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Abstract 
 
The motivation for this work comes from an 
observation that amidst the push for Massively 
Parallel (MP) solutions to high-end computing 
problems such as numerical physical 
simulations, large amounts of legacy code exist 
that are highly optimized for vector 
supercomputers. Because re-hosting legacy code 
often requires a complete re-write of the original 
code, which can be a very long and expensive 
effort, this work examines the potential to exploit 
reconfigurable computing machines in place of a 
vector supercomputer to implement an 
essentially unmodified legacy source code. 
Custom and reconfigurable computing resources 
could be used to emulate an original 
application's target platform to the extent 
required to achieve high performance. To arrive 
at an architecture that delivers the desired 
performance subject to limited resources 
involves solving a multi-variable optimization 
problem with constraints. Prior research has 
shown that designing an optimum hardware 
implementation of a given application under 
hardware resource constraints is a type of 
problem for which general efficient solutions 
have not been found. The premise of this 
approach is that the goal of applying 
reconfigurable computing resources to the 
implementation of an application, maximizing 
the performance of the computation subject to 
physical resource constraints, can be achieved 
practically by assuming a computational 
paradigm, such as vector processing.   
 
This research contributes a formulation of the 
problem and a methodology to design a 
reconfigurable vector processing implementation 
of a given application that satisfies a 
performance metric. A generic, parametric, 
architectural framework for vector processing 
implemented in reconfigurable logic is 
developed as a target for a scheduling/mapping 
algorithm that maps an input computation to a 
given instance of the architecture. This 
algorithm is integrated with an optimization 
framework to arrive at a specification of the 
architecture parameters that attempts to 

minimize execution time, while staying within 
resource constraints.  The flexibility of using a 
custom reconfigurable implementation is 
exploited in a unique manner to leverage the 
lessons learned in vector supercomputer 
development. The vector processing framework 
is tailored to the application, with variable 
parameters that are fixed in traditional vector 
processing.  Benchmark data that demonstrates 
the functionality and utility of the approach is 
presented.  The benchmark data includes an 
identified bottleneck in a real case study example 
vector code, the NASA Langley Terminal Area 
Simulation System (TASS) application. 
 
 

Background and Related Research 
 
Custom reconfigurable computing has been an 
active area of research from the introduction of 
its concepts [1] to the present day where 
enabling advancements in configurable 
processing elements [2] have allowed for a wide 
variety of experimentation.  At the center of RC 
applications is the problem of defining an 
appropriate architecture for a given problem 
subject to limited resource constraints.  It has 
been shown that the related problem of resource 
constrained scheduling belongs to the class of 
NP-complete problems, which may not have 
tractable solutions [3].  In order to solve 
practical instances of such problems, constraints 
on the problem scope and heuristics can be used.  
This research pursues finding solutions to the 
problem of architecture definition and scheduling 
under constraints by limiting the solution space 
to vector computations.  Solutions of this form 
have utility for a wide range of existing scientific 
codes targeted for vector processing 
architectures.  In addition, lessons learned from 
years of vector computer development can be 
leveraged with the additional unique flexibility 
of an RC implementation.  
 
It is desirable to introduce few modifications to a 
legacy vector code desired to be run on a custom 
platform.  Gokhale and Stone [4] developed a 
method of introducing pragmas, or directives 
into a C source code as input to a hardware 
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complier.  The complier targets a hybrid General 
Purpose(GP)/Reconfigurable(RC) processor, 
which allows for the majority of the source code 
to be executed on the GP processor with a 
standard compiler and sections identified by the 
pragmas to be synthesized to a hardware 
implementation in the RC logic.  Several choices 
exist for reconfigurable logic devices with 
embedded general purpose processors, and this 
research uses the Xilinx Virtex II pro [5] for 
demonstration.  (Since the beginning of the 
project, the Virtex-5 is soon to be released, with 
even more features for implementing hybrid 
GP/RC systems). 
 
