NASA/TM-2007-214668

Solid Lubricants and Coatings for Extreme Environments: State-of-the-Art Survey

Kazuhisa Miyoshi Glenn Research Center, Cleveland, Ohio

NASA STI Program . . . in Profile

Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) program plays a key part in helping NASA maintain this important role.

The NASA STI Program operates under the auspices of the Agency Chief Information Officer. It collects, organizes, provides for archiving, and disseminates NASA's STI. The NASA STI program provides access to the NASA Aeronautics and Space Database and its public interface, the NASA Technical Reports Server, thus providing one of the largest collections of aeronautical and space science STI in the world. Results are published in both non-NASA channels and by NASA in the NASA STI Report Series, which includes the following report types:

- TECHNICAL PUBLICATION. Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.
- TECHNICAL MEMORANDUM. Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.
- CONTRACTOR REPORT. Scientific and technical findings by NASA-sponsored contractors and grantees.

- CONFERENCE PUBLICATION. Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.
- SPECIAL PUBLICATION. Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.
- TECHNICAL TRANSLATION. Englishlanguage translations of foreign scientific and technical material pertinent to NASA's mission.

Specialized services also include creating custom thesauri, building customized databases, organizing and publishing research results.

For more information about the NASA STI program, see the following:

- Access the NASA STI program home page at http://www.sti.nasa.gov
- E-mail your question via the Internet to *help@sti.nasa.gov*
- Fax your question to the NASA STI Help Desk at 301–621–0134
- Telephone the NASA STI Help Desk at 301–621–0390
- Write to: NASA Center for AeroSpace Information (CASI) 7115 Standard Drive Hanover, MD 21076–1320

NASA/TM-2007-214668

Solid Lubricants and Coatings for Extreme Environments: State-of-the-Art Survey

Kazuhisa Miyoshi Glenn Research Center, Cleveland, Ohio

National Aeronautics and Space Administration

Glenn Research Center Cleveland, Ohio 44135

This report is a formal draft or working paper, intended to solicit comments and ideas from a technical peer group.

Level of Review: This material has been technically reviewed by technical management.

Available from

NASA Center for Aerospace Information 7115 Standard Drive Hanover, MD 21076–1320 National Technical Information Service 5285 Port Royal Road Springfield, VA 22161

Available electronically at http://gltrs.grc.nasa.gov

Solid Lubricants and Coatings for Extreme Environments: State-of-the-Art Survey

Kazuhisa Miyoshi National Aeronautics and Space Administration Glenn Research Center Cleveland, Ohio 44135

Summary

An investigation was conducted to survey anticipated requirements for solid lubricants in lunar and Martian environments, as well as the effects of these environments on lubricants and their performance and durability. The success of habitats and vehicles on the Moon and Mars, and ultimately, of the human exploration of and permanent human presence on the Moon and Mars, are critically dependent on the correct and reliable operation of many moving mechanical assemblies and tribological components. The coefficient of friction and lifetime of any lubricant generally vary with the environment, and lubricants have very different characteristics under different conditions. It is essential, therefore, to select the right lubrication technique and lubricant for each mechanical and tribological application. Several environmental factors are hazardous to performance integrity on the Moon and Mars. Potential threats common to both the Moon and Mars are low ambient temperatures, wide daily temperature swings (thermal cycling), solar flux, cosmic radiation, and large quantities of dust. The surface of Mars has the additional challenges of dust storms, winds, and a carbon dioxide atmosphere. Solid lubricants and coatings are needed for lunar and Martian applications, where liquid lubricants are ineffective and undesirable, and these lubricants must perform well in the extreme environments of the Moon, Mars, and space, as well as on Earth, where they will be assembled and tested. No solid lubricants and coatings and their systems currently exist or have been validated that meet these requirements, so new solid lubricants must be designed and validated for these applications.

