
IMPLEMENTING SCIENTIFIC SIMULATION CODES HIGHLY TAILORED FOR VECTOR
ARCHITECTURES USING CUSTOM CONFIGURABLE COMPUTING MACHINES

David Rutishauser, Virginia Polytechnic Institute, rutishau@vt.edu

Abstract

The motivation for this work comes from an
observation that amidst the push for Massively
Parallel (MP) solutions to high-end computing
problems such as numerical physical
simulations, large amounts of legacy code exist
that are highly optimized for vector
supercomputers. Because re-hosting legacy code
often requires a complete re-write of the original
code, which can be a very long and expensive
effort, this work examines the potential to exploit
reconfigurable computing machines in place of a
vector supercomputer to implement an
essentially unmodified legacy source code.
Custom and reconfigurable computing resources
could be used to emulate an original
application's target platform to the extent
required to achieve high performance. To arrive
at an architecture that delivers the desired
performance subject to limited resources
involves solving a multi-variable optimization
problem with constraints. Prior research has
shown that designing an optimum hardware
implementation of a given application under
hardware resource constraints is a type of
problem for which general efficient solutions
have not been found. The premise of this
approach is that the goal of applying
reconfigurable computing resources to the
implementation of an application, maximizing
the performance of the computation subject to
physical resource constraints, can be achieved
practically by assuming a computational
paradigm, such as vector processing.

This research contributes a formulation of the
problem and a methodology to design a
reconfigurable vector processing implementation
of a given application that satisfies a
performance metric. A generic, parametric,
architectural framework for vector processing
implemented in reconfigurable logic is
developed as a target for a scheduling/mapping
algorithm that maps an input computation to a
given instance of the architecture. This
algorithm is integrated with an optimization
framework to arrive at a specification of the
architecture parameters that attempts to

minimize execution time, while staying within
resource constraints. The flexibility of using a
custom reconfigurable implementation is
exploited in a unique manner to leverage the
lessons learned in vector supercomputer
development. The vector processing framework
is tailored to the application, with variable
parameters that are fixed in traditional vector
processing. Benchmark data that demonstrates
the functionality and utility of the approach is
presented. The benchmark data includes an
identified bottleneck in a real case study example
vector code, the NASA Langley Terminal Area
Simulation System (TASS) application.

Background and Related Research

Custom reconfigurable computing has been an
active area of research from the introduction of
its concepts [1] to the present day where
enabling advancements in configurable
processing elements [2] have allowed for a wide
variety of experimentation. At the center of RC
applications is the problem of defining an
appropriate architecture for a given problem
subject to limited resource constraints. It has
been shown that the related problem of resource
constrained scheduling belongs to the class of
NP-complete problems, which may not have
tractable solutions [3]. In order to solve
practical instances of such problems, constraints
on the problem scope and heuristics can be used.
This research pursues finding solutions to the
problem of architecture definition and scheduling
under constraints by limiting the solution space
to vector computations. Solutions of this form
have utility for a wide range of existing scientific
codes targeted for vector processing
architectures. In addition, lessons learned from
years of vector computer development can be
leveraged with the additional unique flexibility
of an RC implementation.

It is desirable to introduce few modifications to a
legacy vector code desired to be run on a custom
platform. Gokhale and Stone [4] developed a
method of introducing pragmas, or directives
into a C source code as input to a hardware

Rutishauser 1 MAPLD 2006/228

mailto:rutishau@vt.edu

complier. The complier targets a hybrid General
Purpose(GP)/Reconfigurable(RC) processor,
which allows for the majority of the source code
to be executed on the GP processor with a
standard compiler and sections identified by the
pragmas to be synthesized to a hardware
implementation in the RC logic. Several choices
exist for reconfigurable logic devices with
embedded general purpose processors, and this
research uses the Xilinx Virtex II pro [5] for
demonstration. (Since the beginning of the
project, the Virtex-5 is soon to be released, with
even more features for implementing hybrid
GP/RC systems).

The PipeRench system [6] scopes the mapping
problem by constraining the solution space to
pipelined computations. The hardware resources
are virtualized, which relieves the compiler from
fixed resource constraints. This research further
constrains the solution space to pipelined vector
computations, and fixed resource constraints are
an input to the mapping process. Both
approaches define a parametric architecture
template as a target for mapping.