The PipeRench system [6] scopes the mapping 
problem by constraining the solution space to 
pipelined computations.  The hardware resources 
are virtualized, which relieves the compiler from 
fixed resource constraints.   This research further 
constrains the solution space to pipelined vector 
computations, and fixed resource constraints are 
an input to the mapping process.  Both 
approaches define a parametric architecture 
template as a target for mapping.  
 
Weinhardt and Luk [7] leverage lessons learned 
from vectorizing compilers for their pipeline 
vectorization scheme.  Loops in an input source 
code are transformed to a directed flow graph, 
where performance-enhancing measures such as 
chaining found in traditional vector processors 
are included.  This research incorporates 
chaining in a similar manner, with an additional 
ability to increase the potential amount of 
chaining by manipulating pipeline delays.   In 
[8]  Paar and Athanas demonstrate the feasibility 
of implementing a scientific simulation model 
typical of the legacy codes targeted for vector 
computers  in custom reconfigurable logic. 
 
The starting point of this research is defined with 
the following assumptions/statements: 
 
1. The input problem definition is a legacy 

code augmented with pragmas to define 
areas for custom vector implementation. 

2. The input code is already optimized for 
vector implementation. 

3. The runtime bottlenecks in the input code 
are previously identified, and provide the 
candidates for custom implementation. 

4. The research problem starts with a pseudo-
assembly representation of the input 

problem sections that have been identified 
for custom implementation with pragmas.  
The pseudo-assembly emulates a generic 
register-register vector computer assembly 
language. 

 
Problem formulation/Approach 

 
The problem statement for this research is as 
follows: Determine a vector core processor 
implementation that minimizes wall time to 
execute N vector instruction sequences, given a 
set of resource constraints, where wall time is 
(number of clock cycles)* (clock period).  
 
The formulation of the problem involves the 
following steps and associated components: 1) 
Definition and representation of computation to 
be performed in custom architecture, 2) 
Definition of architectural template with 
parameters that can be specified for a particular 
implementation, 3) A scheduler/mapping 
algorithm to apply an input computation to an 
instance of the template and compute 
performance estimates, 4) An optimization 
scheme to guide the choice of template instance 
parameters to meet a performance metric while 
meeting resource constraints, 5) HDL code 
generator to produce the hardware 
implementation of an instance of the 
architectural template, and 6) A microcode 
generation scheme to execute the input 
computation on the architecture instance.  A 
diagram of the process with the steps labeled is 
shown in Figure 1.  
 
An example of the pseudo-assembly in step (1) is 
the following vector load from a location in 
memory to a register. 
 
vl,v1,mem(1),63,X1 
 
In the above example, vl is the opcode for a 
vector load, v1 is a (virtual) destination register, 
mem(1) specifies a memory access to address 1, 
63 is the vector length of the operation, and X1 
is an annotation.  The assembler converts the 
pseudo-asssembly to a Data-Flow Graph (DFG) 
representation., where the nodes of the graph are 
vector operations, and the edges are data 
dependencies. 
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Figure 1: Problem process overview 

 
The architectural template is a vector processing 
core with a simple interconnect between pipeline 
vector functional units.  The template is specified 
with a set of parameters that include number of 
vector load/store units, number of registers, 
number of floating-point vector adders, number 
of floating-point vector multipliers, number of 
interconnect busses, and Maximum Vector 
Length (MVL).  In most traditional vector 
processors, the MVL is fixed, which determines 
the number of iterations a vector sequence must 
be performed to complete a given vector size, for 
example, if the vector length n > MVL.  The 
ability to vary parameters such as the MVL 
illustrates capabilities unique to a custom RC 
implementation.  Figure 2 shows the template.  
Note that many other templates could be used.   
The template, an initial guess of its parameters 
X, the input problem DFG, and a set of target 
implementation-specific  hardware constraints 
provide the input to an optimization loop, (4) in 
Figure 1.   
 