Introduction

In the 1960s, space lubrication needs prompted increased research into solid lubrication, with an emphasis on the role of the atmosphere. Ways of using solid lubricants were explored (refs. 1 to 3). By the early 1970's, when many of the problems had been resolved and their limitations defined, most of the research had stopped. Recently, however, a number of new applications have arisen that have prompted renewed interest. These include lightweight moving mechanical assemblies and tribological components for long-term service in space mechanisms, and cages for turbopump bearings operating in liquid hydrogen and oxygen. The new requirements are primarily long-term life and successful operation over a broad temperature range. New solid lubricants are needed to meet these requirements (refs. 1 and 4).

In the foreseeable future, NASA's space goals include a permanent manned presence on the Moon and an expedition to the planet Mars (ref. 5). The success of habitats and vehicles on the Moon and Mars, and ultimately, of the human exploration of and permanent human presence on the Moon and Mars, are critically dependent on the correct and reliable operation of many moving mechanical assemblies and tribological components (ref. 6). It is essential, therefore, to have a thorough understanding of tribological components, such as bearings and gears, and of how to select the right lubrication for each application (ref. 7). This may require designing for new solid lubricants and design validation efforts in applications where liquid lubricants are ineffective and undesirable. Environmental interactions will have to be considered carefully in the selection and design of the required durable solid lubricants. Several environmental factors may be hazardous to performance integrity. Potential threats common to both the Moon and Mars are low ambient temperatures, wide daily temperature swings (thermal cycling), solar flux, cosmic radiation, and large quantities of dust (table I; refs. 8 to 11). The surface of Mars provides the additional challenges of dust storms, winds, and a carbon dioxide atmosphere. In this survey, the anticipated requirements for solid lubricants and their protection from wear and abrasion are described, as well as the impact of lunar and Martian environmental factors on lubricants and their durability.

TABLE I.—MINIMUM, MEAN, AND MAXIMUM SURFACE TEMPERATURES OF THE EARTH, THE MOON, AND MARS

	Temperature								
	K			°C			°F		
	Min.	Mean	Max.	Min.	Mean	Max.	Min.	Mean	Max.
Earth	184	288	331	-89	15	58	-128	59	136
Moon	126	250	373	-147	-23	100	-233	-9	212
Mars	161	213	265	-112	-60	-8	-170	-76	17

The specific aim of the survey is to collect information on the following:

- Selection of lubricant type
- Advantages and disadvantages of solid lubricants
- Ranges of application of solid lubricants
- Suppliers of advanced solid lubricants and coatings
- State-of-the-art coatings research
- Designing for solid lubricants and coatings
- Tribological and surface characterization

Selection of Lubricant Type

Lubricating films have three classifications: solid films, fluid films, and thin films (table II; refs. 1 to 4 and 12 to 27). The most commonly used solid lubricants and their characteristics are summarized in table III. Solid lubricants are used when liquid lubricants do not meet the advanced requirements of modern technology (table IV). Oils or greases cannot be used in many applications because of the difficulty in applying them, sealing problems, weight, or other factors, such as environmental conditions. Solid lubricants may be preferred to liquid or gas films because they reduce weight and simplify lubrication. For many applications, solid lubricants are less expensive than oil and grease lubrication systems.

Туре	Lubricating films				
Solid films	Nanotubes, nano-onions, and other nanoparticles (C, BN, MoS ₂ , and WS ₂)				
	Nanocomposite coatings (WC/C, MoS ₂ /C, WS ₂ /C, TiC/C, and nanodiamond)				
	Diamond and diamondlike carbon coatings (diamond, hydrogenated carbon (a-C:H), amorphous carbon (a-C),				
	carbon nitride (C_3N_4) , and boron nitride (BN) films)				
	Superhard or hard coatings (VC, B ₄ C, Al ₂ O ₃ , SiC, Si ₃ O ₄ , TiC, TiN, TiCN, AlN, and BN)				
	Lamellar film (MoS ₂ and graphite)				
	Nonmetallic film (titanium dioxide, calcium fluoride, glasses, lead oxide, zinc oxide, and tin oxide)				
	Soft metallic film (lead, gold, silver, indium, copper, and zinc)				
	Self-lubricating composites (nanotubes, polymer, metal-lamellar solid, carbon, graphite, ceramic, and cermets)				
	Lamellar carbon compound film (fluorinated graphite and graphite fluoride)				
	Carbon				
	Polymers (PTFE, ^a nylon, and polyethylene)				
	Fats, soap, wax (stearic acid)				
	Ceramics and cermets				
Fluid films	Hydrodynamic film:				
	Thick hydrodynamic film				
	Elastohydrodynamic film				
	Hydrostatic film				
	Squeeze film				
Thin films	Mixed lubricating film				
	Boundary lubricating film				
Gas films	Hydrodynamic film				
	Hydrostatic film				