Weinhardt and Luk [7] leverage lessons learned
from vectorizing compilers for their pipeline
vectorization scheme. Loops in an input source
code are transformed to a directed flow graph,
where performance-enhancing measures such as
chaining found in traditional vector processors
are included. This research incorporates
chaining in a similar manner, with an additional
ability to increase the potential amount of
chaining by manipulating pipeline delays. In
[8] Paar and Athanas demonstrate the feasibility
of implementing a scientific simulation model
typical of the legacy codes targeted for vector
computers in custom reconfigurable logic.

The starting point of this research is defined with
the following assumptions/statements:

1. The input problem definition is a legacy

code augmented with pragmas to define
areas for custom vector implementation.

2. The input code is already optimized for
vector implementation.

3. The runtime bottlenecks in the input code
are previously identified, and provide the
candidates for custom implementation.

4. The research problem starts with a pseudo-
assembly representation of the input

problem sections that have been identified
for custom implementation with pragmas.
The pseudo-assembly emulates a generic
register-register vector computer assembly
language.

Problem formulation/Approach

The problem statement for this research is as
follows: Determine a vector core processor
implementation that minimizes wall time to
execute N vector instruction sequences, given a
set of resource constraints, where wall time is
(number of clock cycles)* (clock period).

The formulation of the problem involves the
following steps and associated components: 1)
Definition and representation of computation to
be performed in custom architecture, 2)
Definition of architectural template with
parameters that can be specified for a particular
implementation, 3) A scheduler/mapping
algorithm to apply an input computation to an
instance of the template and compute
performance estimates, 4) An optimization
scheme to guide the choice of template instance
parameters to meet a performance metric while
meeting resource constraints, 5) HDL code
generator to produce the hardware
implementation of an instance of the
architectural template, and 6) A microcode
generation scheme to execute the input
computation on the architecture instance. A
diagram of the process with the steps labeled is
shown in Figure 1.

An example of the pseudo-assembly in step (1) is
the following vector load from a location in
memory to a register.

vl,v1,mem(1),63,X1

In the above example, vl is the opcode for a
vector load, v1 is a (virtual) destination register,
mem(1) specifies a memory access to address 1,
63 is the vector length of the operation, and X1
is an annotation. The assembler converts the
pseudo-asssembly to a Data-Flow Graph (DFG)
representation., where the nodes of the graph are
vector operations, and the edges are data
dependencies.

Rutishauser 2 MAPLD 2006/228

Wall time

X*(1 .. N)

DFG of
computation

Constraints C1(X),
C2(X),…Cn(X)

X*(current)

Architectural
framework

DFG to Arch(i)
mapping-(scheduling
algorithm)

Execution time,
resource use
computation

Objective f(X):

Arch(i)

Optimization algorithm

Pseudo-

assembly
assembler

X(initial guess)

sched

VHDL generator

X*(1 .. N)

Sched->microcode

Xilinx EDK tools

sched
H/W demo

(1)

(2)

(4)

(3)

(5)

(6)

Wall time

X*(1 .. N)

DFG of
computation

Constraints C1(X),
C2(X),…Cn(X)

X*(current)

Architectural
framework

DFG to Arch(i)
mapping-(scheduling
algorithm)

Execution time,
resource use
computation

Objective f(X):

Arch(i)

Optimization algorithm

Pseudo-

assembly
assembler

X(initial guess)

sched

VHDL generator

X*(1 .. N)

Sched->microcode

Xilinx EDK tools

sched
H/W demo

Wall time

X*(1 .. N)

DFG of
computation

Constraints C1(X),
C2(X),…Cn(X)

X*(current)

Architectural
framework

DFG to Arch(i)
mapping-(scheduling
algorithm)

Execution time,
resource use
computation

Objective f(X):

DFG to Arch(i)
mapping-(scheduling
algorithm)

Execution time,
resource use
computation

Objective f(X):

Arch(i)

Optimization algorithm

Pseudo-

assembly
assembler

X(initial guess)

sched

VHDL generator

X*(1 .. N)

Sched->microcode

Xilinx EDK tools

sched
H/W demo

(1)

(2)

