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The literature offers a number of approximations for analytically and/or efficiently com-
puting the probability of collision between two space objects. However, only one of these
techniques is a completely analytical approximation that is suitable for use in the prelim-
inary design phase, when it is more important to quickly analyze a large segment of the
trade space than it is to precisely compute collision probabilities. Unfortunately, among
the types of formations that one might consider, some combine a range of conditions for
which this analytical method is less suitable. This work proposes a simple, conservative
approximation that produces reasonable upper bounds on the collision probability in such
conditions. Although its estimates are much too conservative under other conditions, such
conditions are typically well suited for use of the existing method.

Notation

Description Example Represents
Lower case italic type a scalars
Upper case italic type A matrices
Bold type (either case) r vectors

Introduction

One of the new challenges of flying close formations of spacecraft over mission durations of months to years
is to maintain adequate collision avoidance margins. In general, computation of collision probability requires
quadrature, which can be cumbersome for conceptual design and trade studies. A number of approximations
have appeared in the literature, some of which the sequel will describe, that offer a wide range of trade-
offs between accuracy or conservatism, applicability to the formation flying problem, and computational
complexity and efficiency.

In the design phase, it is important to understand the relationship between collision avoidance objectives
and navigation system capabilities. Especially in the early conceptual design phase, accuracy is less important
than insight. In such an early phase of design, one needs the ability to implement simple equations in a
spreadsheet so as to examine large wedges of the trade space. One can accept coarse approximations, so
long as these approximations are not too lacking or abundent in conservatism. To this end, after reviewing
and discussing the literature, this paper proposes a conservative approximation for collision probability. A
designer might use this approximation in the process of conceptually studying the flight dynamics issues for
an orbital formation flying mission.
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sell.Carpenter@nasa.gov. This material is declared a work of the U.S. Government and is not subject to copyright protection
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Problem Description

The relative position and velocity between two satellites are

r = R2 −R1 (1)
v = V2 −V1 (2)

vrel ≡ v − ω1 × r (3)

where ω1 is the instantaneous orbital angular velocity of spacecraft 1. The relative position is uncertain due
to navigation errors, e,

r = r̄ + e (4)

where r̄ = E [r] is the nominal relative position vector. The associated covariance matrix, in whatever
coordinates the quantities of Eq. 1 are specified, is

P = E
[
(r− r̄)(r− r̄)T

]
(5)

= PR1 + PR2 − PR1R2 − PT
R1R2 (6)

where

PRi = E
[
(Ri − E [Ri])(Ri − E [Ri])T

]
(7)

PRiRj = E
[
(Ri − E [Ri])(Rj − E [Rj ])T

]
(8)

Note that the equations above only consider position errors. Note also that the cross-covariance matrix PRiRj

and its transpose often contain significant correlations for the formation flying problem, since intersatellite
measurements such as cross-link ranges may be used in the navigation filter.

Figure 1. Conjunction geometry. Warmer colors indi-
cate regions of conjunction plane with higher probabili-
ties of penetration. Spacecraft paths represent nominal
trajectories.

Figure 1 illustrates the problem geometry. The
figure depicts two local coordinate frames that are
fixed to planes: the tangent plane and the conjunc-
tion plane. The former is tangent to the nominal
trajectory of spacecraft 1, and has its corresponding
basis vectors defined as follows,

t̃1 =
V1

‖V1‖
(9)

t̃2 =
R1 ×V1

‖R1 ×V1‖
(10)

t̃3 = t̃1 × t̃2 (11)

The conjunction frame contains the relative position
vector, with basis vectors defined as

c̃1 =
r̄
‖r̄‖

(12)

c̃2 = c̃3 × c̃1 (13)

c̃3 =
r̄× v̄rel

‖r̄× v̄rel‖
(14)

Due to the navigation errors, the point at which the
path of spacecraft 2 relative to spacecraft 1 pene-
trates the conjunction plane is uncertain, which Fig-
ure 1 illustrates by associating color warmth with
probability of penetration. The conjunction plane
generally cuts an oblique cross-section of the three-
dimensional error ellipsoid associated with the nav-
igation errors, as Figure 2 shows.
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Figure 2. Edge-on view of conjunction plane. In upper
half of figure, height above plane indicates probabil-
ity density in the plane of conjunction. Lower half of
figure depicts cross-section of 3-dimensional error ellip-
soid, which is repeated in outline form in upper half.

