; the results were then very close to the case of 6

presentations of z(t). For the longitudinal and lateral modes the results were about the

same as the case of 11 presentations of z(t) for each mode; the only noticeable change

was an increase in a secondary artifact in the specific force cue after the half-sine pulse as
shown in Figure 6.9 that remains imperceptible.
A summary of the nonlinear algorithm parameters for each of the four modes

(longitudinal, lateral, vertical, and yaw) is given in Appendix C.
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6.5. Pilot Tuning of the Algorithm

A computer program was developed by Telban, et al. [64] for the purpose of
driving the NASA Langley Visua Motion Simulator (VMYS) that is described in Section
2.1. This program includes both the optimal algorithm and the nonlinear algorithm. A
genera description of the program is given along with a description and flow charts of
each cueing algorithm. Common block variable listings and a program listing are also
provided. Procedures for tuning the nonlinear gain coefficients are also given.

In order to determine the nonlinear gain coefficients for each degree-of-freedom
that resulted in the most desired pilot performance, an experienced simulator pilot
executed a series of controlled maneuvers with the optimal and nonlinear algorithms on
the VMS. This series of maneuvers was first executed with the polynomia gain
coefficients determined prior to testing. Coefficients for each degree-of-freedom were
then adjusted until the simulator pilot subjectively felt the desired perception and
performance were reached, while ensuring that the ssmulator motion platform limits were
not exceeded.

The following maneuvers were executed for both algorithms using the nonlinear
B757 model:

Straight Approach and Landing (with varying wind from head to tail)
Offset Approach and Landing (with and without turbulence)

Takeoff from Full Stop (with and without engine failure)

Ground Maneuvers (taxiing, effect of aircraft brakes).

No additional tuning was needed for either the straight-in or offset approach
maneuvers. However, both algorithms showed a tendency to exceed the actuator limits

of the motion system with the takeoff maneuver. Reducing the surge gains for the

optimal algorithm and both the surge and pitch gains for the nonlinear algorithm resulted
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in platform motion within the actuator limits during the takeoff maneuvers. Table 6.1
lists the nonlinear gains by degree-of-freedom for each algorithm. From Eq. (2.8), the

coefficients c,, c,, and c; are given for each degree-of-freedom.

Table6.1. Nonlinear Gain Coefficientsfor the Cueing Algorithms.

Optimal Algorithm Nonlinear Algorithm
Degree-of -
Freedom C, C, Cs C, C Cs
Surge (X) 0.6 -0.055 0.002 0.5 -0.05 0.002
Sway (Y) 0.5 -0.055 0.002 0.4 -0.035 0.001
Heave (Z) 0.6 -0.082 0.0038 0.6 -0.082 0.0038
Roll (p) 0.3 -0.3 0.1 0.3 -0.3 0.1
Pitch () 0.4 -0.54 0.26 0.3 -0.3 0.1
Yaw (1) 1.1 -1.46 0.64 1.1 -1.46 0.64

6.6. Comparison of Motion Cueing Algorithms

Algorithm responses using test runs for each degree-of-freedom are given in
Appendix D. Comparisons are made (with the linear optimal algorithm) of both specific
force cues (denoted by SF in the graphs) at the pilot’s head and angular velocity cues, as
well as the linear and angular displacement of the simulator. Actuator extension lengths
are a'so compared. The number of each actuator referenced in Appendix D is shown on
the motion platform in Figure 2.4.

The vertical mode responses for the nonlinear algorithm for a pulse input of 1
m/s’ magnitude and 10-second duration are shown in Figure 6.12. The onset ramp is
very close to that of the adaptive and optimal algorithms, with a dightly larger peak
magnitude. The cueis sustained for alonger duration, resulting in 33 percent more z-axis
displacement compared to the linear optimal algorithm. The negative specific force cue
at the end of the pulse is twice the magnitude as the adaptive algorithm response. This

resultsin increased sensation that indicates the end of the pulse input.
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Figure6.12. Algorithm Responsesto Vertical Pulse of 1 m/s* Magnitude, 10-Second
Duration.