The objective function f(X) of the optimization 
loop is a mapping of the problem DFG to an 
instance of the architecture.  The outputs of f(X) 

are the operation and resource schedules, the 
number of core cycles to execute, and hardware 
resource usage for the particular mapping.   The 
current scheduling algorithm is a greedy 
heuristic; operations whose input data are ready 
are scheduled to the first available resources until 
all available resources are exhausted.  The 
optimization algorithm performs non-
deterministic “guesses” of the architecture 
specification X* that yields the smallest 
execution time.   Simulated annealing is used as 
the optimization algorithm, but other methods 
appropriate for discrete input variables to 
perform constrained minimization could be used.  
Once an architecture has been determined its 
parameters provide input to a VHDL autocoder 
(Figure 1, step (5)) to produce a design of a 
custom peripheral that will interface to the GP 
processor.  At this point, the target platform must 
be assumed, and the Xilinx Virtex II pro, with an 
embedded PowerPC processor, is used as a 
demonstration for this research.  Xilinx 
Embedded Design ToolKit (EDK) is used to 
build the demonstration as an embedded 
PowerPC application with a custom peripheral 
implemented in configurable logic.  More details  

Rutishauser 3 MAPLD 2006/228 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

VLS

VLS

VLSSRAM VR1

VR2

VR3

VRn

…
VRn-1VLS

SRAM

SRAM

SRAM

+

X

Bus1
Bus2

BusN

+

VLS

VLS

VLSSRAM VR1

VR2

VR3

VRn

…
VRn-1

VR1

VR2

VR3

VRn

…
VRn-1VLS

SRAM

SRAM

SRAM

+

X

Bus1
Bus2

BusN

+

 
 
 
 
 
 

Figure 2: Parametric architecture template for a custom vector processing core 
 

of the demonstration platform are discussed in 
the next section.  Step (6) in Figure 1 is 
microcode generation from the schedule output 
of the optimizer.  The current vector core design 
is driven by long microcode instruction words.  
Current efforts are focused on partitioning this 
function between hardware and software, and 
managing the code size.  The instruction word 
has bit fields for each element in the architecture 
template, so as the template grows to 
accommodate an input problem on the available 
resources, the microcode word length increases, 
which increases the bandwidth necessary 
between the GP processor and RC fabric.    
 
In order for the mapping algorithm to compute 
resource usage estimates, the synthesis tools 
were run for different specifications of 
architecture parameters and the FPGA resources 
of interest were measured as a difference from 
each specification to a baseline.  An example of 
the data collected is shown in Table 1.   
 

 
 
 

Demonstration Platform 
 

Figure 3 is a block diagram of the demonstration 
design used for this research.  The demonstration 
board is a DN6000K10S prototyping board from 
the Dini Corporation [9].  Among many 
interfaces, the board includes four independent 
SRAM blocks and DDRAM interfaced with a 
Virtex II pro vp70 chip.  The architecture 
template instance for a particular demonstration 
is implemented as a custom peripheral in the 
EDK environment, which interfaces to the 
PowerPC via the Processor Local Bus (PLB) 
[10].  The IOCM and DOCM shown in Figure 3 
are the Instruction and Data On-Chip Memory, 
respectively.  A UART provides a terminal 
interface to the embedded C-code application 
running on the PowerPC.  Control words from 
the PowerPC application interface to the custom 
peripheral core through a FIFO.   
 

  Experiment Design 
 

The experiments chosen to test the research 
approach are a matrix-by-matrix multiplication 
and a basic loop from an actual vector code for a 
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Table 1: Architectural Template Component Resource Usage 
 
 
 

 
 
 
 