(4)

(3)

(5)

(6)
Figure 1: Problem process overview

The architectural template is a vector processing
core with a simple interconnect between pipeline
vector functional units. The template is specified
with a set of parameters that include number of
vector load/store units, number of registers,
number of floating-point vector adders, number
of floating-point vector multipliers, number of
interconnect busses, and Maximum Vector
Length (MVL). In most traditional vector
processors, the MVL is fixed, which determines
the number of iterations a vector sequence must
be performed to complete a given vector size, for
example, if the vector length n > MVL. The
ability to vary parameters such as the MVL
illustrates capabilities unique to a custom RC
implementation. Figure 2 shows the template.
Note that many other templates could be used.
The template, an initial guess of its parameters
X, the input problem DFG, and a set of target
implementation-specific hardware constraints
provide the input to an optimization loop, (4) in
Figure 1.

The objective function f(X) of the optimization
loop is a mapping of the problem DFG to an
instance of the architecture. The outputs of f(X)

are the operation and resource schedules, the
number of core cycles to execute, and hardware
resource usage for the particular mapping. The
current scheduling algorithm is a greedy
heuristic; operations whose input data are ready
are scheduled to the first available resources until
all available resources are exhausted. The
optimization algorithm performs non-
deterministic “guesses” of the architecture
specification X* that yields the smallest
execution time. Simulated annealing is used as
the optimization algorithm, but other methods
appropriate for discrete input variables to
perform constrained minimization could be used.
Once an architecture has been determined its
parameters provide input to a VHDL autocoder
(Figure 1, step (5)) to produce a design of a
custom peripheral that will interface to the GP
processor. At this point, the target platform must
be assumed, and the Xilinx Virtex II pro, with an
embedded PowerPC processor, is used as a
demonstration for this research. Xilinx
Embedded Design ToolKit (EDK) is used to
build the demonstration as an embedded
PowerPC application with a custom peripheral
implemented in configurable logic. More details

Rutishauser 3 MAPLD 2006/228

VLS

VLS

VLSSRAM VR1

VR2

VR3

VRn

…
VRn-1VLS

SRAM

SRAM

SRAM

+

X

Bus1
Bus2

BusN

+

VLS

VLS

VLSSRAM VR1

VR2

VR3

VRn

…
VRn-1

VR1

VR2

VR3

VRn

…
VRn-1VLS

SRAM

SRAM

SRAM

+

X

Bus1
Bus2

BusN

+

Figure 2: Parametric architecture template for a custom vector processing core

of the demonstration platform are discussed in
the next section. Step (6) in Figure 1 is
microcode generation from the schedule output
of the optimizer. The current vector core design
is driven by long microcode instruction words.
Current efforts are focused on partitioning this
function between hardware and software, and
managing the code size. The instruction word
has bit fields for each element in the architecture
template, so as the template grows to
accommodate an input problem on the available
resources, the microcode word length increases,
which increases the bandwidth necessary
between the GP processor and RC fabric.

In order for the mapping algorithm to compute
resource usage estimates, the synthesis tools
were run for different specifications of
architecture parameters and the FPGA resources
of interest were measured as a difference from
each specification to a baseline. An example of
the data collected is shown in Table 1.

Demonstration Platform

Figure 3 is a block diagram of the demonstration
design used for this research. The demonstration
board is a DN6000K10S prototyping board from
the Dini Corporation [9]. Among many
interfaces, the board includes four independent
SRAM blocks and DDRAM interfaced with a
Virtex II pro vp70 chip. The architecture
template instance for a particular demonstration
is implemented as a custom peripheral in the
EDK environment, which interfaces to the
PowerPC via the Processor Local Bus (PLB)
[10]. The IOCM and DOCM shown in Figure 3
are the Instruction and Data On-Chip Memory,
respectively. A UART provides a terminal
interface to the embedded C-code application
running on the PowerPC. Control words from
the PowerPC application interface to the custom
peripheral core through a FIFO.