Figure 6.13 compares responses with the vertical pulse magnitude increased to 3
m/s>. The cue from the nonlinear algorithm is sustained for alonger duration, resulting in
dightly less (5 percent less) z-axis displacement as compared to the linear optimal
algorithm. The nonlinear agorithm response washes out faster due to the nonlinear
effects generated from the Riccati equation solution. The negative cue at the end of the
pulse is slightly smaller than the optimal agorithm response, but is much larger than the

negative cue that results from the adaptive algorithm.
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Figure 6.13. Algorithm Responsesto Vertical Pulse of 3 m/s* Magnitude, 10-Second
Duration.

Figure 6.14 compares the agorithm responses to an aircraft longitudinal input. A
surge ramp to step input of 1 m/s> peak magnitude and 3 m/s/s slope is applied to each
algorithm. The specific force response for the nonlinear algorithm does not wash out as a
function of time, resulting from the steady-state tilt angle sustaining a constant
magnitude. A small increase in the angular velocity (tilt) rate compared to the optimal
algorithm is aso observed. Note that the adaptive algorithm has a larger steady-state

specific force magnitude, as well as alarger angular velocity.
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Figure 6.14. Algorithm Responsesto Surge Ramp to Step of 1 m/s* Magnitude, 3
m/s?/s Slope.

Figure 6.15 compares the responses from the integrated perception model for
these surge cues. The sensed specific force, or otolith responses show the nonlinear
algorithm closely tracks the shape of the sensed response from the aircraft. The optimal
algorithm produces about the same onset as the nonlinear algorithm, but results in
noticeably less sensed response, especially for the first few seconds after the peak
magnitude is reached. The perceived velocity responses show a slightly larger magnitude
for the nonlinear algorithm, increasing to 2 percent greater magnitude after 10 seconds.
The adaptive algorithm shows a negative, or false specific force cue sensed at the onset

that results in a subsequent lag and a reduction in the perceived velocity for one second.
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X-Axis Sensed Specific Force at Pilot Head
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Figure6.15. Integrated Perception Model Responsesto Surge Cues of Figure 6.14.

Figure 6.16 compares the algorithm responses to an aircraft lateral input. A sway
half sine of 3 m/s® peak magnitude and 5-second duration was applied to each agorithm.
Note that the specific force cue generated by the adaptive algorithm has some significant
distortion. A false cue is generated at onset, resulting in a noticeable lag in the motion
cue response. A large peak magnitude is reached, but nearly one second after the aircraft
input reached its peak. A large residua specific force cue remains for about three
seconds after the aircraft input ends. The response generated by the linear optimal
algorithm shows no negative cue at the onset, a well-shaped half sine response with aless
noticeable lag, and much less residual specific force cue. The nonlinear algorithm results
in a peak specific force cue that is 15 percent larger than the linear optimal algorithm,

with even less lag and almost no residual specific force cue after the half sine input ends.
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Figure 6.16. Algorithm Responsesto Sway Half Sine of 3 m/s* Magnitude, 5-Second
Duration.

Figure 6.17 compares the responses for these sway cues from the integrated
perception model. As expected, the nonlinear algorithm peaks to a larger sensed specific
force as compared to the optimal algorithm, resulting in a larger perceived velocity.
After five seconds, the conflict between the vestibular and visual stimuli is reduced,
resulting in a gradual acceptance of the visual cues governed by the optokinetic influence
in the model. The problems noted with the adaptive algorithm are evident; the false cue
and delayed peak are noticeable along with excessive sensed and perceived responses
observed in the last two seconds of the pulse input. In all three algorithms, the magnitude
of the vestibular cues eliminates the latency to onset of linearvection that would occur

with visual stimuli aone.
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Figure6.17. Integrated Perception M odel Responsesto Sway Cues of Figure 6.16.

