

Experimental Results for an Annular Aerospike with Differential Throttling

Joseph H. Ruf and David M. McDaniels NASA/Marshall Space Flight Center

Overview

- Introduction
- Experimental Hardware
- Results
- Conclusions

Introduction

- MSFC funded an internal study on Altitude Compensating Nozzles
 - Develop an ACN design and performance prediction tool.
 - Design, build and test cold flow ACN nozzles
 - An annular aerospike nozzle was designed and tested
 - Incorporated differential throttling to assess Thrust Vector Control
- Objective of the test hardware
 - Provide design tool verification
 - Provide benchmark data for CFD calculations
 - Experimentally measure side force, or TVC, for a differentially throttled annular aerospike

Thruster

AR = 3.5

Experimental Hardware

- One Dimensional Design Parameters
 - Overall area ratio, 38:1
 - Internal expansion or 'thruster', 3.5:1. Symmetric expansion.
 - Design point Nozzle Pressure Ratio (NPR) = 995
 - Working fluid was warm air.
 - Two spike lengths, 25% and 40% of equivalent conical nozzle.

- Differential Throttling
 - Annular manifold and thruster were divided into quadrants with splitter plates
 - Mass flow orificed to produce $\pm 20\%$ differential throttling

Side View

6

- Nozzle Pressure Field Well Mapped
 - P_{total} and P_{static} in each quadrant manifold
 - More than 160 P_{static} on spike
 - Quadrant centerlines
 - Crossflow
 - Splitter plate profiles
 - Nozzle Base
 - High frequency pressures
 - One each in each quadrant manifold
 - Four on spike
 - two on thruster centerlines
 - two on splitter plate centerlines

180°

- Test Performed in MSFC's Nozzle Test Facility
 - Test cell evacuated with ejectors
 - Evacuated to near vacuum
 - Measures axial force with load cell
 - Heated Air to 150°C
- Nozzle Efficiency
 - Efficiency = $F_{measured}/F_{optimum}$
 - $\quad F_{opt} = P_c \; A_{throat} \; C_{f_opt}$

$$C_{f_opt} \equiv \sqrt{\frac{2\gamma^2}{\gamma - 1} \left(\frac{2}{\gamma + 1}\right)^{(\gamma + 1)/(\gamma - 1)} \left[1 - \left(\frac{1}{NPR}\right)^{(\gamma - 1)/(\gamma - 1)}\right]}$$

- Side Force
 - Measured with set of small flexures
 - Only measured in horizontal plane

Results

– Side force

Results, continued: Spike Wall Pressures

- Altitude Compensation
 - Altitude compensation at low NPR occurs via recompressions on the spike generated by the Barrel Shock.
 - Barrel, or envelop, shock results from the plume sensing the local ambient pressure.

Wall pressure on the annular aerospike centerbody

Results, continued: Spike Wall Pressures

- Non-Throttled
 - Recompression on spike
 - 25% Length, barrel shock moved off spike at NPR ~150
 - 40% Length, barrel shock moved off spike at NPR ~200

Results, continued: Spike Wall Pressure

- Non-Throttled
 - Quadrant centerline profiles good agreement
 - 0° & 90° quadrants, high density of measurements,
 - 180° & 270° quadrants, lower density of measurements.
 - 0° & 90 agree with 180 & 270.

Results, continued: Spike Wall Pressures

- Throttled: 40% Length shown (25% Length Similar)
 - High NPR
 - High pressure quadrant had higher pressures on spike
 - Spike pressures counteract intended side force

P_c=80% P_c=120% Thruster Side Force Component. Side Force Component.

- Low NPR
 - Spike pressures after recompression were favorable to intended side force

Results, continued: Nozzle Efficiency

- Non-Throttled: 25% Length, 'Baseline'
 - Fairly good repeatability in test data
 - Several discontinuities in the curves
 - At NPR 400, due to rapid decrease in nozzle base pressure at wake closure
 - At NPR 180, due to recompressions moving off the ramp
 - At NPR 100, due to decrease in base pressure related to barrel shock structure

Results, continued: Nozzle Efficiency

- Non-Throttled: 40% vs. 25% Length
 - Longer spike increased nozzle efficiency
 - Discontinuities shifted to higher NPR
 - Wake closure at higher NPR
 - Barrel shock moved off spike at higher NPR
 - Decrease in efficiency at wake closure was smaller
 - Nozzle base area smaller, smaller component of axial thrust

Results, continued: Nozzle Efficiency

- Throttled: 25% Length
 - Efficiency at the design point was within family of baseline runs
 - Discontinuities smoothed
 - 90° and 270° quadrants had different effective NPR than nominal P_c quadrants
 - Different barrel shock positions on spike smoothed the transitions

• Throttled: 40% Length had Similar Trends

Results, continued: Side Force

- Overview of 25% and 40% Length Spike
 - Non-Throttled runs plotted as reference
 - Both 25% and 40% length spikes exhibited large variations at low NPR
 - Peaks occurred at different NPR
 - Both had constant value at high NPR
 - 40% length produced less side force at high NPR

Results, continued: Side Force

- 25% Length
 - Two peaks of near zero side force. Both indicate TVC reversal.
 - Constant value reached at NPR 230.

- 40% Length
 - Three peaks of near zero side force.
 One indicated TVC reversal
 - Constant value reached at NPR 400.

18

Results, continued: Side Force

- Comparing Side Force Directly
 - 25% length spike's peak to peak variation larger than 40% length
 - Peaks were at different NPR

Conclusions

- Non-Throttled
 - 25% Length
 - Details of aerospike nozzle efficiency curve explained.
 - Discontinuities due to altitude compensation by barrel shock.
 - 40% Length
 - Increased efficiency.
 - Subtle changes in details of efficiency curve.
- Throttled
 - 25% Length
 - No discernable effect on efficiency.
 - Large variation of side force at low NPR resulted from barrel shock impingement at different axial stations.
 - Side force became a constant value when last shock moved off centerbody.
 - 40% Length
 - No discernable effect on efficiency.
 - Large variation, but less than 25% length spike, at low NPR.
 - Side force became a constant value when last shock moved off centerbody.
 - Side force at high NPR was approximately ¹/₄ of side force for 25% length spike.