 Experiment Design

The experiments chosen to test the research
approach are a matrix-by-matrix multiplication
and a basic loop from an actual vector code for a

Rutishauser 4 MAPLD 2006/228

Table 1: Architectural Template Component Resource Usage

Slices LUTs FFs 18X18Mult BRAM startup (cycles) cycles/element VLIW bits
vp70 33088 66176 66176 328 328 - -

X()
baseline 3530 4201 3530

Figure 3: Demonstration board components

weather simulation. The matrix-by-matrix
multiplication is a typical operation in many
physical models, and it is a computation-bound
problem, meaning there are many operations
between memory references. The basic weather
simulation loop is a known performance

bottleneck from NASA Langley’s Terminal Area
Simulation System (TASS), a 3-dimensional
large-eddy simulation used to model various
atmospheric events that can present hazards to
aviation [11]. TASS was originally coded
specifically for the Cray vector architecture. The

4 58 78
(1) VLS 134 235 174 0 3 1

(2) VREG 0 50 50 1 5 1 85

(3) VADD 229 140 392 0 5 1 90

(4) VMULT 229 140 392 0 8 1 90

0

0

0

4

SRAM SRAM SRAM SRAM

PPC
[App Code]

IOCM

DOCM

PLBBRAM

C/S
REGS/FIFO

UART PLB-
OPB

RS232

PLB

OPB

VECTCORE

ARCHITECTURAL TEMPLATE
INSTANCE X’()

Demo board

Virtex II pro

SRAM SRAM SRAM SRAMSRAM SRAM SRAM SRAM

PPC
[App Code]

IOCM

DOCM

PLBBRAM

C/S
REGS/FIFO

UART PLB-
OPB

UART PLB-
OPB

RS232

PLB

OPB

VECTCORE

ARCHITECTURAL TEMPLATE
INSTANCE X’()

Demo board

Virtex II pro

Rutishauser 5 MAPLD 2006/228

MXM, n,m,p = 4,4,4 & 8,8,8

0

50

100

150

200

250

cycles MFLOPS

cy
cl

es
/M

FL
O

PS

4,4,4
8,8,8

MXM, Resource Usage

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

bram slice LUT FF mult

resource type

%
 o

f a
va

ila
bl

e
(v

p7
0

pa
rt

)

4,4,4

8,8,8

MXM, Utilization

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

mult add VL

unit type

%
 u

til
iz

ed

4,4,4
8,8,8

MXM, n,m,p = 4,4,4 & 8,8,8

0

50

100

150

200

250

cycles MFLOPS

cy
cl

es
/M

FL
O

PS

4,4,4
8,8,8

MXM, Resource Usage

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

bram slice LUT FF mult

resource type

%
 o

f a
va

ila
bl

e
(v

p7
0

pa
rt

)

4,4,4

8,8,8

MXM, Utilization

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

mult add VL

unit type

%
 u

til
iz

ed

4,4,4
8,8,8

Figure 4: Matrix-by-matrix multiplication results

TASS VL=64, 1 & 16 loop Iterations

0
500

1000
1500
2000
2500
3000
3500
4000

cycles MFLOPS

cy
cl

es
/M

FL
O

P
S

1 loop
16 loops

TASS, Resource Usage

0.00%
5.00%

10.00%
15.00%
20.00%
25.00%
30.00%
35.00%
40.00%

bram slice LUT FF mult

resource type

%
 a

va
ila

bl
e

vp
70

 p
ar

t

1 loop
16 loops

TASS, Utilization

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

mult add VL

unit type

%
 u

til
iz

at
io

n

1 loop
16 loops

TASS VL=64, 1 & 16 loop Iterations

0
500

1000
1500
2000
2500
3000
3500
4000

cycles MFLOPS

cy
cl

es
/M

FL
O

P
S

1 loop
16 loops

TASS, Resource Usage

0.00%
5.00%

10.00%
15.00%
20.00%
25.00%
30.00%
35.00%
40.00%

bram slice LUT FF mult

resource type

%
 a

va
ila

bl
e

vp
70

 p
ar

t

1 loop
16 loops

TASS, Utilization

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

mult add VL

unit type

%
 u

til
iz

at
io

n

1 loop
16 loops

Figure 5: TASS basic loop results, vector length=64

metrics recorded for these test cases are the
execution time in peripheral core clock cycles,
the floating-point operations per second FLOPS,
the resource usage, and the architecture
component utilizations. Figures 4 and 5 show
the results for the two test cases. The matrix
multiply was performed on 16-element (4X4)
and 64-element (8X8) matrices.