Slices LUTs FFs 18X18Mult BRAM startup (cycles) cycles/element VLIW bits
vp70 33088 66176 66176 328 328 - -
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Figure 3: Demonstration board components 
 
weather simulation.  The matrix-by-matrix 
multiplication is a typical operation in many 
physical models, and it is a computation-bound 
problem, meaning there are many operations 
between memory references.  The basic weather 
simulation loop is a known performance 

bottleneck from NASA Langley’s Terminal Area 
Simulation System (TASS), a 3-dimensional 
large-eddy simulation used to model various 
atmospheric events that can present hazards to 
aviation [11].  TASS was originally coded 
specifically for the Cray vector architecture.  The  
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Figure 4: Matrix-by-matrix multiplication results 
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Figure 5: TASS basic loop results, vector length=64 
 
metrics recorded for these test cases are the 
execution time in peripheral core clock cycles, 
the floating-point operations per second FLOPS, 
the resource usage, and the architecture 
component utilizations.  Figures 4 and 5 show 
the results for the two test cases.  The matrix 
multiply was performed on 16-element (4X4) 
and 64-element (8X8) matrices.   
 

Discussion 
 

Figure 4 shows that for the two matrix 
multiplication cases shown, doubling the 
problem size more than triples the execution 
time.  The compute-bound nature of the problem 
is implied in the resource usage data, since a 
small amount of BRAM is used, implying few 
registers.    Also apparent from the utilization 
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chart, the vector load/stores have  higher 
utilization than the other functional units, 
meaning that the movement of data to and from 
the core was limiting the speed of the 
computation.  For this example, the number of 
load/store units was limited to four, to be 
consistent with the limitations of the 
demonstration board.   
 
Figure 5 shows one iteration and sixteen 
iterations of the TASS loop on a 64-element 
vector.  In this case, there is roughly a one-to-one 
relationship between the execution time and 
problem size.  The FLOPS do not increase with 
problem size, which suggests a memory-bound 
characteristic to the problem.  This observation is 
further supported by the resource usage and 
utilization plots.  The register (BRAM) resource 
increases dramatically with the problem size, and 
the functional unit utilization actually decrease 
with problem size when the load/store utilization 
approaches maximum utilization.  Current efforts 
are to look at larger problem sizes to identify 
problem size-dependent trends that could be 
useful data for improving the process. 
  

Future Work/Lessons Learned 
 

Work continues on completion and refinement of 
the process outlined in Figure 1.  The scheduler, 
autocoders, and assembler designs are being 
revisited to allow improved performance on 
larger problem sizes.  One major bottleneck in 
the current approach is the communication of 
microcode words across the Processor Local Bus 
from the PowerPC to the vector core.  
Development is in process to reduce the 
bandwidth of this interface.   
 
As more problem types and sizes are examined, 
the goal is to identify the limits of the problem 
space where this solution approach is effective.  
Areas for improvement will be identified, and 
lessons learned documented.  Lessons learned to 
date include the following: 
 

1. All development tools, including 
debugging, should be tested in a 
relevant configuration as early as 
possible in the process.   The lack of 
having a consistent design tool flow 
and debugging resources identified 
early contributed to major delays in this 
research. 

2. Identify problems early in test 
hardware.  Several hardware issues 

with the demonstration board used for 
this research caused substantial delays.   

3. Component development should be 
tested early on” real” problem sizes.  
Component development in the 
mapping process was done by running 
a prototype on a small test problem.  
Designs had to be re-visited when 
issues with running larger problem 
sizes were identified.   
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Motivation
• Recent push for Massively Parallel (MP) solutions to 

high-end computing problems such as numerical 
physical simulations
– Silicon Graphics MP machines replaced Crays as standard 

supercomputing resource for NASA
• Large amounts of legacy code exist in government and 

industry that is highly optimized for vector 
supercomputers
– Numerous fluid dynamics, thermal, and structures codes at 

written for previously predominant Cray resources, e.g. Terminal
Area Simulation System (TASS) 

• Re-hosting legacy code to an MP platform often requires 
a complete re-write of the original code; a very long and 
expensive effort
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Motivation, cont.

