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ABSTRACT 
 
 
Introduction. Head movements in the sagittal pitch plane typically involve off-axis rotation 

requiring both vertical and horizontal vergence ocular reflexes to compensate for angular and 

translational motion relative to visual targets of interest. The purpose of this study was to 

compare passive pitch VOR responses during rotation about an Earth-vertical axis (canal only 

cues) with off-axis rotation (canal and otolith cues).  Methods.  Eleven human subjects were 

oscillated sinusoidally at 0.13, 0.3 and 0.56 Hz while lying left-side down with the interaural axis 

either aligned with the axis of rotation or offset by 50 cm.  In a second set of measurements, 

twelve subjects were also tested during sinusoidally varying centrifugation over the same 

frequency range.  The modulation of vertical and horizontal vergence ocular responses was 

measured with a binocular videography system.  Results. Off-axis pitch rotation enhanced the 

vertical VOR at lower frequencies and enhanced the vergence VOR at higher frequencies. 

During sinusoidally varying centrifugation, the opposite trend was observed for vergence, with 

both vertical and vergence vestibulo-ocular reflexes being suppressed at the highest frequency.  

Discussion.  These differential effects of off-axis rotation over the 0.13 to 0.56 Hz range are 

consistent with the hypothesis that otolith-ocular reflexes are segregated in part on the basis of 

stimulus frequency.  At the lower frequencies, tilt otolith-ocular responses compensate for 

declining canal input.  At higher frequencies, translational otolith-ocular reflexes compensate for 

declining visual contributions to the kinematic demands required for fixating near targets. 
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INTRODUCTION 
 

The vestibulo-ocular reflex (VOR) must compensate for head motion relative to visual targets of 

interest in order to stabilize gaze. In foveate animals, the characteristics of the VOR are driven 

by the functional demand to maintain binocular fixation (7, 12). Compensating for visual target 

distance is particularly important to coordinate stereoscopic vision during translational 

movements (20). Since the eyes are in front of the usual axes of head rotation, the VOR 

presumably compensates for translation during most natural head turns. Head movements in the 

sagittal (pitch) plane involve rotations about multiple vertebrae in the cervical column (21), as 

well as rotations about the hip and ankles (16). As the head is farther displaced from the axis of 

rotation, commonly referred to as off-axis rotation, the eye movement response must be modified 

to adjust for the greater translational components incurred. 

 

If one rotates about an axis that passes through the eyes, the ideal eye movement required for 

stabilizing a retinal image of a straight ahead target would be simply equal and opposite to the 

angle of head rotation. However, the ideal compensatory eye movements during off-axis rotation 

is no longer dependent on rotation angle alone, but also on the radius of rotation, distance to the 

target, interpupillary distance, and target eccentricity (10, 20, 24, 29). Viirre and Demer (30) 

observed an enhanced gain of the vertical VOR during off-axis pitch rotation about an Earth-

horizontal axis over a frequency range 0.8 - 2.0 Hz.  The modulation of horizontal vergence has 

also been observed during off-vertical axis rotation (8) and during straight-ahead translation (2). 

Based on these results, we hypothesized an enhancement of both the vertical and vergence eye 

responses during off-axis rotation in the pitch plane. 

 

Otolith-ocular reflex pathways are responsible for compensating for the translational components 

of head movements (3, 18).  Interestingly, previous research suggests that human translational 

otolith-ocular reflexes are characterized by high-pass filtering (36), with large phase leads and 

negligible amplitude at low frequencies but increasing in fidelity at frequencies above 0.3 Hz.  

Below 0.3 Hz the otolith input is interpreted as tilt. Since canal cues appear to be critical to 

discriminate between tilt and translational motion (3, 15, 34), we were interested in comparing 

pitch VOR responses during rotation about an Earth-vertical axis (canal only cues) with off-axis 
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rotation (canal and otolith cues). Therefore, one objective of our study was to compare vertical 

VOR and horizontal vergence ocular responses obtained during passive on-axis and off-axis 

rotation.  We were specifically interested in the effects of stimulus frequency around the range 

where there is a cross-over of tilt and translation otolith-ocular responses. 

 

Head movements in altered gravity phases of high performance aircraft operations challenge the 

central integration of otolith and canal inputs.  For example, shifts in perceived attitude during 

hypergravity have been attributed to vestibular G-excess effects (9). To further examine the 

interaction of angular and linear inputs to the VOR during different gravitoinertial loads, a 

second set of off-axis VOR measurements were obtained during sinusoids with a bias velocity, 

i.e., sinusoidally varying centrifugation.  We predicted that the effects of this additional 

gravitoinertial input would vary as a function of stimulus frequency. 

