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The time profile ∆T (t) of the temperature difference, measured across a very compressible fluid
layer of supercritical 3He after the start of a heat flow, shows a damped oscillatory behavior before
steady state convection is reached. The results for ∆T (t) obtained from numerical simulations
and from laboratory experiments are compared over a temperature range where the compressibility
varies by a factor of ≈ 40. First the steady-state convective heat current jconv as a function of the
Rayleigh number Ra is presented, and the agreement is found to be good. Second, the shape of
the time profile and two characteristic times in the transient part of ∆T (t) from simulations and
experiments are compared, namely 1) tosc, the oscillatory period and 2) tp, the time of the first peak
after starting the heat flow. These times, scaled by the diffusive time τD versus Ra, are presented.
The agreement is good for tosc/τD, where the results collapse on a single curve showing a power-
law behavior. The simulation hence confirms the universal scaling behavior found experimentally.
However for tp/τD,where the experimental data also collapse on a single curve, the simulation results
show systematic departures from such a behavior. A possible reason for some of the disagreements,
both in the time profile and in tp is discussed. In the Appendix a third characteristic time, tm,
between the first peak and the first oscillation minimum is plotted and a comparison between the
results of experiments and simulations is made.

I. INTRODUCTION

In a Raleigh-Bénard (RB) cell, the start of a constant heat flow across the fluid layer produces an initial rise in the
temperature difference across this layer, ∆T (t), with a transient profile determined by the fluid convection dynamics,
and which then tends to a steady state value, labeled ∆T . Recently such heat flow experiments were carried out [1,2]
on a very compressible fluid in its convective state, supercritical 3He, along the critical isochore < ρ >= ρc, where
the critical temperature is Tc = 3.318 K. The fluid layer height in the experiments was L=0.106 cm and the diameter
of the cylindrical cell was 5.7cm. For this large aspect ratio, the predicted critical Rayleigh number is Rac=1708, as
was confirmed by the experiments [1]. Over the reduced temperature range 0.009≤ ε ≡ (T − Tc)/Tc ≤ 0.2 where the
experiments were analyzed, the isothermal compressibility increases by a factor of ≈ 40 as Tc is approached. The
substantial change in the fluid properties along ρc is reflected in large changes of the transient profile, where damped
oscillations were observed after the first peak of ∆T (t) for ε ≥ 0.009.

This paper compares the results of experimental data, and of simulations extending those of refs. [3,4], for the time
profile ∆T (t) in the regime where the fluid approaches steady-state convection. Reference is also made of recently
published simulation results by Amiroudine and Zappoli [5]. In the simulations done in refs. [3,4], two new terms
are added in the heat conduction equation; the first takes into account the adiabatic heating taking place throughout
the cell (the “piston effect”), and the second accounts for the adiabatic temperature gradient effect within plumes
leading to the Schwarzschild criterion of the convection onset in compressible fluids [6]. In the work of ref. [5] the
Navier-Stokes (NS) equation, together with an enthalpy equation were used, without a specific term to simulate the
piston effect, since the latter is implicitly taken into account in the work of the pressure forces term in the enthalpy
equation. The simulations were made in two dimensions, where the fluid was contained in a cell with the same height
L as in the experiment. The aspect ratio was 4 in refs. [3,4] and 2 in ref. [5] with the periodic boundary condition in
the horizontal direction in order to reproduce the conditions of the experimental cell with a large aspect ratio. The
simulations for ε = 0.05 in ref [4] extended until [Ra − Rac] ≈ 4 × 106 and until ≈ 1.7 × 105 for other values of ε.
Simulation results in this paper, except those of ε = 0.05 in refs. [3,4], are newly obtained using the scheme in ref. [4].