• Potential exists to use reconfigurable, 
custom computing resources to emulate 
key features of a legacy code’s target 
architecture

• Goal is to achieve useful performance
– Performance between generic implementation 

and supercomputer implementation
– Small augmentations to source code
– Costs a fraction of a supercomputer
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Problem Space
• Prior research shows the issue of designing an optimum 

hardware implementation of a given application under 
hardware resource constraints is in a category of 
generally intractable problems
– Resource Constrained Scheduling1

– Spatial Partitioning under Constraints2

– Mapping application parts to processing elements3

• Approach based on the thesis that the general problem 
is tractable if domain constrained to a particular 
computing paradigm

• Vector processing paradigm chosen
1. M. Narasimhan, J. Ramanujam;  "A Fast Approach to Computing Exact Solutions to the Resource-Constrained Scheduling Problem“ 
2. R. Hudson, et al; "Spatio-Temporal Partitioning of Computational Structures onto Comfigurable Computing Machines“
3. M. Asraf, S. Bokhari; “Efficient Algorithms for a Class of Partitioning Problems”
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Assumptions
• Approach assumes a source code with minor augmentations (e.g. 

pragmas)1

#pragma _CRI prefervector
for (i = 0; i < n; i++) {
#pragma _CRI ivdep
for (j = 0; j < m; j++)
a[i] += b[j][i];
}

• Legacy code already has bottlenecks identified
• Legacy code already written for a vectorizing compiler
• Research focused on implementing identified bottlenecks in custom 

hardware
• Hybrid general-purpose, configurable logic platform targeted

1. Cray Standard C and Cray C++ Reference Manual, 004–2179–005



Rutishauser MAPLD 2006/2286

Approach, inputs

• Pseudo vector assembly representation of 
computation as starting point

• Inputs to optimization process
– Data Flow Graph (DFG) of computation 
– Target platform constraints (i.e. # of slices, 

LUTs, etc.)
– Architectural template (parametric)
– Starting guess of template parameters 
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Optimization

• Goals of optimization
– Determine architecture parameter set for 

implementation producing minimum execution 
time

– Determine schedule for mapping input 
computation to architecture

– Solution must remain within hardware 
resource constraints
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Overview of approach
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Architecture Template
• Form chosen is vector processing core

– Assumes a vector register set (Register-Register 
architecture)

– Vector functional units
– Simple bus interconnect structure

• Parameters of core variable
– # of registers
– Max vector length
– # and type of functional units
– # of interconnect busses

• Other templates could be used
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Vector Core Architecture Template

VLS

VLS

VLSSRAM VR1
VR2
VR3

VRn

…
VRn-1VLS

SRAM

SRAM

SRAM

BRAM port A
BRAM port  B

+

X

Bus1
Bus2

BusN

+

VLS

VLS

VLSSRAM VR1
VR2
VR3

VRn

…
VRn-1

VR1
VR2
VR3

VRn

…
VRn-1VLS

SRAM

SRAM

SRAM

BRAM port A
BRAM port  B

+

X

Bus1
Bus2

BusN

+
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Experimental Architecture
SRAM SRAM SRAM SRAM

PPC
[App Code]

IOCM

DOCM

PLBBRAM

C/S 
REGS/FIFO

UART PLB-
OPB

RS232

PLB

OPB

VECTCORE

ARCHITECTURAL TEMPLATE 
INSTANCE X’( )

Demo board

Virtex II pro

SRAM SRAM SRAM SRAMSRAM SRAM SRAM SRAM

PPC
[App Code]

IOCM

DOCM

PLBBRAM

C/S 
REGS/FIFO

UART PLB-
OPB

UART PLB-
OPB

RS232

PLB

OPB

VECTCORE

ARCHITECTURAL TEMPLATE 
INSTANCE X’( )

Demo board

Virtex II pro
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Example

• Matrix Multiply C=AB
• DFG

L(a11,a21) L(a12,a22) L(b21)L(b11)

+

S(c11,c21)

X X X X

+

{0,0}

+

{0,0}

+

S(c12,c22)