The yaw mode responses for an angular acceleration doublet of 0.1 rad/s?
magnitude and 5-second duration are shown in Figure 6.18. Both the optima and
nonlinear algorithms extend the duration of the positive angular velocity cue about one
second longer than the adaptive algorithm, with the nonlinear algorithm duration being
dightly longer. Note that the false angular velocity cue near the end of the aircraft input
is reduced for the nonlinear algorithm. The yaw angle displacement command returns to
the neutral state (zero displacement) in less than twenty seconds, while the linear optimal

algorithm requires more time to return to the neutral state.
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Figure 6.18. Algorithm Responsesto Yaw Doublet of 0.1 rad/s* and 5-Second

Duration.
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Figure 6.19 shows the roll responses for an angular acceleration doublet of 0.1
rad/s’ magnitude and 5-second duration. The aircraft acceleration doublet is integrated to
produce the triangular angular velocity shown in Figure 6.19, and generates a specific
force discontinuity at the doublet transition. Note that the specific force response for the
nonlinear algorithm is about the same magnitude in comparison to the optimal and

adaptive algorithm responses.
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Figure 6.19. Algorithm Responsesto Roll Doublet of 0.1 rad/s* and 5-Second
Duration.
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Figure 6.20 shows the pitch responses of the same magnitude and duration for all
three algorithms. Similar aircraft inputs to the roll degree-of-freedom are observed. Note
that for a single degree-of-freedom pitch input (e.g., pitch during straight and level
flight), the adaptive algorithm will produce the largest angular velocity and specific force
cues, with the nonlinear algorithm cues being less than the optimal algorithm. However,
with the addition of longitudinal cues generated during a takeoff maneuver, the aircraft
inertial acceleration will penalize or decrease the angular velocity gain as governed by

the cost function of Eqg. (2.11).
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Duration.
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6.7. Turbulence

Reid and Robinson [65] first addressed the problem of producing acceptable
motion cues to turbulent gust inputs. They noted that heave is the most critical cue in
representing turbulence, but is also the most restricted cue when constraining motion
within the platform geometry. To overcome this limitation, they developed an approach
in which a second set of aircraft flight equations driven only by the turbulence inputs is
employed. The output from this augmented channel is then added to the output from the
primary flight equations, being driven by both turbulence and the pilot control inputs,
before serving as input to the motion system. A similar approach to that developed by

Reid and Robinson [65] has been implemented and is shown in Figure 6.21.
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Figure6.21. Optimal Algorithm Vertical M ode with Augmented Turbulence
Channdl.

The input to the augmented channel is the z-axis component w; of the turbulence
vector G. Reid and Robinson showed that w; is the dominant turbulence component
needed in producing vertical acceleration due to turbulence. The secondary flight

eguations can then be represented by a transfer function Hg(s). The secondary
acceleration ay, is then scaled with a constant gain Ks. Both the primary and secondary

signals are then combined before input to the vertical motion cueing filter Wi,.
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From a smulated aircraft test run, a system identification of aircraft vertical
accelerations in response to turbulence was performed. The transfer function Hg(s) was
then created to not only represent the acceleration, but also incorporate some desired
motion cueing characteristics, i.e., attenuated low-frequency content and increased high-

frequency content. The following second-order transfer function was obtained for Hg(S):

]

For the optimal algorithm, a gain of K¢ equal to 0.8 was chosen to maximize the
desired sensation of turbulence while keeping the actuator extensions within the motion
limits. Figure 6.22 shows the optimal algorithm vertical responses due to turbulence both
with and without the augmented channel. Note that the addition of the channel resultsin
larger specific force peaks along with greater z-axis displacement. Figure 6.23 shows the
power spectral density (PSD) of the heave acceleration cues. Note that the addition of the
augmented turbulence channel greatly increases the PSD for low and mid-range
frequencies up to 3 Hz.