The outline for the remainder of this paper is as follows: First, a general discussion of the profiles ∆T (t) will be
made, with presentation of some examples and an appraisal of the degree of agreement between experiments and
simulations. Second, a comparison of the steady state results from experiments and simulations will be presented,
expressed in terms of the convection heat current jconv versus the reduced Rayleigh number ra∗ ≡ [Ra − Rac]/Rac.
Third, a comparison of the transients from experiments and simulations will be made by the examination of two
“characteristic times”, the time tp of the first peak after the start of the heat current, and tosc, the oscillation
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period in the damped oscillatory decay. Both will be presented in a scaled form, again versus [Ra − Rac]. This
quantitative comparison illustrates well the agreements and deviations between simulations and experiments, which
will be discussed in the Conclusions. In the Appendix, a third characteristic time, tm, between the first peak and the
first minimum in the ∆T (t) profile is shown for both the experiments and the simulations.

II. GENERAL OBSERVATIONS ON THE PROFILES ∆T VERSUS TIME.

We briefly emphasize, as was done in refs [1,2], that the experiments were done under conditions where the strat-
ification from gravity was small and where the temperature changes across the fluid were kept small enough that
the changes in the fluid properties across the fluid layer were smaller than a few percent. Thus the conditions for
the approximations in a Boussinesq-like fluid in the momentum equation were maintained. In Fig. 9 in ref. [1] a
representative evolution is shown of the observed profile ∆T (t) at ε = 0.05 as a function of the heat current q. Both
experiments and simulations show over a certain range of heat flow Q and of temperature a damped oscillatory profile
∆T (t) as shown in Figs. 1 and 2 of ref. [3], Figs. 1 of ref. [4], both at ε = 0.05 and Fig.2 of ref. [5] at ε = 0.01, which
are not reproduced here. Considering that the experimental data have not been corrected for the time lag introduced
by the temperature recording instrumentation with a time constant of τ = 1.3 s., the qualitative agreement is quite
satisfactory. However as ε increases and the compressibility decreases, the disagreement between the transient regime
of experiments and simulations becomes sizeable. This can be seen in Fig.1 at ε = 0.2 for two values of the heat flow
q ≈ 3.7×10−7 and 2.1×10−7 W/cm2. By contrast the steady-state value for
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FIG. 1. Plots of the profile ∆T (t) versus time for two values of the heat flow q (in 10−7 W/cm2) at ε = 0.2 and comparison
between experiments and simulations a) q = 3.89 (expt), 3.67 (simul.) and b) q = 2.16 (expt), 2.10 (simul.).

∆T reached in both the experiments and in simulations for the same value of q remains closely the same. In the
experimental trace for the lower value of q, no damped oscillations are seen, but rather a non-exponential decay of
the overshoot. This is the regime labeled “truncated oscillations”, described in Fig.2 of ref. [2]. (See also Appendix
A). Simulations, however, always show damped oscillations in the convective state.
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FIG. 2. A representative profile ∆T (t) after starting the heat current, with the definition of the times tp, tm and tosc and
the slow exponential relaxation to the steady-state value of ∆T (dashed line) with a time constant τtail. The recording is for ε
= 0.02 with the heat flow q = 1.69 10−7 W/cm2).

In Fig.2, we present an enlarged segment near the peak of ∆T (t) for a representative trace at ε = 0.02, which exhibits
and defines various characteristic times in the transient. We will consider two of these times in the main part of this
paper, namely 1) the peak tp of the first peak after the start of the heat current and 2) the period tosc of the damped
oscillations.

Furthermore there is tm, the interval between the first peak and the first minimum in the regime of damped
oscillations or between the peak and the “kink” to the flat portion in the regime of “truncated oscillations”. The
discussion of tm is deferred to Appendix B, because it is more complex than for tosc and tp. Finally, the profile tends
asymptotically from below to the steady state value ∆T with a relaxation time τtail, obtained by fitting this transient
tail with a simple exponential, and we note that this feature has not been detected in the simulations either in ref.
[4] or in ref. [5].