TABLE II.—TYPES OF LUBRICATING FILMS

^aPolytetrafluoroethylene.

TABLE III.—THE MOST COMMONLY USED SOLID LUBRICANTS AND THEIR CHARACTERISTICS

Solid lubricant	Characteristics
MoS ₂	MoS ₂ has a low coefficient of friction both in vacuum and atmosphere, and it does not rely on adsorbed
	vapors or moisture. Its thermal stability in nonoxidizing environments is acceptable to 1373 K, but in air the
	temperature limitation of MoS ₂ may be reduced to a range of 623 to 673 K by oxidation. Adsorbed water
	vapors and oxidizing environments may actually result in a slight, but insignificant, increase in friction.
	MoS_2 has greater load-carrying capacity than other commonly used lubricants, such as graphite and PTFE.
	MoS_2 has a hexagonal crystal structure with the intrinsic property of easy shear. The lubrication
	performance of MoS_2 often exceeds that of graphite, and MoS_2 is effective in vacuum where graphite is not.
Graphite	Graphite has a low coefficient of friction and very high thermal stability (2273 K and above). Graphite has a
	hexagonal crystal structure with the intrinsic property of easy shear, although graphite relies on adsorbed
	moisture or water vapors to achieve low friction. Use in dry environments, particularly in vacuum, may be
	limited. At temperatures as low as 373 K, the amount of water vapor adsorbed may be reduced to the point
	that low friction cannot be maintained, so sufficient water vapor may be deliberately introduced to maintain
	low friction. Practical application at high temperatures is limited to a range of 7/3 to 8/3 K because of
	oxidation. When necessary, additives composed of inorganic compounds may be added to enable use at
DEFE	temperatures to 823 K.
PIFE"	PIFE has a low coefficient of friction both in vacuum and atmosphere because of a lack of chemical
	reactivity. PTFE does not rely on adsorbed vapors or moisture. It possesses low surface energy and does not
	have a layered structure. The macromolecules of PTFE slip easily along each other, similar to lamellar
	structures. Practical application temperatures range from 1/3 to 523 K. PIFE does not have greater load-
	carrying capacity and durability than other alternatives. The low inermal conductivity of PTFE innois near
	dissipation, which causes premature failure due to meting and fimits use to low-speed shaing applications where MAS is not active factory. DTEE shares one of the smallest each factory is and dynamic faither
	where MOS_2 is not satisfactory. Fifte shows one of the smartest coefficients of static and dynamic friction, down to 0.04. One other temperatures are limited to show 522 V
C a ft an atala	down to 0.04. Operating temperatures are immedia to about 325 K.
Soft metals	Lead, gold, silver, copper, indium, and zinc possess relatively low coefficients of incluon both in vacuum
	and autosphere because of men low shear strengths. These metals are extremely useful for high-
	sliding is minimal

^aPolytetrafluoroethylene.