A similar implementation to that shown in Figure 6.21 was applied to the
nonlinear algorithm. In this approach, the linear cueing filter W,, was replaced with the
nonlinear heave filter, with the gain K¢ set equal to 1.2. Figure 6.24 shows the nonlinear
algorithm vertical responses due to turbulence. Note that the augmented channel results
in larger specific forces and displacements than the optimal algorithm, with a similar

increase in the power spectral densities as shown in Figure 6.25.
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Figure 6.22. Optimal Algorithm Motion Cues Dueto Turbulence.
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Figure 6.24. Nonlinear Algorithm Motion Cues Dueto Turbulence.
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6.8. Summary of Results

The inclusion of the integrated perception model to the linear algorithm
formulation will, in general, sustain the motion cues longer compared to the formulation
solely based on the vestibular system. However, this would result in excessive simulator
displacements that could exceed the motion system hardware limits. The addition of the
nonlinear control law with a time-varying feedback matrix based upon simulator motion
allows the large displacements that result from high magnitude motion cues to be washed
out more quickly compared to cues of lower magnitude. The neurocomputing approach
provides an effective means of updating the solution of the Riccati equation at each time
step. Reducing the number of sub-iterations of the presentation vector z(t) resultsin the
computation meeting the real time requirement, without degradation of the quality of the
resulting motion cues.

The vertica mode responses from the nonlinear algorithm produce a washout of
the motion cues that significantly reduces the z-axis displacement without requiring
additional scaling of the smulated aircraft inputs. For the longitudinal mode response to
a surge input, the nonlinear algorithm does not produce any difference in the specific
force cue, but shows a reduction in the x-axis displacement; the percentage reduction of
which compared to the linear algorithm will increase with increasing aircraft inputs. The
specific force responses shown for a large half-sine sway input to the latera mode are
unchanged, but again show a significant reduction with the y-axis displacement.

The effect of the nonlinear algorithm on the yaw mode differs from the
trandlational modes as the duration of the angular velocity cue isincreased and afalse cue

is decreased; both effects increasing the simulator yaw displacement. A maximum limit
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was needed on the nonlinearity « to control thisincrease in displacement. For pitch and
roll degree-of-freedom inputs, the nonlinear algorithm could not yield any change in the
motion cues. A unity-gain filter replaced the respective state space motion cueing filter
in the longitudinal and lateral modes.

The responses to single degree-of-freedom aircraft inputs were compared with the
NASA adaptive algorithm and the optimal algorithm. Results for the vertical mode show
the nonlinear algorithm producing a motion cue with a time-varying washout, sustaining
small cues for a longer duration and washing out larger cues more quickly compared to
the optimal algorithm. The longitudinal mode response to a surge input results in a
specific force response with no steady-state washout due to the addition of the integrated
perception model in the agorithm formulation. The onset of the surge response
eliminates the false cue that persists with the adaptive algorithm. The lateral mode
response to a sway input reveals a motion cue without the false cue or distorted shape
observed with the adaptive algorithm, and a larger magnitude compared to the optimal
algorithm. 'Y aw mode responses reveal that the nonlinear algorithm improves the motion
cues by reducing the magnitude of negative cues and increasing the cue duration.

In order that takeoff maneuvers be successfully completed within the motion
system hardware limits, pilot tuning resulted in reduction of the nonlinear gain of the
surge degree-of-freedom. This resulted in less steady-state specific force cue compared to
the adaptive algorithm. The pitch degree-of-freedom nonlinear gain was also reduced,
resulting in less angular velocity cues compared to the optimal algorithm. These results

are investigated further with pilot performance testing [66].
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7. Conclusions and Futur e Resear ch

7.1. Conclusions

An improved linear optimal algorithm was developed that incorporates the latest
research on human vestibular sensation models. Using these new models, a set of linear
motion cueing filters were synthesized and tuned using optimal control techniques.
Preliminary pilot tests revealed unsatisfactory perception of turbulence effects. A filter
for the vertical mode based upon a revised otolith model resulted in a significant increase
in the magnitude of the high-frequency gain, resulting in faster responding heave cues. A
filter for the longitudina mode was designed with the new otolith model and resulted in
faster responding surge cues with areduction in the tilt coordination rate.