The transient shape, principally at short times where the changes in ∆T (t) are rapid, is affected by the instrumen-
tation time constant, and also the modulated minimum shown in Fig.2 makes an analysis of the oscillation amplitude
decay rate uncertain. However inspection of the many recorded experimental traces shows that for a given ε (or
compressibility), the rates for both the oscillations and their amplitude decay increase with the heat current. For
values large enough of q at a given ε, the first peak and the oscillations become attenuated and averaged out. (See Fig.
4 of ref [2]). The likely cause for this observation is that tosc becomes comparable or smaller than the instrumentation
time constant. An averaging effect of the oscillations due to a negative interference between non-synchronous plumes
that results from the large lateral dimension of the experimental cell was suggested in ref. [4]. This suggestion might
be very relevant in the regime ε < 0.009 where no oscillations could be observed, even when their expected period
was well above that of the instrumental time constant (See ref. [2], Section III).

III. COMPARISON OF STEADY-STATE RESULTS IN EXPERIMENTS AND SIMULATIONS

In ref. [1] the steady-state experimental results were presented in terms of the dimensionless convective heat current
jconv versus ra∗. Here jconv is the ratio of the convective portion of the heat current to that conducted through the
fluid at the transition to convection, which leads to the relation [7]

jconv ≡ (Nu− 1)(ra∗ + 1) (1)

where Nu is the Nusselt number. Along the critical isochore of a fluid, where the compressibility diverges as Tc
is approached, Gitterman and Steinberg [8] have shown that for the fluid onset of mechanical instability there is a
crossover from the Rayleigh - to the Schwarzschild (or “ adiabatic temperature gradient”) criterion as Tc is approached.
Then it has been shown ( [9] and references therein) that at the onset of convection, the temperature drop across the
fluid layer is given by
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∆Tonset = ∆TR + ∆Tad (2)

where ∆TR = Rac × νDT /αP gL
3, the familiar Rayleigh term, and ∆Tad = LgTαP /CP , the adiabatic temperature

difference contribution (for ∆TR and ∆Tad see for instance Tritton’s monograph [10]). Here ν is the kinematic
viscosity, DT the thermal diffusivity, αP the isobaric thermal expansion coefficient, g the gravity accelation, L the
height of the fluid layer and CP the specific heat at constant pressure.

As has been described in some detail in refs. [1,2], Nu and Ra have to be corrected for the contribution from the
adiabatic temperature gradient. One then obtains

Racorr =
Ra(∆T −∆Tad)

∆T
and Nucorr =

(∆Tdiff −∆Tad)
(∆T −∆Tad)

(3)

and hence

ra∗corr ≡ (Racorr/Rac − 1) and jconv
corr ≡ (Nucorr − 1)(ra∗corr + 1) (4)

Here ∆Tdiff is the temperature drop across the fluid in the diffusive regime for the same heat current producing the
observed ∆T . Because both jconv

corr and ra∗corr vary over about five orders of magnitude for the range covered by the
data, a more sensitive way is to present the ratio jconv

corr /ra
∗
corr versus ra∗corr. Furukawa and Onuki [4] theoretically

justified the validity of the scaling relations in terms of these corrected quantities. This is done in Fig.3a where the
points recorded close to the transition to convection and showing rounding instead of a sharp convection onset, have
been omitted. Furthermore the data for ε <0.009, where no damped oscillations were obtained in the transients, and
for which no simulations were carried out, have not been used in this figure. As can be seen, within the scatter all
the data points nearly collapse on a common curve. For ra∗corr <1, the data extrapolate to a horizontal line with an
amplitude of 1.3 ± 0.1. This asymptotic result, jconv

corr = 1.3ra∗corr, which represents data slightly above the onset of
convection, has been discussed in ref. [1] where it had been concluded that the amplitude is consistent with a straight
roll convection prediction [11]. In Fig. 3b, the experimental data are replaced by a solid curve representing its average,
and the results from simulations are shown by the symbols at various values of ε. In the intermediate range of ra∗corr
these data points collapse on a curve slightly above the experimental average, and also within their scatter they tend
to the same limiting amplitude of 1.3, as do the experiments. Therefore they also imply straight roll convection, a
picture which is plausible in the 2D simulation which represents a cross-section of rolls in a geometry with parallel
vertical periodic boundaries.
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FIG. 3. The convective heat current jconvcorr divided by ra∗corr =[Racorr − Rac]/Rac, versus ra∗corr, both corrected for the
adiabatic temperature gradient contribution. a) Experimental data at various values of ε. b) Data from simulations at different
values of ε shown by symbols. The solid line is the average of the experimental data in a).