Requirement	Applications		
Resist abrasion in dirt-laden	Space vehicles (rovers)		
environments	Lunar base		
	Martian base		
	Aircraft		
	Automobiles		
	Agricultural and mining equipment		
	Off-road vehicles and equipment		
	Construction equipment		
	Textile equipment		
	Dental implants		
Avoid contaminating	Space telescopes		
product or environment	Equipment in lunar base		
_	Equipment in Martian base		
	Microscopes and cameras		
	Spectroscopes		
	Medical and dental equipment		
	Artificial implants		
	Food-processing machines		
	Optical equipment		
	Metalworking equipment		
	Surface-mounted equipment		
	Hard disks and tape recorders		
	Textile equipment		
	Paper-processing machines		
	Business machines		
	Automobiles		
Maintain servicing or lubrication	Space vehicles		
in inaccessible or hard-to-access	Satellites		
areas	Aerospace mechanisms		
	Nuclear reactors		
	Consumer durables		
	Aircraft		
Provide prolonged storage or	Space telescope mounts		
stationary service	Space antenna mounts		
	Aircraft equipment		
	Kallway equipment		
	Missile components		
	Inuclear reactors		
	Heavy plants, buildings, and bridges		
	Furnaces		

TABLE IV. —APPLICATION OF SOLID LUBRICANTS (a) Areas where fluid lubricants are undesirable.

Envi	(c)	Amplications	
Elivi Llich voouum	Deem temperature er	Applications	
riigii vacuulli	cryogenic temperatures	Space mechanisms	
	cryogenic temperatures	Satellites	
		Space telescope mounts	
		Space platforms	
		Space antennas	
	Clean room	Biomedical equipment	
	cicul room	Analytical tools	
		Coating equipment	
		Semiconductor manufacturing equipment	
	High temperature	Space nuclear reactors	
	ingh temperature	X-ray tubes	
		X-ray equipment	
		Furnaces	
High temperatures	Lunar environments	Space vehicles	
		Space mechanisms	
		Lunar bases	
	Air atmosphere	Furnaces	
		Metalworking equipment	
		Compressors	
	Molten metals	Nuclear reactors	
	(sodium, zinc, etc.)	Molten metal plating equipment	
Cryogenic temperatur	res	Lunar and Martian bases	
5 6 1		Space mechanisms	
		Satellites	
		Space vehicles	
		Space propulsion systems	
		Space telescope mounts	
		Space platforms	
		Space antennas	
		Turbopumps	
		Liquid nitrogen pumps	
		Butane pumps	
		Freon pumps	
		Liquid natural gas pumps	
		Liquid propane pumps	
		Refrigeration plants	
Radiation (gamma ray	ys, fast neutrons, x rays,	Lunar and Martian bases	
beta rays, etc.)		Nuclear reactors	
		Space mechanisms	
		Satellites	
		Space vehicles	
		Space platforms	
		Space antennas	
Corrosive gases (chlo	rine, etc.)	Maneuvering	
		Semiconductor manufacturing equipment	
High pressures or load	ds	Metalworking equipment	
		Bridge supports	
		Plant supports	
		Building supports	
Fretting wear and cor	rosion (general)	Space antennas	
		Space platforms	
		Aircraft engines	
		I urbine blades	
		Landing gear	
		Automobiles	

TABLE IV.—Concluded. (b) Areas where fluid lubricants are ineffective.

Advantages and Disadvantages of Solid Lubricants, and Applications for Solid Lubricants

Table V shows some advantages and disadvantages of solid lubrication (refs. 1 to 4 and 18). Under high vacuums, high temperatures, cryogenic temperatures, radiation, high dust, or corrosive environments, solid lubrication may be the only feasible system. In addition, figures 1 to 3 present critical operating conditions under which fluid lubricants are ineffective or undesirable, along with the most common conditions requiring the use of solid lubricants:

- (1) In extreme pressure conditions (i.e., high to ultrahigh vacuum conditions—a vacuum of $\sim 10^{-2}$ Pa or higher or a gas density of $\sim 10^{-12}$ molecules/cm³ or lower at 298 K), such as space, lubricants can volatilize. In high-vacuum environments (such as space-vacuum environments), a liquid lubricant would evaporate and contaminate the device, such as optical and electronic equipment.
- (2) In extremely high temperature conditions, liquid lubricants can decompose or oxidize. Suitable solid lubricants can extend the operating temperatures of systems beyond 523 or 573 K while maintaining relatively low coefficients of friction.
- (3) In cryogenic temperatures, liquid lubricants can solidify or become highly viscous and not be effective. Suitable solid lubricants can extend the operating temperatures of systems down to 0 K.
- (4) In radiation environments, liquid lubricants can decompose. Suitable solid lubricants can extend the operation of systems beyond 10⁶ rads (radiation dose absorbed of 10⁴ J/kg) while maintaining relatively low coefficients of friction.
- (5) In high dust areas, hard solid lubricants, such as diamondlike carbon and boron nitride film, are useful in areas where liquid lubricants tend to pick up dust. These contaminants readily form a grinding paste, causing abrasion and damaging equipment.
- (6) In weight-limited spacecraft and rovers, solid lubrication has the advantage of weighing substantially less than liquid lubrication. The elimination (or limited use) of liquid lubricants and their replacement by solid lubricants would reduce spacecraft weight and, therefore, have a dramatic impact on mission extent and craft maneuverability.
- (7) Under intermittent loading conditions or in corrosive environments, liquid lubricants become contaminated. Changes in critical service and environmental conditions—such as loading, time, contamination, pressure, temperature, and radiation—also affect liquid lubricant efficiency. When equipment is stored or is idle for prolonged periods, solid lubricants provide permanent, satisfactory lubrication.

Advantages	Disadvantages	
• Are highly stable in high-temperature, cryogenic temperature, vacuum, and high-pressure environments	• Have higher coefficients of friction and wear than for	
• Have high heat dissipation with high thermally conductive lubricants, such as diamond films	 hydrodynamic lubrication Have poor heat dissipation with 	
• Have high resistance to deterioration in high-radiation environments	lubricants, such as polymer-base	
• Have high resistance to abrasion in high-dust environments	films	
 Have high resistance to deterioration in reactive environments 	Have poor self-healing	
• Are more effective than fluid lubricants at intermittent loading, high loads, and high speeds	properties so that a broken solid film tends to shorten the useful life of the lubricant (However a	
• Enable equipment to be lighter and simpler because lubrication distribution systems and seals are not required	solid film, such as a carbon nanotube film, may be readily	
• Offer a distinct advantage in locations where access for servicing is difficult	reapplied to extend the useful life.)	
• Can provide translucent or transparent coatings, such as diamond and diamondlike carbon films, where desirable	 May have undesirable color, such as with graphite and carbon nanotubes 	

TABLE V.—ADVANTAGES AND DISADVANTAGES OF SOLID LUBRICANTS

Figure 3.—Ranges of application of various lubricants in radiation environments. (Figure has both solid and liquid lubricants.)

Suppliers of Advanced Solid Lubricants and Coatings

Table VI lists some high-performance solid-film lubricant suppliers for the types of solid-film lubricants discussed earlier; gives the materials and/or services provided; and lists the supplier names, addresses, phone numbers, and fax numbers (refs. 28 to 35). It also includes important values of hardness and maximum service temperature that suppliers have made publicly available.