The revised otolith sensation model, derived from prior research, was formulated
with a short time constant obtained from research with afferent responses that shows one
order-of-magnitude reduction from past work with ocular torsion responses. The
physiological experiments from the literature produced transfer functions with a
fractional exponent in the lead operator. By applying fractional calculus, transient
responses to impulse and step inputs have been derived. Comparison of the transient
response of the revised model with these responses clearly shows that a less complex
model can generate a response that is a reasonable approximation between responses
from the regular and irregular units.

An integrated model of human motion perception was developed. This model
includes models of both vestibular and visual motion sensation and incorporates the
nonlinear interaction between the vestibular and visual stimuli. The visual estimate of

perceived self-motion is modeled as an optokinetic influence that filters the difference
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between the cues through a first-order low-pass filter that represents the gradual build-up
of self-velocity. A conflict signal estimator is used to control the optokinetic influence
gain. Models for both rotational and translational motion were developed, producing
responses that explain the characteristics of self-motion observed in the literature.

A nonlinear motion cueing algorithm was devel oped that combines features of the
adaptive and linear optimal algorithms, and incorporates the vestibular and integrated
perception models. A nonlinear control law was implemented that requires the solution
of the Riccati equation in real time. The neurocomputing approach implemented for this
task yields responses that are robust with respect to the closed-loop eigenvalues, with less
computational burden compared to a second neurocomputing solver and a Newton-
Raphson implementation.

Results for the vertical mode show the nonlinear algorithm producing a motion
cue with a time-varying washout, sustaining small cues for alonger duration and washing
out larger cues more quickly. The addition of the integrated perception model was shown
to improve the response to a surge input, producing a specific force response with no
steady-state washout. Improved cues are aso observed for responses to a sway input.
The false longitudinal and lateral cues observed with the NASA adaptive algorithm were
absent. Yaw mode responses revea that the nonlinear algorithm improves the motion
cues by reducing the magnitude of negative cues closer to perceptua thresholds. The
addition of the augmented turbulence cue to the heave mode for both the optimal and
nonlinear algorithms increases the turbulence sensation significantly so that pilot control

inputs are influenced.
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7.2. Suggested Future Research

Both the optimal and nonlinear algorithm formulations resulted in rotational pitch
filters with frequency characteristics very close to a unity-gain filter. For large aircraft
inputs, these filters produce strong pitch cues with large pitch angles that do not wash
out. This can result in either the simulation being stopped due to the motion limits being
exceeded, or the motion cues being further restrained by a limiting or braking agorithm.
Modifying the pitch filter to provide washout capability would allow large pitch angles to
gradually decrease to a neutral position and increase the likelihood that simulations with
large pitch angles such as takeoff be successfully completed. The pitch filter in the
optimal algorithm longitudinal mode formulation can be modified to produce washout by
reducing the weight component R4(4,4) that constrains the simulator pitch angle from Eq.
(4.17).

For the nonlinear algorithm, the corresponding weight component Ry(4,4) was
removed from the cost function to eliminate a zero closed-loop eigenvalue, resulting in
improved convergence of the Riccati equation neurocomputing solver. Producing
washout capability with the pitch filter would require additiona research with the
neurocomputing solver to improve convergence with a closed-loop eigenvalue of zero, or
an augmented approach that would address this problem separately.

A braking algorithm developed by Wu [13] was implemented for both algorithms
and is presented with the motion cueing program implementation [64]. This braking
algorithm did an adequate job of restraining the simulator motion as the hardware limits
were approached, but performed poorly in returning motion control to the cueing

algorithm. An improved agorithm that is effective in both restraining large excursions
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and resuming regular simulator motion would alow increased nonlinear gains and
improve motion cueing performance. One approach that is suggested is the algorithm
developed by McFarland [67] for NASA Ames.