The goal of collision avoidance is to ensure that
the actual relative position vector remains outside
some collision avoidance region, which in this work
is taken as a sphere of radius a, as Figure 3 de-
picts. A corresponding collision avoidance require-
ment would be

Pr {‖r‖ ≥ a} ≥ 1− ε, (15)

where ε is as small as practicable.
The problem just defined is quite similar to the

problem of calculating the probability for a single
spacecraft to avoid a piece of space debris. The pri-
mary differences are as follows. In debris encoun-
ters, the relative orbits between the spacecraft and
the debris are generally quite different, so that very
brief and infrequent conjuctions between them oc-
cur. In these encounters, the relative velocity is
typically quite high, and the relative motion is es-
sentially rectilinear over the brief period near closest
approach. It is also generally true that the uncer-

tainty associated with the debris orbits is quite large in comparison with the combined cross-sectional area
of the spacecraft and the debris, and that little or no cross-correlation exists between the estimated states
of the spacecraft and the debris. In most formations and many constellations, none of these conditions is
likely to be satisfied.

Background

Figure 3. Collision avoidance geometry. Cross-
hatching indicates the region to be protected. The
higher-probability-of-penetration region should not
intersect the avoidance region.

Foster and Estes1 show that under certain conditions
typical of most debris encounters, only the projection
of the three-dimensional error ellipsoid onto the con-
junction plane at the point of closest approach need
be considered when computing the probability of col-
lision. Akella and Alfriend2 show the equivalence be-
tween integration over the conjunction plane and inte-
gration over the full three-dimensional ellipsoid, under
these conditions. The upper half of Figure 2 represents
a section of this two-dimensional density as height
above the conjunction plane, and the color mapping
of the conjunction plane in Figures 1 and 3 represents
contours of equal probability in this two-dimensional
density. Thus, to determine the probability of colli-
sion, one need only find the cumulative density above
the collision avoidance region, i.e. the volume bounded
above by the density function, and along its periphery
by the collision avoidance boundary. This integral in
general requires quadrature. A number of approxi-
mate alternatives to quadrature have appeared in the
literature, among which Patera3 describes a reduction
of the two-dimensional integral to a numerical line integral, that can adequately describe the probability for
complex avoidance regions, so long as the region of uncertainty is symmetric.

Chan4 describes an approximate alternative to quadrature that is completely analytical, and therefore a
good candidate for the type of algorithm sought in this work. This approach is based on an approximate
transformation of the debris avoidance problem to the problem of computing the probability that a realization
of a symmetric, two-dimensional random variable lies within a circular disk, when the mean of the random
variable does not coincide with the center of the disk. This is an example problem in the 1965 edition of
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Papoulis,5 and the resulting density contains a modified Bessel function. Chan expresses the density in series
form, integrates term by term to find an approximation of the probability, shows that in most cases typical of
debris avoidance, retaining only the first term is adequate, and finally gives error bounds on each truncation
of the series. Since in most realistic problems, the covariance is not isotropic, i.e. its error ellipsoids are
not spheres, Chan introduces a second approximation. If the avoidance region is circular, a coordinate
system rotation to the covariance’s principal axes will at least remove the complexity introduced by any
correlations. However, the method of integration used in Papoulis’ example relied on the circular symmetry of
the isotropic density. A common technique of introducing a non-isotropic dilation of coordinates to circularize
the covariance will not work in this case, since this will make the circular avoidance region into an ellipse.
Chan addresses this problem by simply substituting a circular avoidance region that has the same area as the
ellipse representing the actual avoidance region, in the dilated coordinates. Reference 4 documents agreement
to within two or three significant digits between this method and several other numerical alternatives, for
certain conditions typical of many debris encounters. However, the author notes that “it is possible to assign
values to these parameters such that this model yields poor approximations,” and in particular suggests that
whenever either the size of the avoidance region or the nominal miss distance is of the same order as the
standard deviation of the isotropic density, the method will fail. Chan suggests breaking up the cross-section
in order to address this shortcoming, but does not describe how one should do this.

Figure 4. Relative motion during a portion of one orbit
for a formation or constellation. The variable τ rep-
resents a non-decreasing index, such as time or true
anomaly, and τ∗ represents its value at the time of clos-
est approach.

Unfortunately, the conditions under which the
volume integral may be reduced to an area integral
in the conjuction plane are not typical of most close
encounters between spacecraft in a constellation or
formation. Most importantly, the relative velocity
is generally much lower, so that the time the space-
craft spend within close proximity to one another
is significant. As a result, one may not ignore the
time-varying nature of the relative motion and the
relative error covariance, as Figure 4 illustrates.