IV. TRANSIENT CHARACTERISTIC TIMES IN EXPERIMENTS AND SIMULATIONS

A. Background information

The mechanism responsible for the damped oscillations for a highly compressible fluid at constant average density
has been discussed most recently by Furukawa and Onuki [4] and by Amiroudine and Zappoli [5]. From their
simulations, these authors presented a detailed analysis of the time evolution of the temperature in various locations
in the fluid layer. We refer to their description on how maxima and minima of ∆T (t) are produced by the “piston
effect” that leads to the vertical flow of successive “warm” and “cold” fluid masses. The snapshots of the simulations
by Chiwata and Onuki [3] had already pictured the formation of plumes during these processes, and the evidence of
warm and cold vertical flows.

In the analysis of the experimental data [2], two characteristic times describing the remarkable oscillatory behavior,
tm and tosc, were discussed, which are shown in Fig.2 for a representative ∆T (t) profile. The experimental results for
the time tp have not been analyzed before and are presented here for the first time. In order to keep the analysis of
the results tractable, their discussion will not include tm, which will be dealt with in Appendix A. In the experimental
data analysis, the relaxation time τtail to the steady state convection was also presented in ref. [2]. All the data of tosc
and τtail at the various reduced temperatures ε, scaled by the diffusion time tD ≡ L2/4DT , and plotted versus the
Rayleigh number difference [Racorr −Rac] were found to collapse within a scatter of ±15% on two respective curves,
an unexpected result.

ε Cp/Cv ≡ γ B(γ) ≡ τD/tD τD (s.)
0.01 119 1.01 265
0.02 57.7 1.03 134
0.03 38.1 1.06 92.0
0.04 28.5 1.08 69.9
0.05 22.8 1.10 57.0
0.07 16.5 1.13 42.2
0.10 11.8 1.19 31.8
0.20 6.48 1.35 19.8

Table 1. The ratio Cp/Cv ≡ γ for 3He along its critical isochore for several values of the reduced temperature ε,
the ratio B(γ) of the diffusive times, calculated from Fig.2 ref.12 (Behringer et al.) and the diffusive time τD.

We now discuss the choice of the scaling time in the data for tosc and tp versus the Rayleigh number. As mentioned
above, the diffusion time tD was used as the scale for tosc in the plot versus [Racorr−Rac]. This time tD was first used
in the Navier Stokes equation leading to the simulations of ref. [3] under the conditions of constant average density
and valid for Cp/Cv ≡ γ >> 1. In the absence of convection, tD can be related to the relaxation time τ0 = L2/π2DT

of the lowest diffusion mode in a RB - or in a standard thermal conductivity cell [12]. However over the experimental
and simulation range where 0.2 ≥ ε ≥ 0.009, the condition γ � 1 is only progressively realised as ε decreases to
0.01. In ref. [12] expressions for the solution of τ0 as a function of γ were derived. As γ → 1, τ0 → 4L2/π2DT ,
and this last value is the same as for a fluid relaxing at constant pressure. In general τ0(γ) = B(γ)L2/π2DT , where
B(γ) = (π/q0L)2, obtained from Fig.2 of ref [12] with q0 the wave number of the lowest mode. B(γ) is presented
in Table 1 for several values of ε relevant to the experiments and simulations in this paper. As can be seen in this
Table, the ratio τ0(γ)/τ0(γ =∞) decreases with ε and tends to 1 for ε <0.01. The use of the time τD ≡ τ0(γ)π2/4 as
a scale for the convection transient characteristic times is therefore preferable to tD. It turns out that the choice of
τD as the scaling time improves the collapsing of the experimental data points for both tosc and tp. In the following
subsections we present and compare these times obtained experimentally and from simulations.