IABLE VI.—	INDUSTRY SUPPLIERS OF ADVANCED SOL	ID LUBRICAN IS	1
Supplier	Coating or material	Microhardness,	Maximum service
		Hv	temperature,
			K
Balzers, Inc.	WC/C (a-C:H:W)	1000 to 1500	573
Rogers Business Park	TiAlN + WC/C (a-C:H:W)	3000	1073
Elgin, IL 60123	DLC (a-C:H)	>2000	623
Phone: 847–844–1753	Diamond (polycrystalline)	>8000	873
Fax: 847–844–3306	TiAlN	3300	1173
http://www.bus.balzers.com	TiN	2300	873
	TiCN	3000	673
	AlCrN	3200	873
Surmet	Diamond film	6000 to 8000	673
33B Street			
Burlington, MA 01803			
Phone: 781–272–3250			
Fax: 781–272–9185			
www.surmet.com			
Teer Coatings Ltd.	Diamondlike carbon	>1400	673
West Stone House,	Graphitelike carbon	>2000	773
Berry Hill Industrial Estate	MoS_2	>2000	723
Droitwich, Worcestershire	TiN	>2200	723
WR9 9AS, UK	CrN	>2000	823
Phone: 0870 220 39 10	TiCN	>2500	723
Fax: 0870 220 39 11	TiAlN	>2500	1173
http://www.teercoatings.co.uk	CrAlTiN	>3500	1173
DIAMONEX	Diamondlike carbon: amorphous diamond	1000 to 3000	773
7331 William Avenue			
Allentown, PA 18106			
Phone: 610–366–7100			
Fax: 610–366–7144			
Sub-One Technology	Diamondlike carbon on interior surfaces	Not available	Not available
470 Lindbergh Ave.			
Livermore, CA 94551			
Phone: 925–455–7220			
Fax: 925–606–4391			
TD Center	Vanadium carbide layer	3500 to 3800	Not available
2020 15th Street	(thermal diffusion treatment)		
Columbus, IN 47201			
Phone: 877–832–3687			
Fax: 812–378–1591			
TIODIZE Co., Inc.	PTFE films	Not available	561
5858 Engineer Dr.	PTFE and MoS_2 films		617
Huntington Beach, CA 92649	MoS_2 films		922
Phone: 714–898–4377			
Fax: 714–891–7467			
CSEM Centre Suisse	Diamond films	Not available	Not available
Rue Jaquet-Droz 1	MoS ₂ -based films		
P.O. Box CH–2007	Pure metal films (Pb, Ag, Au, In, Bi, and Sn)		
Neuchatel, Switzerland	Oxides (PbO, MoO ₃ , $11O_2$, and $S1O_2$)		
Phone: 41 32 720 5111	CrN or TiAIN nanocomposite		
Fax: 41 32 720 5700		1	

TABLE VI.—Concluded						
Supplier	Coating or material	Microhardness,	Maximum service			
		Hv	temperature,			
			K			
Endura Coatings	Composite diamond coatings	Not available	Not available			
2029 Riggs	Fluoropolymer coatings					
Warren, MI 48091	PTFE coatings					
Phone: 586–758–1200						
Fax: 586-758-3095						
Thin Film Division—Anatech LTD	Thin-film deposition: carbon, metal, and	Not available	Not available			
771 Crosspoint Drive	ceramic					
Denver, NC 28037						
Phone: 704–489–1488						
Fax: 704–489–2177						

The effectiveness and performance of hard to superhard coatings—such as diamondlike carbon, WC/C, TiC/C, VC, diamond films, and other solid-film lubricants—have been validated in a variety of sliding contact conditions in the atmosphere by many researchers in industry, academia, and government. For applications on the surface of the Moon and Mars, the following challenging research subjects must be investigated:

- Abrasion resistance of solid lubricants and coatings for the cryogenic temperatures, widely varying temperatures, and high dust environments on the surface of the Moon and Mars
- Adhesion strength between a solid coating film and its substrate under thermal cycling with high contact pressures and loads on the surface of the Moon and Mars
- Effects of radiation on the lubricating ability and durability of solid lubricants and coatings on the Moon and Mars

Research of Advanced Solid Lubricants and Coatings

To assess whether the current technology and manufacturing capability for solid lubricants and coatings are adequate to meet NASA's requirements for Moon and Mars exploration, the author spoke with individuals from industry, government, and academia known to be actively working in the field. The general consensus was that the current technology and manufacturing base for solid lubricants and coatings is not adequate to meet NASA's exploration requirements and that solid lubricant and coating lifetime-extension research, granular and powder tribology research, and the design of capable solid lubricant and coating systems need to be implemented.