Peterson6 suggests that anytime the velocity un-
certainty approaches the magnitude of the relative
velocity itself, the velocity uncertainty should not
be ignored. For such “long-term encounter” cases,
Chan7 proposes an extension of Reference 4. In this
work, after a series of scale transformations and ro-
tations, the avoidance region becomes an ellipsoid
rotating about an isotropic covariance, contained
with a three-dimensional tangent hypersurface that
corresponds to a toroid for many relevant circum-
stances. In such cases, the boundaries of the rela-
tive motion in the transformed coordinates may be

approximated by ellipses, but in order to make use of the approximate analytical technique of Reference 4,
Chan approximates the boundaries instead with circles.

Chan8 and Campbell9 directly address the case of formation flying to varying degrees. Reference 8 couples
the previously published techniques of References 4 and 7 for collision assessment with a new method for
performing collision avoidance maneuvers that minimizes the collision probability. Reference 9 considers
that the error distributions may become non-Gaussian through the action of the nonlinear relative motion
dynamics, as Junkins, et al.10 and Lee and Alfriend11 demonstrate, and proposes a solution involving
ellipsoidal bounds for the distributions. Campbell then compares two analytical methods that use these
bounding ellipsoids to conservatively approximate the collision probability, and compares these to a numerical
solution. The first technique is an approximate solution to the non-trivial problem of maintaining an estimate
of the minimum distance between ellipsoids of constant probability mass for each satellite, as the relative
trajectories evolve in time, and gives the more conservative estimate for the collision probability. If the
ellipsoids do not overlap, then the estimate of the collision probability is bounded by the probability mass
that is not contained within the ellipsoids. If the ellipsoids do overlap, then Campbell’s method transitions
to a second more accurate approximation. The second method is based on finding the ellipsoid that bounds
the intersection, and using this to perform a refinement of the first technique using a discrete set of error
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ellipsoids that contain varying probability masses, to find the largest collision probability that does not result
from an intersection.

Approximate Solution

Suppose that one does not care to compute the actual probability of collision, but instead would be satisified
with a lower bound on the probability of not having a collision, which would then imply a conservative upper
bound on the probability of collision. Suppose further that this bound on the collision probability were to
primarily be used during the conceptual design phase of a formation flying mission, to get a sense of trades
among such factors as relative navigation accuracy, sizes of control boxes, etc., rather than for use during
detailed design or operations. Under such circumstances, one could tolerate a fairly conservative bound on
the collision probability, and in fact such conservatism would likely be desirable. This section will show
that one may obtain such a bound by merely finding the marginal probability of collision along the relative
position vector. However, it may be helpful to describe the approach first.

Referring to Figures 3 and 4, imagine dividing the space containing the avoidance region, and some
specified, central portion of the error distribution, by a surface separating these two regions. If the relative
trajectory contains loops or cusps, this surface may be quite topologically complex. Unlike the closed
surfaces decribed in Reference 7, the surface this work imagines need only divide the space into two regions,
one containing a specified portion of the probability mass and the other containing the avoidance region.
The dotted lines in Figure 4 indicate cross-sections of planes tangent to such a surface. At any given point in
time, the normal of such a tangent plane is the relative position vector. Now, at any instant, the probability
mass that is further from the avoidance region than the nominal relative position, can only decrease the
probability of collision at that instant, so one need not consider it at that instant. Therefore, since the
nominal relative position is the center of the error distribution, one need only consider the half of its mass
that is closer to the avoidance region. Within this half, the region between the nominal relative position and
the plane tangent to the avoidance region, and centered along the axis of the relative position, will contain
any tails of the distribution that extend toward the avoidance region. It is only the probability mass that
extends beyond this region that contributes to collision probability at any particular instant. Integration
over this region results in the marginal probability along the relative position. Clearly, the vast majority
of this mass does not overlap the avoidance region, making this approach a coarse estimate of the collision
probability. However, if one views Figures 3 and 4 as typical of the desired trajectory of a formation flying
mission, i.e. the size of the avoidance region is of the same order as the uncertainty of the relative position,
and the separation between these is of at least this order, then very little mass exists in this region, and
including it in the probability of collision will not contribute much to overestimating the collision probability.
Situations such as these are exactly the ones that the method of Reference 4 fails to handle. In the converse
situation, Reference 4 provides a highly accurate and efficient technique.