The performance of the nonlinear algorithm will improve when implemented on a
new motion system with improved actuator extensions and bandwidth. Surge and pitch
gains can be increased to improve pilot performance. Due to the algorithm producing
faster washout with large motion cues, the necessity for a braking algorithm to address
large excursions may be minimal. The addition of a pitch filter with washout would
further improve the available motion cues. Thisimproved nonlinear algorithm could then
be evaluated with a large homogeneous group of test pilots using the same state of the art

techniques [66] developed for this research.
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Appendix A. Fractional Exponent Derivation
Because of the fractional exponent in the transfer function of Eg. (3.22), an
elementary solution to its response cannot be readily obtained. However, an approximate
solution to the response can be derived through the application of fractional calculus[32].
By first substituting the regular unit parameters into Eq. (3.22) and then

implementing partial fraction expansion, Eq. (3.22) becomes

0.188 0.188
_ 179206, 674.058> 004953 _go16752—> . (A1)

S+ 625 s+625 s+0.0145 s+ 0.0145

H(s)

In EQ. (A.1), there are two groups of two transfer functions. Each group isrelated
to either the otolith mechanics (“fast”) time constant 7, or the adaptation (“slow”) time
constant z,, with one of the two transfer functions including an exponent that represents a
fractional derivative. For the first group, the solution to the term without the fractional

exponent can be easily obtained by taking the inverse Laplace transform of the response:

L_l(s+:ELSZ 5j:e-ez-f“. (A.2)

To derive a solution to the fractional exponent term, The inverse Laplace

transform isfirst obtained by applying fractional calculus[32]:

L-l( s’ j:E[(v, a), (A.3)

s—a
where a = -62.5, v = -0.188, and the term E, (v, a)=t"€"y (v, at), with " being the
incomplete gamma function, a transcendental function that can be expressed as

= (at)

“(v,at) =ty —————
7 (v.at) o (v+k+1)

(A4)
Substituting Eq. (A.4) into Eq. (A.3) will result in
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4 87 k
L( j_ va_tz V+k+1) (A.5)

s—a
Eq. (A.5) isan infinite series, which for v = 0 will reduce to the Taylor series expansion

of the exponential function:

S S ) 1 <
L (S_aJ—L (S a] (0,a) _kZOF (A.6)

wherefor a = -62.5, the solution isthe same as Eq. (A.2).

_ vl R (at)k
T (A7)

where f (t) satisfies the first-order ordinary differential equation
f'(t)—af (t)=t"7/T(v), (A.8)

with the solution

vl (A.9)

()= (v,a)="

Note that in Eq. (A.9) the integral does not exist when v - 1islessthan 0. To overcome

this problem, we use the recursion formula

14

Et(v,a):r(i+1)+aEt(v+La)

tl/ atV+1 aZeat
= + + v+2a A.10
v+l TI'(v+2) F(v+2)E‘( ) (A-10)
tl/ atV+1 aZGat E
+ +
v+l TI'(v+2) T(v+2)

e—auuv+ldu'

Note that the integral in Eqg. (A.10) now exists since v + 1is greater than 0. Eq.

(A.10) can now be used to compute the responses of the two fractional exponent transfer
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functions given in Eq. (A.1). For each of these transfer functions, three terms are
computed. The first two terms are anaytical functions with the third term including an
integral that requires an approximate solution.

To evaluate the integral in Eq. (A.10), the integral can be rewritten as

| (t) E —a(u— t)uv+ldu

—at Le—at(z—l)tl/+1zl/+ldz (All)
— tv+Ze—at r (t),
where T ( Leat‘l ?7""dz.  Notethat as at — —, the integrand in I (t) approaches 0

for 0<z<1,and1lforz=1. Also, for znear z= 1, we can write

(v+lv(z- :iCj(z—l)j. (A.12)