A few current research areas are focused on designing, processing, and characterizing innovative solid lubricants and coatings technologies (e.g., refs. 36 to 40). The following technologies are showing promising performance in solid lubrication:

- Carbon nanotubes (single-walled nanotubes and multiwalled nanotubes)
- Fluorinated carbon nano-onions
- Multinanolayered, composite coatings (MoS₂/WS₂/C and MoS₂/WS₂)
- Functionally graded, multilayered inorganic coatings (TiC_x/C and TiC_x)
- Multilayered composite coatings (WC/C, MoS₂/C, WS₂/C, and TiC/C)
- Nanocrystalline diamond coatings
- Large-area diamondlike carbon coatings
- TiO₂ grown on 55Ni-45Ti and titanium-based alloys
- Ceramics and advanced coatings (BN, B₄C, VC, AlN, CN_x, TiO₂, SiO₂, etc.)
- Soft metal coatings and polytetrafluoroethylene (PTFE) deposited by advanced deposition techniques

In general, the addition of these advanced solid lubricants and coatings to those currently available will enable designers to choose solid lubrication more easily and to apply it more effectively in moving mechanical assemblies and tribology applications on the Moon and Mars.

Designing for State-of-the-Art Solid Lubricants and Coatings

The most challenging research problems in durable solid lubricants and coatings for a cold, dry desert (Mars) and for a thermally cyclic, cold-to-hot desert (the Moon) are

- (1) How are the solid lubricants and coatings attached to the substrate?
- (2) What are their strengths and surface energies?
- (3) How do they break down?
- (4) How do they self-heal?
- (5) How can we extend their lifetimes?
- (6) Can they be reapplied to the surface at service areas in the lunar and Martian deserts?
- (7) What are their performance benefits? Can they provide some or all of the following?
 - Extreme abrasion and wear resistance
 - Ultrahard surface
 - High impact strength
 - Remarkably low surface energy
 - Increased thermal conductivity and thermal transfer
 - High nonstick (release) properties
 - Lowest friction (energy consumption) attainable
 - Permanent dry lubrication to prevent galling
 - Erosion protection
 - Radiation protection
 - Nontoxicity
 - Chemical protection
 - Nonwetting properties
 - Precision conformance over complex geometry
 - Excellent corrosion resistance
 - Wide temperature range from cryogenic to 573, 823, or 923 K

Some suggested concepts and designs for achieving solid lubrication on the Moon and Mars follow:

- (1) Formulate the composition and microstructure or nanostructure of an interlayer (bond coat) between a substrate and a solid lubricant or coating, minimizing the thermal expansion coefficient mismatch, the lattice parameter mismatch, and the difference in mechanical properties, while increasing the chemical affinity and bonding (e.g., a titanium or chromium interlayer on a metal substrate, a silicon interlayer on a ceramic substrate, or a zinc interlayer on a polymer substrate).
- (2) Minimize the segregation of species in the substrate and contaminants at the interface between the interlayer and the substrate.
- (3) Formulate the composition and microstructure or nanostructure of a solid lubricant or coating (top coat) on an interlayer deposited on a substrate.
 - For areas where high heat dissipation is desirable, formulate highly thermal-conductive solid lubricants and coatings (top coats): carbon nanotubes, nanocrystalline diamond coatings, metal-doped diamond coatings, metal-doped diamondlike carbon coatings, and soft metal films (gold, silver, copper, lead, and their alloys).

- For areas where translucency or transparency is desirable, formulate translucent or transparent solid lubricants and coatings (top coats): nanocrystalline diamond coatings, microcrystalline diamond coatings, and fluorinated and unfluorinated diamondlike carbon coatings.
- For areas where the preservation of clean air or water is strongly desired, formulate environmentally friendly solid lubricants and coatings (top coats): TiO₂ grown on 55Ni-45Ti and titanium-based alloys, TiO₂ coatings, and TiC coatings.
- For areas where abrasion and erosion due to a high dust environment are a concern, formulate ultrahard or hard solid lubricants and coatings (top coats): ceramic coatings (BN, B₄C, VC, AIN, CN_x, TiO₂, SiC, Si₃N₄, and SiO₂,), nanocrystalline diamond coatings, microcrystalline diamond coatings, and diamondlike carbon coatings.
- For areas where a low coefficient of friction is highly desirable, formulate ultralow or low coefficient of friction solid lubricants and coatings (top coats): carbon nanotubes; fluorinated carbon nanotubes or nano-onions; soft metal coatings; PTFE; diamondlike carbon coatings; diamond coatings; multi-nanolayered, composite coatings (MoS₂/WS₂/C and MoS₂/WS₂); and functionally graded, multilayered inorganic coatings (TiC_x/C).
- For areas where wear control is desirable, formulate hard solid lubricants and coatings (top coats): multilayered composite coatings (WC/C, MoS₂/C, WS₂/C, and TiC/C); multinanolayered, composite coatings (MoS₂/WS₂/C and MoS₂/WS₂); functionally graded, multilayered inorganic coatings (TiC_x/C); ceramic coatings (BN, B₄C, VC, AlN, CN_x, TiO₂, SiC, Si₃N₄, and SiO₂,); nanocrystalline diamond coatings; microcrystalline diamond coatings; and diamondlike carbon coatings.