B. the oscillatory period tosc

In ref. [2], Fig.4 presented tosc scaled by tD and plotted versus [Racorr − Rac]. The substitution of τD as a scale
gives a better collapsing of the data points than does tD, particularly at the lower values of [Racorr−Rac] where most
of the data points at the higher values of ε lie. Within the scatter of ±15% the data for 103 < [Racorr−Rac] < 5×105
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can be represented by a power law with an exponent of -0.52 ± 0.02. In Fig. 4a we present these data and in Fig.4b
its average, obtained by a fit to a power law with a corrective term for the larger Ra values. Also in Fig. 4b we
show by symbols the results from the simulations by the Kyoto group (two of the present authors, A.F. and A.O. and
Chiwata) and by Amiroudine and Zappoli [5] at various values of ε. The agreement appears to be good, though the
simulations indicate some small systematic deviations from collapse on a single “universal” line. The basic reason for
the apparent power law with an exponent of -1/2 remains to be understood.
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FIG. 4. The oscillation period tosc and the time τtail for the relaxation to the steady-state, both scaled by the diffusion time
τD, versus [Racorr − Rac]. a): Experimental data at various values of ε. b): Symbols show the simulation data at different
values of ε, and the solid line is the average of the experimental data in a).

C. The location of the first peak at tp

In the experiments, the initial rise of the measured transient ∆T (t) after the start of the heat flow across the
fluid layer is affected by the time constant of the thermometer circuitry, τ = 1.3 s. as described in ref. [1]. This is
especially so at short times, when the ∆T (t) increases rapidly, and as a result the measured value of the time at the
first peak has to be corrected. This was done by comparing the shift in time between the calculated rise of ∆T (t) in
the conducting regime (Eq.3.3 of ref. [4]) and the recorded curve for several values of ε and q. This shift was between
2 and 3 s. and tp was obtained after a crude correction was made by subtracting δt = 2 s. from the measured time
at the peak. The times tp used in this analysis ranged from ≈ 100 to ≈ 7 s. Fig.5a shows the scaled representation
tp/τD of the experimental times versus [Racorr − Rac]. There is excellent collapse of the data for all the values of ε,
even extending to the region of ε < 0.009 where no damped oscillations are observed [2]. In Fig.5b the solid curve
represents the average of the experimental data, as obtained by a polynomial fit. Symbols show the results from
simulations at various values of ε. The data from ref. [3] at ε = 0.05
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FIG. 5. The time of the first peak tp, scaled by the diffusion time τD, versus [Racorr − Rac]. a): The experimental data,
where the symbols denote the various values of ε at which the experiments were carried out. b): The curve representing the
average of the experimental data from 5 a), compared with the results from simulations, shown as symbols at the various values
of ε.

and those in the present research are found to be internally consistent. However, contrary to the experimental results,
the simulation data do not collapse on a single curve. This discrepancy is expected from the profiles ∆T (t) shown
in fig.1 where the peak in the simulations lies at substantially longer times tp than for the experiments. A possible
source for the discrepancy between simulations and experiments will be considered below.

V. DISCUSSION

First we present general comments on transient observations in Rayleigh-Bénard convection. After the start of a
heat current at constant pressure, an overshoot in ∆T (t) is routinely observed in Boussinesq fluids. The origin of the
overshoot is a certain “inertia” of the fluid immediately after the heat flux is applied: Even though the final state
is convection, initially the fluid remains stationary and ∆T (t) follows the solution of the thermal diffusion equation.
As the fluid begins to move, the trace shows an overshoot with a peak at tp followed by a transition to the steady
state value in the convective regime as described, for example, by Behringer [13]. Thus, tp approximately describes
the time that it takes for the layer to develop convective motion.