2" =1+(v+1)(z-1)+ +ee
vz

This suggests we can write the integrand in 1 (t) as

f(z)=€""? (icj (z-1)' + 2 - icj (z-12)’ ] (A.13)

i=0

and therefore I (t) can be rewritten as

Zc L e (z-1) dz+ R, (t), (A.14)

where

R (t)= ﬁeaf(l-”{z”l—icj (z—l)j]dz, (A.15)

j=0

)" as at — —oo, where K isaconstant. Theintegral | (t) in Eqn.

and |R, (t)| < K/(-at

(A.11) can now be evaluated as
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| (t) _{ri2ga {icj Lleat(l—z) (z—l)j dz + O[ﬁ}} (A.16)

By taking the inverse Laplace transform of Eq. (A.1) and applying Egs. (A.10)
and (A.16) to the transfer functions with fractional exponents results in the impulse
response h(t):

h(t) =1792.056e ** + 674.058 E, (—0.188, - 62.5)

_ ~0.0145t _ _ (A.17)
0.044538¢ 0.016752 E, (-0.188, — 0.0145)

The response to a unit step input will now be considered. Given a system with the
initial conditions x=0 and x=0 when t = 0, and an arbitrary input u(t), we look for a

solution in the form
X(t)= [h(x )u(z)dr, (A.18)
where h(x, 7) is Green’s function, i.e. the system response to an impulse input, and has

already been derived for the regular and unit transfer function in Eq. (A.17). If we

consider the response to a unit step, i.e. u(7)=1 for t > 0, the response for aterm without

the fractional exponent is simply Lea’drzi (e* —1), while the response for a term with
a

the fractional exponent from Eq. (A.10) is
[E.(v.a)dr=E (v+1a), (A.19)

and applying the recursion formulain Eq. (A.19) resultsin

E (v 41, a):i(Et(v, a)—l_(‘il)} (A.20)
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Applying Egs. (A.18) and (A.20) to the impulse response for the regular unit parameters

given in Table 3.1 and combining terms results in the response to a unit step:

x(t) = 25.601- 28.673 ' + 3.073¢ %
—10.786E, (-0.188, — 62.5) + 1.156E, (—0.188, — 0.014493) (A.21)

+ 9.629t7.
r(v+1)
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Appendix B. Optimal Algorithm System Parametersand Filter

Characteristics

TableB.1. Optimal Algorithm System Parameters

Parameter | Pitch/Surge | Roll/Sway Yaw Heave
Semicircular Canals
Threshold (deg/sec) 2.0 2.0 1.6
7, (Se0) 5.73 5.73 5.73
7, (Se0) 0.005 0.005 0.005
7. (Sec) 80 80 80
7 (se0) 0.06 0.06 0.06
Gece (Threshold Units) | 28.6479 28.6479 35.8099
Otolith
Threshold (m/sec?) 0.17 0.17 0.28
Ao (sec™) 0.1 0.1 0.1
Bo (sec™) 0.2 0.2 0.2
B, (sec™) 62.5 62.5
Goro (Threshold Units) | 4.7059* B; | 4.7059* B, 2.8571
Filtered White Noise Break Frequency
A,(1,1) 1 1 1 1
A.(2,2) Vi r
Penalty Weights
Q(1,1) 1 1 1 1
Q(2,2) 10 10
R4(1,1) 8 8 0.1 0.1
Ri«(2,2) 4 4 300 4
R4(3,3) 1 1 1
R4(4,4) 250 250
R(1,1) 1 1 1 1
R(2,2) 1 1
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TableB.2. Optimal Algorithm Filterswith Young-Meiry Otolith M odel.