 

METHODS 

 

Experiments were conducted on eleven human subjects (3F, 8M, age range 26-50 yrs) to 

compare the VOR during on-axis and off-axis rotation (study 1), and on twelve subjects (5F, 7M, 

age range 24-50 yrs) to examine the effects of sinusoidally varying centrifugation (study 2). Six 

subjects participated in both sets of measurements. Each participant was required to pass a 

medical examination (Air Force Class III) and to have no history of balance or visual disorders. 

All subject selection criteria and experimental procedures were approved in advance by the 

NASA Johnson Space Center (JSC) Committee for the Protection of Human Subjects.  Each 

subject provided written informed consent before participating. 

 

Motion stimuli. The motion stimuli were provided by the NASA JSC Short-Arm Centrifuge 

Facility, which includes a 300 ft-lb direct drive motor with high precision tachometer-based 

servo controller for motor control and stability (Neuro Kinetics, Inc., Pittsburgh, PA). Subjects 

were rotated in the sagittal plane while lying left side down, i.e., about an Earth-vertical axis.  

Operator instructions as well as background masking noise were provided via a chair-fixed 

speaker to minimize any extraneous auditory orientation cues. Subjects were restrained using a 

quick release harness with straps and padding around their legs and feet. An adjustable head 
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restraint was used to fixate the subject's head relative to the chair. During study 1, on-axis and 

off-axis comparisons were obtained by positioning the chair using a manual screw drive so that 

the interaural axis was either centered over the axis of rotation (Figure 1A) or 0.5 m off-axis 

(Figure 1B). Subjects were rotated with sinusoidal oscillation at 0.13, 0.3, or 0.56 Hz at a peak 

velocity of ±40°/s using custom data acquisition and control software. The centripetal 

acceleration (ω2 r) along the longitudinal axis was constant across the three frequencies, while 

the tangential acceleration (α r) increased as a function of frequency (Figure 1C left side). 

 

Insert Figure 1 about here 

 

During study 2, the effect of sinusoidally varying centrifugation was examined using the same 

rotator system with the interaural axis positioned 0.5 m off-axis. During these trials, subjects 

were accelerated in darkness at 25°/s2 to a constant rate of 140°/s in either forward-facing (FF) or 

backward-facing (BF) directions for 60s, followed by superimposed sinusoidal oscillation at 

0.13, 0.3 or 0.56 Hz and ±40°/s peak velocity. These six trials were typically completed over two 

sessions separated by 10 days (± 1.0 sem).  As seen in Figure 1C, the rotational velocity 

(sinusoidally varying between 100 and 180°/s) and centripetal (+az) linear acceleration at the 

interaural axis (sinusoidally varying between 1.5 and 4.9m/s2) were held constant across 

frequencies, while the sinusoidal modulation of the tangential acceleration (±ax) increased with 

frequency (from ± 0.29 m/s2 at 0.13 Hz to ± 1.23 m/s2 at 0.56 Hz). For each stimulus frequency, 

data were also obtained during vertical optokinetic stimulation and again in the dark (data not 

reported here) before decelerating at 25°/s2 to a complete stop.  Post-rotatory responses were 

recorded for at least 2 min between runs.  The sequence of trials for both study 1 and 2 was 

counter-balanced across subjects. 

 

Eye measurement and analysis.  During the oscillations in darkness, subjects were instructed to 

imagine Earth-fixed objects on the laboratory wall. Eye movements were recorded with a 

binocular video camera system which used dichroic mirrors to allow a full field of view (37). 

Small monochrome video cameras were used with near-infrared emitting diodes to allow eye 

recording in darkness. A time code was digitally overlaid on each video field by a video inserter 

(Video Data System 523A, H.E. Inc., Las Vegas, NV) to permit off-line processing and 
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synchronization with the tachometer signals. Eye data were recorded on video cassette tapes and 

processed off-line using an eye tracking system (25) implemented on a Macintosh PowerPC 

platform with an image frame grabber (LG-3, Scion Corp., Frederick, MD). The eye tracking 

algorithm used a least squares fit to track the pupil from these binary images based on a clipped 

circular disk model. This algorithm was used to derive the horizontal and vertical image 

coordinates of the pupil center, the pupil radius, and the degree to which the upper eyelid has 

occluded the pupil. Eye data during upper eyelid closure were excluded using minimal pupil 

radius criteria. 

 

Eye measurement calibrations were made by having subjects fixate a series of targets placed over 

a range of ± 20° horizontally and vertically on the laboratory wall at 1.8 m distance. 