Discussion

Figure 4 shows that for the two matrix
multiplication cases shown, doubling the
problem size more than triples the execution
time. The compute-bound nature of the problem
is implied in the resource usage data, since a
small amount of BRAM is used, implying few
registers. Also apparent from the utilization

Rutishauser 6 MAPLD 2006/228

chart, the vector load/stores have higher
utilization than the other functional units,
meaning that the movement of data to and from
the core was limiting the speed of the
computation. For this example, the number of
load/store units was limited to four, to be
consistent with the limitations of the
demonstration board.

Figure 5 shows one iteration and sixteen
iterations of the TASS loop on a 64-element
vector. In this case, there is roughly a one-to-one
relationship between the execution time and
problem size. The FLOPS do not increase with
problem size, which suggests a memory-bound
characteristic to the problem. This observation is
further supported by the resource usage and
utilization plots. The register (BRAM) resource
increases dramatically with the problem size, and
the functional unit utilization actually decrease
with problem size when the load/store utilization
approaches maximum utilization. Current efforts
are to look at larger problem sizes to identify
problem size-dependent trends that could be
useful data for improving the process.

Future Work/Lessons Learned

Work continues on completion and refinement of
the process outlined in Figure 1. The scheduler,
autocoders, and assembler designs are being
revisited to allow improved performance on
larger problem sizes. One major bottleneck in
the current approach is the communication of
microcode words across the Processor Local Bus
from the PowerPC to the vector core.
Development is in process to reduce the
bandwidth of this interface.

As more problem types and sizes are examined,
the goal is to identify the limits of the problem
space where this solution approach is effective.
Areas for improvement will be identified, and
lessons learned documented. Lessons learned to
date include the following:

1. All development tools, including
debugging, should be tested in a
relevant configuration as early as
possible in the process. The lack of
having a consistent design tool flow
and debugging resources identified
early contributed to major delays in this
research.

2. Identify problems early in test
hardware. Several hardware issues

with the demonstration board used for
this research caused substantial delays.

3. Component development should be
tested early on” real” problem sizes.
Component development in the
mapping process was done by running
a prototype on a small test problem.
Designs had to be re-visited when
issues with running larger problem
sizes were identified.

1 G. Estrin, “Organization of Computer Systems-
The Fixed Plus Variable Structure Computer,”
Proc. of the Western Joint Computer Conf.,
Western Joint Computer Conference, New York,
1960, pp. 33-40.
2 Virtex-4 Family Overview, February 2006,
Xilinx Advance Product Specification, DS112.
http://direct.xilinx.com/bvdocs/publications/ds11
2.pdf
3 Garey, M., Johnson, D., Computers and
Intractability, A Guide to the Theory of NP-
Completeness, W.H. Freeman and Company,
San Francisco, 1979.
4 J.M. Gokhale, M.B. Stone, “Napa C:
Compiling for a Hybrid RISC/FPGA
Architecture”, Proc. IEEE FCCM (1998), pp.
126-135.
5 Virtex-II Pro Platform FPGAs: Introduction
and Overview, August 2003, Xilinx Advance
Product Specification, DS083-1.
6 H. Budiu, M. Cadambi, S. Moe, M. Taylor,
R.R. Goldstein, S.C. Schmit, “Piperench: A
Reconfigurable Architecture and Compiler”,
IEEE Computer 33(2000), no. 4, pp. 70-77.
7 M. Weinhardt and W. Luk, “Pipeline
Vectorization”, IEEE Transactions on
Computer-Aided Design of Integrated Circuits
and Systems, 20, no. 2.
8 K. Paar and P. Athanas, “Accelerating Finite-
Difference Analysis Simulations with
a Configurable Computing Machine”,
Microprocessors and Microsystems 21 (1997),
pp. 223-235.
9 http://www.dinigroup.com/
10 Virtex II Pro and Virtex II Pro X Platform
FPGAs: Complete Data Sheet, Xilinx Product
Specification, DS083 (V4.0), June 2004.
11 F. H. Proctor, The Terminal Area Simulation
System. Volume I: TheoreticalFormulation,
NASA Contractor Report 4046 (1987), Available
from the National Technical Information
Service, Springfield, VA, 22161.