Before describing the coarse method further, since the definition of the error function is not always
consistent, note that in this work, its definition is

erf(k) =
1√
2πσ

∫ +kσ

−kσ

e−
1
2

x2

σ2 dx (16)

To compute this integral in Matlab, use erf(k/sqrt(2)); to compute it in Excel, use NORMDISTS(k) -
NORMDISTS(-k). Next, let

C(τ) =
[
c̃1(τ) c̃2(τ) c̃3(τ)

]
; (17)

and let u, v, and w represent coordinates along the c̃1, c̃2, and c̃3 axes, respectively; then, the relative
position error and its covariance projected onto the conjunction coordinates are ec(τ) = CT(τ)e(τ) and

Pc(τ) = CT(τ)P (τ)C(τ) =

σ2
u ρuvσuσv ρuwσuσw

· σ2
v ρvwσvσw

· · σ2
w

 (18)

The density function of the conjunction frame errors, assuming a Gaussian distribution is,12

fuvw(u, v, w; τ) =
1√

(2π)3|Pc(τ)|
e−

1
2ec(τ)TP−1

c (τ)ec(τ) (19)
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From Figures 3 and 4, the total probability mass “in-between” the nominal relative position and the edge
of the avoidance region is

pi =
∫ ∞

−∞

∫ ∞

−∞

∫ ‖r̄‖

‖r̄‖−a

fuvw(u, v, w; τ)dudvdw;

note that ∫ ∞

−∞

∫ ∞

−∞
fuvw(u, v, w; t)dvdw =

1√
2πσu(τ)

e
− 1

2
u2

σ2
u = fu(u; τ) (20)

is just the marginal density over u, which is the projection of the density onto the c̃1 axis, as the shading of
this axis in Figures 3 and 4 indicate. As a result, the total “in-between” probability mass is∫ ‖r̄‖

‖r̄‖−a

fu(u; τ) =
∫ 0

−kσu

1√
2πσu

e−
1
2 (u′)2/σ2

udu′

pi =
1
2
erf(k)

(21)

where u′ is along c̃1 and has as its origin the center of the distribution, and

k = (‖r̄‖ − a)/σu. (22)

Dropping the prime notation, it is clear from the symmetry of the Gaussian distribution that∫ 0

−kσu

fu(u; τ)du =
1
2
−

∫ −kσu

−∞
fu(u; τ)du (23)

and ∫ −kσu

−∞
fu(u; τ)du >

∫ −‖r̄‖+a

−‖r̄‖−a

fu(u; τ). (24)

Also, the true probability of collision, pc, is bounded by

pc <

∫ −‖r̄‖+a

−‖r̄‖−a

fu(u; τ). (25)

Therefore, backtracking through Eqs. 25, 24, 23, and 21, the coarse bound is finally

pc <
1
2
− 1

2
erf(k). (26)

The sequel provides examples of how the coarse bound compares with Chan’s method, and of how to use
Eq. 21 in the preliminary design of a formation flying mission.

Examples

Table 1 illustrates several two-dimensional scenarios, and compares the coarse method with the method
of Reference 4. The first two columns are taken from Reference 4. Clearly, the coarse method is far too
conservative for the cases in which Chan’s method works well, which the first three columns illustrate. This
is most clear in the example that the first column describes. Here the shaded region, over which the coarse
method integrates, covers nearly half of the highest density portions of the distribution, while the actual
avoidance region, although it is in a high density region, is quite small. Similar though less drastic inclusions
of extra density occur in the examples that columns two and three describe. However, as the last two columns
show, the coarse appears to produce quite reasonable bounds on the collision probability for cases that may
be more typical for formations, in which a relatively larger avoidance area is nominally going to be kept well
outside the higher density portions of the relative error distribution. Note also that the error bounds on
Chan’s method indicate that it is not producing reliable approximations in these cases.

The coarse method also produces less conservative and more accurate bounds whenever the avoidance
region covers a significant portion of the higher density portions of the error distribution. For example, if one
increases the size of the avoidance region in column one of Table 1 to the order of the standard deviation,
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Table 1. Examples comparing several scenarios. The gray-shaded region is the area over which the coarse
method integrates. The red-shaded region approximates the 1σ density envelope. The directions x and z are
along the major and minor axes of the density in the conjuction plane. The rows labeled “Chan” use the
methods of Reference 4, and include bounds which are a good indicator as to when that method fails.

or moves the avoidance regions of columns four and five closer to the origin, the coarse method will agree to
within a few percent or better with quadrature. In such cases, Chan’s method may produce error bounds
that are on the order of ±105.