Interpupillary distances were measured for each subject (mean = 6.18 cm ± 0.08 sem) using a 

digital corneal reflection pupilometer (Essilor, France), and these values were used to calculate 

the visual angle of each calibration target for left and right eyes separately. The signals were 

linearly scaled to express eye position in degrees using head-fixed coordinates with the 

convention that downward and leftward movements were positive. Following calibration, 

conjugate horizontal and vertical measurements were obtained from the average of left and right 

eye data from each video field (60 Hz sample rate), and vergence was obtained from the 

difference of left and right horizontal eye position. Vergence was normalized for different 

interpupillary distance by using meter angles, or the reciprocal of fixation distance (18).  Eye 

position was then differentiated, and desaccaded using acceleration and velocity thresholds, and 

then verified using a custom interactive script (MATLAB; The MathWorks). 

 

VOR response parameters (amplitude, phase and bias) were derived from sinusoidal curve fits of 

vertical and vergence eye velocity over successive cycles of centrifuge oscillation. Gains and 

phase shifts relative to the chair velocity were calculated, with the convention that phase leads 

were positive. Separate gains were also derived for pitch forward and backward rotations to 

quantify VOR asymmetry (22). Gains and time constants were also estimated from single 

exponential fits to vertical slow phase velocity over the first 20s following the end of 

acceleration or deceleration. The VOR response parameters were then used in repeated measures 

multivariate analyses of variance (MANOVAs) to assess the effects of frequency for each 
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rotation condition using StatView (SAS Institute, Inc.), with Wilks’ Lambda serving as the 

critical statistic (significance level of 0.05). Comparisons across rotation conditions at specific 

stimulus frequencies were performed with paired t-tests. However, due to the uneven variability 

across frequencies, Wilcoxon signed-rank tests were performed on the VOR asymmetry 

measures to compare across conditions. Central tendencies are presented as mean ± sem. 

 

RESULTS 

 

Study 1:  On-axis versus Off-axis VOR 

The vertical VOR gain during on-axis rotation (primarily canal cues) increased as a function of 

stimulus frequency (open squares, Figure 2A).  The vertical VOR phase and bias remained 

relatively constant over this same frequency range, averaging 11.7 ± 1.2° and -1.7 ± 0.4°/s  

respectively. The VOR was more asymmetrical at lower frequencies, with the gain being greater 

during pitch forward, i.e., upward > downward slow phase velocity. As seen in Figure 2B, the 

vertical VOR asymmetry at 0.13 Hz was also highly variable, which was expected in part due to 

the relatively lower gain at this stimulus frequency (Figure 2A).   

 

Insert Figure 2 about here 

 

The presence of otolith cues during off-axis rotation tended to enhance the vertical VOR gain 

and significantly reduce the up-down asymmetry at the lower stimulus frequencies (filled circles, 

Figure 2).  The vertical VOR phase and bias remained unchanged across frequency and relative 

to on-axis rotation, averaging 14.8 ± 2.1° and -1.8 ± 0.2°/s respectively.  Although there 

continued to be a significant effect of frequency on the vertical VOR gain, the asymmetry 

between pitch forward and backward was negligible during off-axis rotation.  This was 

consistent with a lack of vertical VOR gain difference between forward-facing and backward-

facing centrifugation (see below). 

 

As expected, the modulation of horizontal vergence was negligible during on-axis rotation in the 

absence of translation motion (open squares, Figure 3). Vergence responses were also negligible 

at 0.13 Hz during off-axis rotation, but then increased with stimulus frequency (filled circles, 
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Figure 3). This enhancement of the horizontal vergence response during off-axis rotation is 

striking since the fixation distance in the dark was  greater than 1 m for all subjects. 

 

Insert Figure 3 about here 

 

Study 2:  Sinusoidally Varying Centrifugation 

The initial per-rotatory eye responses decayed to negligible levels within the first minute of 

rotation, persisting longer in the forward-facing (FF) direction (time constant = 8.0 ± 0.8 s) than 

in the backward-facing (BF) direction (time constant = 4.2  ± 0.5 s) .  This is consistent with the 

pitch asymmetry described above. Since the per-rotatory response to the initial acceleration 

might persist longer than 1 minute and influence the responses during the superimposed 

oscillation, we analyzed successive cycles separately. Beyond the first several cycles needed for 

response stabilization, the VOR gain was stable across oscillations in darkness and therefore 

appears to reflect steady state conditions.   