Rutishauser 7 MAPLD 2006/228

Rutishauser MAPLD 2006/2281

Implementing Scientific Simulation
Codes Highly Tailored for Vector

Architectures Using Custom
Configurable Computing Machines

MAPLD Sept. 24-26,2006
Washington, DC

David Rutishauser
Virginia Polytechnic Institute

Rutishauser MAPLD 2006/2282

Motivation
• Recent push for Massively Parallel (MP) solutions to

high-end computing problems such as numerical
physical simulations
– Silicon Graphics MP machines replaced Crays as standard

supercomputing resource for NASA
• Large amounts of legacy code exist in government and

industry that is highly optimized for vector
supercomputers
– Numerous fluid dynamics, thermal, and structures codes at

written for previously predominant Cray resources, e.g. Terminal
Area Simulation System (TASS)

• Re-hosting legacy code to an MP platform often requires
a complete re-write of the original code; a very long and
expensive effort

Rutishauser MAPLD 2006/2283

Motivation, cont.

• Potential exists to use reconfigurable,
custom computing resources to emulate
key features of a legacy code’s target
architecture

• Goal is to achieve useful performance
– Performance between generic implementation

and supercomputer implementation
– Small augmentations to source code
– Costs a fraction of a supercomputer

Rutishauser MAPLD 2006/2284

Problem Space
• Prior research shows the issue of designing an optimum

hardware implementation of a given application under
hardware resource constraints is in a category of
generally intractable problems
– Resource Constrained Scheduling1

– Spatial Partitioning under Constraints2

– Mapping application parts to processing elements3

• Approach based on the thesis that the general problem
is tractable if domain constrained to a particular
computing paradigm

• Vector processing paradigm chosen
1. M. Narasimhan, J. Ramanujam; "A Fast Approach to Computing Exact Solutions to the Resource-Constrained Scheduling Problem“
2. R. Hudson, et al; "Spatio-Temporal Partitioning of Computational Structures onto Comfigurable Computing Machines“
3. M. Asraf, S. Bokhari; “Efficient Algorithms for a Class of Partitioning Problems”

Rutishauser MAPLD 2006/2285

Assumptions
• Approach assumes a source code with minor augmentations (e.g.

pragmas)1

#pragma _CRI prefervector
for (i = 0; i < n; i++) {
#pragma _CRI ivdep
for (j = 0; j < m; j++)
a[i] += b[j][i];
}

• Legacy code already has bottlenecks identified
• Legacy code already written for a vectorizing compiler
• Research focused on implementing identified bottlenecks in custom

hardware
• Hybrid general-purpose, configurable logic platform targeted

1. Cray Standard C and Cray C++ Reference Manual, 004–2179–005

Rutishauser MAPLD 2006/2286

Approach, inputs

• Pseudo vector assembly representation of
computation as starting point

• Inputs to optimization process
– Data Flow Graph (DFG) of computation
– Target platform constraints (i.e. # of slices,

LUTs, etc.)
– Architectural template (parametric)
– Starting guess of template parameters

Rutishauser MAPLD 2006/2287

Optimization

• Goals of optimization
– Determine architecture parameter set for

implementation producing minimum execution
time

– Determine schedule for mapping input
computation to architecture

– Solution must remain within hardware
resource constraints

Rutishauser MAPLD 2006/2288

Overview of approach

Wall time

X*(1 .. N)

DFG of
computation

Constraints C1(X),
C2(X),…Cn(X)

X*(current)

Architectural
framework

DFG to Arch(i)
mapping-(scheduling
algorithm)

Execution time,
resource use
computation

Objective f(X):

Arch(i)

Optimization algorithm

Pseudo-

assembly
assembler

X(initial guess)

sched

VHDL generator

X*(1 .. N)

Sched->microcode

Xilinx EDK tools

sched
H/W demo

Wall time

X*(1 .. N)

DFG of
computation

Constraints C1(X),
C2(X),…Cn(X)

X*(current)

Architectural
framework

DFG to Arch(i)
mapping-(scheduling
algorithm)

Execution time,
resource use
computation

Objective f(X):

DFG to Arch(i)
mapping-(scheduling
algorithm)