Poles | Wu(9Zeros | Wy(s)Zeros | Wy(9) Zeros
Longitudinal (Pitch/Surge) Filter
-68.1595 -68.7884 -200 -83.3944
-7.0133 -6.5825 -11.0387-14.9159i -13.4373
-0.6401-0.9364i -0.6880-0.9932i -11.0387+14.9159i | -1.9681
-0.6401+0.9364i -0.6880+0.9932i -0.3930-0.3584i 0
-1.1077-0.1855i -1.0203-0.3224i -0.3930+0.3584i 0
-1.1077+0.1855i -1.0203+0.3224i -0.0468 0
-0.0774 -0.0753 0 0
Lateral (Roll/Sway) Filter
-59.9780 -60.4781 -200 -77.7778
-7.9333 -7.4642 -11.7349-13.9453i -13.6704
-0.6034-0.9274i -0.6391-0.9757i -11.7349+13.9453i | -1.9129
-0.6034+0.9274i -0.6391+0.9757i -0.3862-0.3524i 0
-1.0354-0.2332i -0.9707-0.3186i -0.3862+0.3524i 0
-1.0354+0.2332i -0.9707+0.3186i -0.0440 0
-0.0774 -0.0753 0 0
Vertical (Heave) Filter
-5.6454 -48.1817
-0.5503-0.4841i -0.1827
-0.5503+0.4841i 0
-0.1865 0
-0.1587 0
Yaw Filter
-16.6776 -11.8526
-0.4070 -0.1429
-0.1944 0
-0.0316 0
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Table B.3. Optimal Algorithm Filterswith New Otolith Model.

Poles | Wu(9Zeros | Wy(s)Zeros | Wy(9) Zeros
Longitudinal (Pitch/Surge) Filter
-13.4477 -13.0429 -1436 -5.5720
-0.5214-0.8914i -0.5317-0.9162i -3.2046 -1.5649
-0.5214+0.8914i -0.5317+0.9162i -0.3868-0.3566i 0
-0.9031-0.2666i -0.8718-0.2961i -0.3868+0.3566i 0
-0.9031+0.2666i -0.8718+0.2961i -0.0762 0
-0.1018 -0.0995 0 0
Lateral (Roll/Sway) Filter
-13.4477 -13.0429 -1436 -5.5720
-0.5214-0.8914i -0.5317-0.9162i -3.2046 -1.5649
-0.5214+0.8914i -0.5317+0.9162i -0.3868-0.3566i 0
-0.9031-0.2666i -0.8718-0.2961i -0.3868+0.3566i 0
-0.9031+0.2666i -0.8718+0.2961i -0.0762 0
-0.1018 -0.0995 0 0
Vertical (Heave) Filter
-0.5870-0.5120i -0.1943
-0.5870+0.5120i 0
-0.1993 0
-0.1587 0
Yaw Filter
-16.6662 -11.7582
-0.4429 -0.1420
-0.1506 0
-0.0183 0
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Appendix C. Nonlinear Algorithm System Parameters

Table C.1. Nonlinear Algorithm System Parameters

Parameter Pitch/Surge | Roll/Sway Yaw Heave
Semicircular Canals
Threshold (deg/sec) 2.0 2.0 1.6
7 (Sec) 5.73 5.73 5.73
7 (Sec) 80 80 80
Gscc (Threshold Units) 28.6479 28.6479 35.8099
Tok (SEC) 2.0 2.0 2.0
Otalith
Threshold (m/sec?) 0.17 0.17 0.28
Ao (sec™) 0.1 0.1 0.1
Bo (sec™) 0.2 0.2 0.2
B, (sec™) 62.5 62.5
Goro (Threshold Units) 4.7059* B; | 4.7059* B, 2.8571
Tox (SEC) 2.0 2.0 2.0
Filtered White Noise Break Frequency
Anll 1 1 1 207
An22 T T
Linear Weights
Q(L,1) 1 1 1 1
Q(2,2) 300 300
R4(1,1) 8 8 0.1 40
R4(2,2) 4 4 300 400
R4(3,3) 1 1 40
R(1,1) 1 1 1 200
R(2,2) 1 1
Nonlinear Parameters
U 20x10° [20x10° 2.0x10° 2.0x 10"
Q2(1,1) 0 0 1.0 1.0
Q2(2,2) 0.6 0.8 2.0
Chnax 1.0 1.0 1.0 0.2
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Appendix D. Optimal and Nonlinear Algorithm Comparison Figures
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