In a compressible fluid, the non-convecting state during the initial transient is expected to persist up to a value
∆Tinstab greatly exceeding the stability threshold ∆Tons given by Eq.2, derived for a linear temperature and density
distribution in the vertical direction. This result for ∆Tinstab was obtained by El Khouri and Carlès [14] via a
linear stability analysis and is a direct consequence of the strongly inhomogeneous vertical density and temperature
distribution with pronounced boundary layers generated by the Piston effect [15]. A clear example can be seen in
Fig. 1(a) of ref. [4], which presents transient curves for ε = 0.05. The simulated trace essentially coincides with the
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zero-gravity result (Eq.3.3 in ref [4]) up to ∆T (t) of order 280 µK, while the stability criterion (Eq.2 in the present
paper) gives only 7 µK. Another example is obtained by comparing the simulations in Fig.2 of ref [5] at ε = 0.01 with
calculations under zero gravity, which also shows the two curves coinciding until close to tp. Hence the simulations
[4,5] are qualitatively consistent with the predictions of linear stability analysis.

We now recapitulate the main findings of the comparison between experimental data and simulations for a su-
percritical very compressible fluid,3He. Starting with tosc, which is the characteristic time determined farthest away
from the start of the heat flow, both experiments and simulations in the scaled representation are in good agreement.
By contrast, as shown in Fig.5, tp is systematically larger in the simulations than in the experiments, the difference
becoming more important as ε increases. An intriguing puzzle is why all the experimental tp data at the various
values of ε can be cast into a scaling representation, while the simulation data cannot.

This disagreement for tp is surprising: at large ε where the compressibility of the fluid has become smaller, a
“simple” Boussinesq behavior should be recovered. A possible origin of this discrepancy is the imperfection of the
temperature control of the top plate during the experiment. The signal from the control thermometer [1] is recorded
by a circuit with a time constant of 1.25 seconds and 6 dB/octave rolloff. Therefore, temperature fluctuations with
frequencies above a few Hz cannot be detected. The average temperature noise is estimated to be about 1 µK/

√
Hz

r.m.s. Because of very high thermal conductivity of the top plate material (OFHC copper) it seems reasonable
to assume that this perturbation produces no horizontal temperature gradients. It is therefore possible that small
parasitic fluctuations of the top plate temperature could speed up the development of the convecting state, hence
producing an overshoot with a smaller tp than the simulations do, which have no noise. We would anticipate that once
the convection is almost fully developed, the influence of the fluctuations mentioned above would not be noticeable
any more. Hence they might not affect the period tosc of the damped oscillations, which would explain the good
agreement between experiment and simulations and also that in the steady-state condition [16].

We mention here that in the experiments [1] a rounding of the onset point on the steady-state ∆T (q) measurements
was reported and also attributed to the top plate noise. The rounding was found to become more and more pronounced
as the critical point point was approached, i.e. the effect of the fluctuations would have to be increasing with decreasing
ε. The effect of time-dependent boundary conditions on convection in a compressible fluid appears to be an interesting
and open question. We suggest future studies, both experimental and numerical ones, that would focus on the transient
response of a fluid layern a R-B cell to an externally imposed perturbation of the top surface temperature.

VI. CONCLUSIONS

A systematic comparison of the results from experimental and 2D simulation convection studies of a compressible
fluid has been reported. This fluid is supercritical He3 along the critical isochore and over a temperature range
where the compressibility varies by a factor of ≈ 40. The temperature profile ∆T (t) across the fluid layer in a
Rayleigh-Bénard cell after the start of a heat flow was investigated in both experiments and simulations. The damped
oscillations in the transient after the start of the heat flow, and with a period tosc are of particuliar interest. They
are a consequence of vertical mass flows that result from the “piston effect” triggered by the plumes - both moving
up and down.