Execution time,
resource use
computation

Objective f(X):

Arch(i)

Optimization algorithm

Pseudo-

assembly
assembler

X(initial guess)

sched

VHDL generator

X*(1 .. N)

Sched->microcode

Xilinx EDK tools

sched
H/W demo

Rutishauser MAPLD 2006/2289

Architecture Template
• Form chosen is vector processing core

– Assumes a vector register set (Register-Register
architecture)

– Vector functional units
– Simple bus interconnect structure

• Parameters of core variable
– # of registers
– Max vector length
– # and type of functional units
– # of interconnect busses

• Other templates could be used

Rutishauser MAPLD 2006/22810

Vector Core Architecture Template

VLS

VLS

VLSSRAM VR1
VR2
VR3

VRn

…
VRn-1VLS

SRAM

SRAM

SRAM

BRAM port A
BRAM port B

+

X

Bus1
Bus2

BusN

+

VLS

VLS

VLSSRAM VR1
VR2
VR3

VRn

…
VRn-1

VR1
VR2
VR3

VRn

…
VRn-1VLS

SRAM

SRAM

SRAM

BRAM port A
BRAM port B

+

X

Bus1
Bus2

BusN

+

Rutishauser MAPLD 2006/22811

Experimental Architecture
SRAM SRAM SRAM SRAM

PPC
[App Code]

IOCM

DOCM

PLBBRAM

C/S
REGS/FIFO

UART PLB-
OPB

RS232

PLB

OPB

VECTCORE

ARCHITECTURAL TEMPLATE
INSTANCE X’()

Demo board

Virtex II pro

SRAM SRAM SRAM SRAMSRAM SRAM SRAM SRAM

PPC
[App Code]

IOCM

DOCM

PLBBRAM

C/S
REGS/FIFO

UART PLB-
OPB

UART PLB-
OPB

RS232

PLB

OPB

VECTCORE

ARCHITECTURAL TEMPLATE
INSTANCE X’()

Demo board

Virtex II pro

Rutishauser MAPLD 2006/22812

Example

• Matrix Multiply C=AB
• DFG

L(a11,a21) L(a12,a22) L(b21)L(b11)

+

S(c11,c21)

X X X X

+

{0,0}

+

{0,0}

+

S(c12,c22)

L(b12) L(b21)L(a11,a21) L(a12,a22) L(b21)L(b11)

+

S(c11,c21)

X X X X

+

{0,0}

+

{0,0}

+

{0,0}

+

S(c12,c22)

L(b12) L(b21)

Rutishauser MAPLD 2006/22813

Matrix Multiplication Example

• Initial Architecture parameter guess
– 2 load/store units, 10 registers, 2 multipliers, 2

adders, vector length of 2, 4 functional unit
interconnect busses, and 2 load/Store busses

– Execution time of 111 core clock cycles
• Post-optimization Architecture parameters

– 4 load/stores, 8 registers, 4 multipliers, 4
adders, vector length of 2, 16 functional unit
interconnect busses, and 4 load/store busses

– Execution time of 31 core clock cycles

Rutishauser MAPLD 2006/22814

Example Schedule, Pre & Post
Optimization

Op index

clock cycles

Op index

clock cycles

Rutishauser MAPLD 2006/22815

Resource Estimates

Slices LUTs FFs 18X18Mult BRAM startup (cycles) cycles/element VLIW bits
vp70 33088 66176 66176 328 328 - -

X()
baseline 3530 4201 3530 4 58 78
(1) VLS 134 235 174 0 0 3 1

(2) VREG 0 50 50 0 1 5 1 85

(3) VADD 229 140 392 0 0 5 1 90

(4) VMULT 229 140 392 4 0 8 1 90

* Baseline includes debug harware

Rutishauser MAPLD 2006/22816

Analysis Cases

• Typical matrix operations
– NxN matrix-matrix multiplication

• compute-bound problem, lots of ops per memory
op, not many dependencies

• TASS code case study
– Basic loop from known performance

bottleneck

Rutishauser MAPLD 2006/22817

Matrix Multiply, n,m,p=4,4,4;8,8,8

MXM, n,m,p = 4,4,4 & 8,8,8

0

50

100

150

200

250

cycles MFLOPS

cy
cl

es
/M

FL
O

P
S

4,4,4
8,8,8

MXM, Resource Usage

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

bram slice LUT FF mult

resource type

%
 o

f a
va

ila
bl

e
(v

p7
0

pa
rt

)