L(b12) L(b21)L(a11,a21) L(a12,a22) L(b21)L(b11)

+

S(c11,c21)

X X X X

+

{0,0}

+

{0,0}

+

{0,0}

+

S(c12,c22)

L(b12) L(b21)
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Matrix Multiplication Example

• Initial Architecture parameter guess
– 2 load/store units, 10 registers, 2 multipliers, 2 

adders, vector length of 2, 4 functional unit 
interconnect busses, and 2 load/Store busses 

– Execution time of 111 core clock cycles
• Post-optimization Architecture parameters

– 4 load/stores,  8 registers, 4 multipliers, 4 
adders, vector length of 2, 16 functional unit 
interconnect busses, and 4 load/store busses

– Execution time of 31 core clock cycles 
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Example Schedule, Pre & Post 
Optimization

Op index

clock cycles

Op index

clock cycles
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Resource Estimates

Slices LUTs FFs 18X18Mult BRAM startup (cycles) cycles/element VLIW bits
vp70 33088 66176 66176 328 328 - -

X( )
baseline 3530 4201 3530 4 58 78
(1) VLS 134 235 174 0 0 3 1

(2) VREG 0 50 50 0 1 5 1 85

(3) VADD 229 140 392 0 0 5 1 90

(4) VMULT 229 140 392 4 0 8 1 90

* Baseline includes debug harware



Rutishauser MAPLD 2006/22816

Analysis Cases

• Typical matrix operations
– NxN matrix-matrix multiplication

• compute-bound problem, lots of ops per memory 
op, not many dependencies

• TASS code case study
– Basic loop from known performance 

bottleneck
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Matrix Multiply, n,m,p=4,4,4;8,8,8

MXM, n,m,p = 4,4,4  & 8,8,8
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TASS loop. I,J,K= 64,1,1; 64,4,4

TASS VL=64, 1 & 16 loop Iterations
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Summary

• Research produced a problem formulation and 
approach for determining an architecture to 
implement a given computation, while satisfying 
a performance metric and resource constraints
– Solution space constrained to a vector processing 

computing paradigm
– Approach components:

• Parametric architectural framework for vector processing that 
can be implemented in reconfigurable logic 

• Scheduling/mapping algorithm
• Hardware/microcode generators
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Future Work

• Completion of development and test of 
experimental framework

• Examination of effective problem 
space/limits of approach

• Documentation of lessons learned and 
heuristics

• Identification of areas of improvement
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Lessons Learned

• Development tools, including debugging, 
should be tested in a relevant 
configuration as early as possible.

• Identify problems early in test hardware.
• Component development should be tested 

early on” real” problem sizes.
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Backup Slides
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TASS Basic Loop Fortran Code
C

C######################################################################

C CALCULATE U COMPONENT OF VELOCITY

C######################################################################

#

C

C

C ADVANCE U TO NEXT TIME LEVEL

C

C

DO 11 K=1,KS

DO 11 J=1,JS

DO 11 I=2,IS

X1=U(I,J,K,2)

U(I,J,K,2)=(P(I,J,K,1)-P(I-1,J,K,1))*A(I,J,K)

E(I,J,K)=ALS*U(I,J,K,2)+BTS*X1+U(I,J,K,4)

11 CONTINUE
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TASS Pseudo-code Example
vl,v1,mem(1),63,X1
vl,v2,mem(128),63,A
vl,v3,mem(64),63,P
vl,v4,mem(63),63,Pm1
vmult,v5,v2,v4,63,PA
vadd,v6,v5,v3,63,PS
vl,v7,mem(192),1,ALS
vl,v8,mem(191),1,BTS
vl,v9,mem(193),63,U4
vmults,v10,v7,v6,63,ALSU
vmults,v11,v8,v1,1,BTSX1
vadd,v12,v10,v11,63,ALSUBTSX1
vadd,v13,v12,v9,63,ALSUBTSX1U4
vs,mem(1),v6,63,U
vs,mem(195),v13,63,E
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