Table 2 illustrates a design trade for a simple case of the problem this paper addresses. In this example,
two satellites are to form a “string of pearls” or in-track formation in a nearly circular orbit, with some
nominal separation. When the mission flies, navigation and maneuver execution errors, as well as unmodeled
perturbations, will preclude the satellites from reaching exactly the relative orbits that the mission planners
desire, so that over time they will drift off station. Errors and perturbations that affect their relative semi-
major axis will cause the fastest drift, which will be in the direction tangent to the orbits, i.e. the in-track
direction. Gottlieb et al.13 studied a similar problem, and showed that unless the semi-major axis errors
of the orbit determination solutions for spacecraft in a low Earth orbit constellation are on the order of a
few tens of meters or better, it may be safer not to maneuver for collision avoidance at all. In any case,
during mission operations, accurate computation of collision probability is essential to avoid false alarms
that would waste fuel, or missed detections that could jeopardize the mission. During the preliminary design
phase however, conservative bounds on the collision probability are adequate for comparisons such as those
in Table 2. From the table, it is easy to see the boundary at which one may trade between predictive
navigation accuracy and nominal minimum approach distance, while keeping the collision probability small.

Even for more general formations, one may follow a procedure similar to that just described to get a rough
sense of the trade between navigation accuracy, minimum approach distance, and collision probability, since
errors in relative semi-major axis will be the largest source of relative drift, and hence the most significant
contributor to the collision probability. For non-circular orbits, the relationship between in-track drift per
revolution and semi-major axis error depends on where in the orbit one evaluates the relationship. In general,
if one evaluates the drift at the true anomaly fo every orbit, then

σ∆s(fo) = 3π
1 + e cos fo√

1− e2
σ∆a (27)

which will be a maximum at periapse and a minimum at apoapse. Tables 3 and 4 illustrate these bounds
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Table 2. Coarse upper bound on probability of collision, as a function of predictive navigation accuracy,
measured by relative semi-major axis standard deviation, σ∆a, and nominal minimum approach distance, D,
for an avoidance radius of 5 meters and a prediction interval of one orbit period of a circular orbit. The second
column shows the one-sigma in-track error, σ∆s, due to the semi-major axis error.

pc[%] D[m]
σ∆a[m] σ∆s[m] 500 275 150 75

1 9.4 0.00 0.00 0.00 0.00
5 47 0.00 0.00 0.10 > 1
10 94 0.00 0.21 > 1 > 1
15 141 0.02 > 1 > 1 > 1
25 236 > 1 > 1 > 1 > 1

for the trade space of a highly elliptical orbit formation, with a much larger avoidance region.

Table 3. Coarse upper bound on probability of collision at apoapse, for an avoidance radius of 200 meters and
a prediction interval of one orbit period, for e = 0.8.

pc[%] D[m]
σ∆a[m] σ∆s[m] 2000 1100 600 300

5 16 0.00 0.00 0.00 0.00
25 79 0.00 0.00 0.00 > 1
50 160 0.00 0.00 0.54 > 1
75 240 0.00 0.01 > 1 > 1
125 390 0.00 > 1 > 1 > 1

Table 4. Coarse upper bound on probability of collision at periapse, for an avoidance radius of 200 meters
and a prediction interval of one orbit period, for e = 0.8.

pc[%] D[m]
σ∆a[m] σ∆s[m] 20000 11000 6000 3000

5 140 0.00 0.00 0.00 0.00
25 710 0.00 0.00 0.00 0.00
50 1400 0.00 0.00 0.00 > 1
75 2100 0.00 0.00 0.31 > 1
125 3530 0.00 0.11 > 1 > 1

An additional step one could consider is to compute the statistics of the time between collision avoidance
maneuvers. Reference 14 describes a technique for determining the probability density of the time for the
spacecraft to drift a specified relative distance, as a function of the ratio of D and σ∆s. Based on the
results above, one could specify a limit on the size of the relative “control box” in which the satellites must
station-keep, to maintain the probability of collision within a given upper bound.

Although one could imagine a more refined set of analysis that incorporates nominal relative motion
trajectories and the results of navigation system covariance analysis, for such an approach, the use of the
coarse collision probability bound would not be justified. In the context of these more detailed analysis
methods, quadrature, monte carlo analysis, and/or the use of any of the more accurate approximate methods
available from the literature would better serve the analyst’s purpose.

Summary

This work has proposed a coarse upper bound for estimating the collision probability between two spacecraft
that is suitable for use in the preliminary design phase of satellite formations. It produces reasonable bounds
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on the probability for cases which Chan’s otherwise superior technique is not designed to cover. Because the
bound can be highly conservative, it is not appropriate for operational scenarios or detailed design problems,
as it could generate an excessive false alarm rate or overly conservative designs, respectively, under some
conditions. However, it is a convenient and simple approach for rapidly examining the boundaries in the
trade space of navigation accuracy, minimum nominal approach, and collision probability. It also provides a
complementary analysis tool to the existing analytical method that Chan has developed.
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