4,4,4

8,8,8

MXM, Utilization

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

mult add VL

unit type

%
 u

til
iz

ed
4,4,4
8,8,8

Rutishauser MAPLD 2006/22818

TASS loop. I,J,K= 64,1,1; 64,4,4

TASS VL=64, 1 & 16 loop Iterations

0
500

1000
1500
2000
2500
3000
3500
4000

cycles MFLOPS

cy
cl

es
/M

FL
O

P
S

1 loop
16 loops

TASS, Resource Usage

0.00%
5.00%

10.00%
15.00%
20.00%
25.00%
30.00%
35.00%
40.00%

bram slice LUT FF mult

resource type

%
 a

va
ila

bl
e

vp
70

 p
ar

t

1 loop
16 loops

TASS, Utilization

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

mult add VL

unit type

%
 u

til
iz

at
io

n
1 loop
16 loops

Rutishauser MAPLD 2006/22819

Summary

• Research produced a problem formulation and
approach for determining an architecture to
implement a given computation, while satisfying
a performance metric and resource constraints
– Solution space constrained to a vector processing

computing paradigm
– Approach components:

• Parametric architectural framework for vector processing that
can be implemented in reconfigurable logic

• Scheduling/mapping algorithm
• Hardware/microcode generators

Rutishauser MAPLD 2006/22820

Future Work

• Completion of development and test of
experimental framework

• Examination of effective problem
space/limits of approach

• Documentation of lessons learned and
heuristics

• Identification of areas of improvement

Rutishauser MAPLD 2006/22821

Lessons Learned

• Development tools, including debugging,
should be tested in a relevant
configuration as early as possible.

• Identify problems early in test hardware.
• Component development should be tested

early on” real” problem sizes.

Rutishauser MAPLD 2006/22822

Backup Slides

Rutishauser MAPLD 2006/22823

TASS Basic Loop Fortran Code
C

C##

C CALCULATE U COMPONENT OF VELOCITY

C##

#

C

C

C ADVANCE U TO NEXT TIME LEVEL

C

C

DO 11 K=1,KS

DO 11 J=1,JS

DO 11 I=2,IS

X1=U(I,J,K,2)

U(I,J,K,2)=(P(I,J,K,1)-P(I-1,J,K,1))*A(I,J,K)

E(I,J,K)=ALS*U(I,J,K,2)+BTS*X1+U(I,J,K,4)

11 CONTINUE

Rutishauser MAPLD 2006/22824

TASS Pseudo-code Example
vl,v1,mem(1),63,X1
vl,v2,mem(128),63,A
vl,v3,mem(64),63,P
vl,v4,mem(63),63,Pm1
vmult,v5,v2,v4,63,PA
vadd,v6,v5,v3,63,PS
vl,v7,mem(192),1,ALS
vl,v8,mem(191),1,BTS
vl,v9,mem(193),63,U4
vmults,v10,v7,v6,63,ALSU
vmults,v11,v8,v1,1,BTSX1
vadd,v12,v10,v11,63,ALSUBTSX1
vadd,v13,v12,v9,63,ALSUBTSX1U4
vs,mem(1),v6,63,U
vs,mem(195),v13,63,E

	Implementing Scientific Simulation Codes Highly Tailored for Vector Architectures Using Custom Configurable Computing Machines
	Motivation
	Motivation, cont.
	Problem Space
	Assumptions
	Approach, inputs
	Optimization
	Overview of approach
	Architecture Template
	Vector Core Architecture Template
	Experimental Architecture
	Example
	Matrix Multiplication Example
	Example Schedule, Pre & Post Optimization
	Resource Estimates
	Analysis Cases
	Matrix Multiply, n,m,p=4,4,4;8,8,8
	TASS loop. I,J,K= 64,1,1; 64,4,4
	Summary
	Future Work
	Lessons Learned
	Backup Slides
	TASS Basic Loop Fortran Code
	TASS Pseudo-code Example