 

Insert Figure 4 about here 

 

The vertical VOR phase and bias were not different during centrifugation, although the upward 

(pitch forward) slow phase bias at 0.13 Hz tended to be greater (-2.9  ± 0.5 °/s FF and -3.0  ± 07 

°/s BF versus -1.4  ± 1.0 °/s without centrifugation).  There were negligible differences between 

vertical VOR response parameters obtained with and without centrifugation at the lower two 

frequencies (Figure 4). On the other hand, the vertical VOR gain was significantly decreased at 

the higher frequency during centrifugation for both FF and BF directions. 

 

Insert Figure 5 about here 

 

While there was general trend for off-axis vergence responses to increase with stimulus 

frequency when elicited without an off-set velocity (filled circles, Figure 5), the opposite trend 

was observed during centrifugation in either FF or BF directions.  The modulation of vergence 

tended to be greater in the FF direction at the lower frequencies. Vergence responses 

significantly decreased at 0.56 Hz during centrifugation in both FF and BF directions. The 
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phases of the vergence responses were highly variable across all conditions, with average phase 

leads comparable to the vertical VOR responses. 

 

DISCUSSION 

 

One major finding of this study is that off-axis pitch rotation enhances the vertical VOR at 

frequencies below 0.3 Hz and enhances the vergence VOR at frequencies above 0.3 Hz. These 

differential effects of off-axis rotation over the 0.13 to 0.56 Hz range are consistent with the 

hypothesis that otolith-ocular reflexes are segregated in part on the basis of stimulus frequency 

(13, 36).  At the lower frequencies, tilt otolith-ocular responses compensate for declining canal 

input.  At higher frequencies, translational otolith-ocular reflexes compensate for declining 

visual contributions to the kinematic demands required for fixating near targets.  The suppression 

of both vertical (angular) and vergence (translational) VORs at the higher frequency during 

centrifugation may reflect a conflict induced by the presence of additional low frequency tilt 

graviceptor input with concomitant higher frequency translational components resulting in a 

novel motion path. 

 

Otolith enhancement of low frequency vertical VOR 

The relatively short vertical VOR time constants (<50% of horizontal time constants) observed 

in the present study and reported previously (5, 14) reflect the poor dynamics in the pitch plane 

during rotation about an Earth-vertical axis with canal inputs alone. Most natural pitch head 

movements involve changes in head orientation relative to gravity.  Angelaki and Hess (1) 

proposed that one function of the otolith-ocular reflex is low-frequency enhancement of the VOR 

dynamics.    It is interesting to note that the largest changes we observed between on-axis and 

off-axis vertical VOR measures were at the lower frequencies, while differences at 0.56 Hz were 

negligible.  

 

Previous studies have demonstrated that gravity-sensitive mechanisms make the vertical VOR 

more compensatory, including increased gains, with more symmetrical responses that are more 

in phase with the stimuli (6, 27). Pitch VOR differences between rotation about an Earth-

horizontal axis (upright) versus Earth-vertical axis (onside) are greater at lower frequencies, 
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similar to the off- and on-axis comparisons in the present study.  Human VOR responses 

between upright and onside pitch during voluntary (4) or passive (28) head movements at higher 

frequencies (≥ 0.3 Hz), on the other hand, are not substantially different.  We conclude that the 

contribution of the otolith-ocular reflexes to the vertical VOR is primarily enhancement of the 

low frequency responses. 

 

Otolith-mediated vergence VOR 

Increases in vergence VOR we observed at the higher frequency were consistent with the 

kinematic gaze demands during translation along the naso-occipital axis.  Previous studies have 

measured average vergence in order to infer the effect of fixation distance on the translational 

VOR (23, 26, 31). The modulation of vergence we observed suggests the human translation 

VOR in darkness is capable of compensating for changes in fixation distance as one translates 

forward and backward relative to a target of interest.  A modulation of vergence during 

translational motion in the naso-occipital direction has been previously observed in the squirrel 

monkey (19) and the rhesus monkey (2), and during off-vertical axis rotation in the rhesus 

monkey (8).  Consistent with other translation otolith-ocular reflexes (18), the vergence VOR 

reflects high-pass properties becoming more robust at frequencies greater than 0.3 Hz. 

 

One consequence of open loop recording of the VOR is that the visual target of interest may not 

be maintained during the oscillations in darkness. However, it has been observed that human 

vergence in the dark is maintained in the dark to a distance consistent with the known distance to 

surroundings previously viewed in the light (17, 35). The subjects in our study were asked to 

imagine Earth-fixed targets on the wall at a distance >1 m.  The effect of off-axis rotation on the 

vergence VOR is striking given that the imagined targets of interest were relatively far away.  