The comparison of the steady-state results, expressed in terms of the convection current versus the Rayleigh
number, shows good agreement in general. However, the comparison of the transient results shows some systematic
discrepancies, which appear to become more important as the compressibility decreases (i.e as the distance from the
critical point increases). This can be seen clearly by examining the respective ∆T (t) profiles at various temperatures.
The agreement is best for the oscillation period where the simulation results and the experimental data can be
represented in scaled form versus the Rayleigh number. The absence of noise in the simulations, in contrast to a
physical system, might be a possibility for the discrepancy. In addition, as mentioned earlier in this paper, the
simulations carried out independently by two research groups [4,5] do not detect the slow relaxation of ∆T (t) to the
steady state, or the region of “truncated oscillations” observed in the experiments. These discrepancies remain to be
understood.
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VIII. APPENDIX

A. Boundary between regimes with damped and “truncated” oscillations.

It is useful to present this boundary in terms of the Rayleigh number difference [Rabound
corr − Rac] versus ε, where

the transformation from the former representation ∆Tbound(ε) to the present one was done via Eq.6 of ref. [2]. The
zone diagram in this format shows that the boundary height remains constant at [Raboundcorr − Rac] = 700 ±200 for
0.05 < ε < 0.2, and then rises steeply as ε further decreases. This is shown in Fig.7.
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FIG. 6. The boundary between the regimes showing damped oscillations (top region) and truncated oscillations (bottom

region), expressed in terms of [Racorr −Rac] versus ε.

B. The time tm in the profile ∆T (t)

The discussion of tm, the time defined in Fig.2, is more complex than for tosc and tp. In Fig. 7, both the results
for tm/τD versus [Racorr − Rac] from the analysis of the experimental and the simulated transient profiles ∆T (t)
are presented. Both sets of results are clearly separated by a roughly constant amount on the vertical logarithmic
scale. Hence we can use the same symbols for the values of ε for the experiments and the simulation. For the sake
of simplicity, we do not distinguish between the various authors in this figure. We note, however,that the simulation
points for [Racorr − Rac] = 5.96×104 and 4.78×105 at ε = 0.01 are those by Amiroudine [5]. Here, in contrast with
tosc, the tm data from experiments show a small but systematic departure from collapsing on a single curve at the
lower values of [Racorr −Rac]. However the scaled results from simulations at the various values of ε collapse on one
curve within the scatter. The trend is the same for both experimental and simulation data : the limiting slopes of
the curves at the extremities of [Racorr −Rac] correspond to power laws with exponents of approximately n = -1 and
n = -0.5, respectively, at the low - and at the high end of the Ra numbers. This is shown in Fig.7.

We note that 1) the experimental data points for [Racorr − Rac] below the values of the boundary shown in Fig.
6 are in the regime of “truncated” oscillations. They form a smooth continuation of the curves at higher values of
[Racorr−Rac], namely in the regime of damped oscillations. 2) The experimental data for ε ≥ 0.07, which collapse on
a single curve are those where the boundary in Fig.6 is at [Racorr −Rac]≈ const = 700. The departure from collapse
from the first onto a second curve takes place when the boundary in Fig.6 begins to rise steeply for ε ≤ 0.07. 3) It is
intriguing that the logarithmic vertical separation of the experimental and simulation curves corresponds to roughly
a factor of 2. This means that for the same value of [Racorr − Rac], the observed tm has roughly twice the value of
tm from simulations.

The analysis of the experimental tm data for the limit of low values of [Racorr − Rac] and the comparison with a
simple predicted expression by Chiwata and Onuki [3] was already presented in Figs. 7 and 8 of ref. [2]. The exponent
of -1 found both for the experiments and the simulations is consistent with the simple prediction.
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FIG. 7. The time tm between the first peak and the first minimum, scaled by the diffusion time τD, versus [Racorr − Rac].
The experimental data are located on the upper two almost overlapping trajectories of symbols. Those from the simulation,
showing a collapse, are located on the lower trajectory of symbols. The symbols denote the various values of ε at which both
experiments and simulations were carried out.
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