The sensitivity to fixation distance varies as a function of stimulus frequency (26), and so it 

would be arguably more critical to control for fixation distance at higher frequencies than used in 

the present study. 
 

Suppression of the VOR during Sinusoidally Varying Centrifugation 

Difference in translation VORs as a function of body orientation relative to gravity, i.e., static 

loading of the otoliths, tend to be fairly small over the frequency range included in our study 
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(26).  It has been shown that the angular VOR gain, on the other hand, is modulated by 

gravitational state during parabolic flight, increasing during hypergravity (directed downward) 

and reduced during microgravity phases (32).  Extending these parabolic results to 

centrifugation, it is perhaps not surprising that the VOR would be suppressed with the force 

directed headward.  However, the suppression was most striking at the highest frequency.  

 

The effect of sinusoidally varying centrifugation resulted in a complex motion path, with greater 

tangential accelerations at the higher frequency.  At 0.56 Hz, subjects often reported perceived 

translation along an elliptical path, with comparable amplitude along both longitudinal and naso-

occipital axes.  The trend for the translational vergence VOR during sinusoidally varying 

centrifugation to decrease with increasing frequency may be related to the changing ratio of 

centripetal and tangential linear accelerations (see Figure 1C). Another possible factor for the 

VOR suppression observed at this frequency may be that subjects had difficulty imaging Earth-

fixed targets, but instead tended to fixate on a targets moving with the head as they moved about 

this complex path (11).   

 

Conclusions 

Without offset velocity or during low frequency of varying centrifugation, both otolith and canal-

mediated VORs operate synergistically to compensate for linear and angular accelerations within 

the plane of rotation. The increased vertical VOR gain and improved symmetry at lower 

frequencies and increased vergence responses at higher frequencies during off-axis rotation are 

compensatory for the increased translational components incurred.   The impaired VOR 

responses during sinusoidally-varying centrifugation at 0.56 Hz, on the other hand, suggest that 

otolith-canal integration may be transiently compromised during passive rotation at higher 

frequencies within altered gravitoinertial states. Active head movements include a motor 

command contribution that is important for gaze stabilization during translational movements 

(33).  As vestibular signals are just one of many inputs to a spatial localization process (7), 

contributions of other sensory and motor inputs during active head movements in aerospace 

operations must be relied on for gaze stabilization within these altered gravitoinertial states. 
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LEGENDS FOR FIGURES 

Figure 1.  Schematic of rotation stimuli presented with subject lying on left side, view from 

above. A. Rotation on-axis (radius = 0) results in no centripetal or tangential linear acceleration. 

B. During rotation off-axis, both centripetal and tangential accelerations are a function of the 

radius of rotation. C. Centripetal and tangential accelerations are represented for off-axis rotation 

without an offset velocity (left side) and for ramp up, sinusoidally varying centrifugation, and 

ramp down (right side).  Note that centripetal acceleration, a function of angular velocity, is 

consistently unidirectional (towards the rotation axis).  Centripetal acceleration was identical 

across all three frequencies but substantially greater during centrifugation.  Tangential 

acceleration, a function of angular acceleration, was bidirectional, increased as a function of 

stimulus frequency and did not change during centrifugation. 
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Figure 2.  Comparison of the vertical VOR gain (A) and asymmetry (B) observed with the 

interaural axis aligned over the axis of rotation (on-axis, open squares) and located 50 cm off-

axis (filled circles).  The gain is the ratio of peak vertical eye velocity to peak head velocity.  

Negative VOR asymmetry indicates the vertical VOR gain is greater during pitch forward 

(upward > downward slow phase velocity).  Asterisk indicates significant difference between on-

axis and off-axis (p<0.05). Error bars represent ± sem. 

 

Figure 3.  Comparison of vergence amplitude (MA/s) observed for on-axis and off-axis pitch 

rotation (symbols and error bars as in Figure 2). 

 

Figure 4.  Comparison of the vertical VOR gain (A) and asymmetry (B) observed during off-axis 

rotation without an offset velocity (filled circles) versus during sinusoidally varying 

centrifugation in forward-facing (rightward triangles) or backward-facing (leftward triangles) 

directions.  Note the filled circles are the same data presented in Figure 2 for comparison.  

Asterisk indicates significant difference between no offset velocity and FF/BF (p<0.05).  Error 

bars represent ± sem. 

 

Figure 5.  Comparison of vergence amplitude (MA/s) observed during off-axis rotation without 

an offset velocity versus during sinusoidally varying centrifugation (symbols and error bars as in 

Figure 4).  Note the filled circles are the same data presented in Figure 3 for comparison. 
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