Tribological and Surface Characterization of Solid Lubricants and Coatings

The friction and wear interactions of solid lubricants and coatings are system properties. This means that performance and behavior depend on the lubricant and materials, the operating conditions, and the system. Field testing is, however, expensive or impractical, so tribological simulation testing and surface and material characterization of innovative solid lubricants and coatings are needed. Testing and characterization are essential elements of solid lubricant and coating research and development (e.g., refs. 41 and 42). As listed in table VII, many academic institutions, commercial organizations, and government institutions have performed tribology research and development. However, selecting the correct simulation test for a given application is not always straightforward. Satisfactory correlation with the real application is the key.

Organizations	Institutions				
Academic	Case Western Reserve University (http://www.cwru.edu): Tribology Research				
sites	Cleveland State University (http://www.csuohio.edu): Lubrication and Lubricants				
	Colorado School of Mines: Advanced Coating and Surface Engineering Laboratory (ACSEL)				
	(http://www.mines.edu/research/acsel/acsel.html)				
	Georgia Institute of Technology: Center for Surface Engineering and Tribology, Tribology				
	(http://www.me.gatech.edu/research/tribology.html), Tribology Research Group at Georgia Institute of				
	Technology (http://www.me.gatech.edu/me/publicat/brochures/rb/13tri.html)				
	Iowa State University (http://www.iastate.edu): Tribology Laboratory				
Northwestern University: Surface Engineering and Tribology (http://www.mech.northwestern.edu/dept/research/tribology/tribology.htm)					
	(http://gearlab.eng.ohio-state.edu/), Computer Microtribology and Contamination Laboratory				
	Pennsylvania State University: Tribology Research (http://www.me.psu.edu/research/tribology.html)				

TABLE VII.—TRIBOLOGY RESEARCH: ACADEMIC INSTITUTIONS, COMMERCIAL ORGANIZATIONS, AND GOVERNMENT INSTITUTIONS^a

^aSource: Center for Surface Engineering and Tribology—Tribology Link, http://www.csetr.org/link.htm.

	TABLE VII.—Continued. ^a				
Organizations		Institutions			
	Purdue University: Materials Processing and Tribology Research Group				
	(http://aae.www.ecn.purdue.edu/%7Efarrist/lab.html), Mechanical Engineering Tribology Web Site				
	(http://widget.ecn.purdue.edu/%7Emetrib/)				
	Sandia National Laboratories (http://www.sandia.gov): Tribology				
	Southern Illinois University, Carbondale: Center for Advanced Friction Studies (http://frictioncenter.siu.edu/)				
	State University of New York, Binghamton: Depart	rtment of Mechanical Engineering			
	(http://www.me.binghamton.edu/level2-1/aboutr	ne.html)			
	Texas Tech University: Tribology (http://www.coe	e.ttu.edu/me/Research/tribolog.htm)			
	University of Akron: Tribology Laboratory (http://	mechanical.uakron.edu/labs-tribology.php)			
	University of California, Berkeley: Bogey's Tribol	ogy Group (http://cml.berkeley.edu/tribo.html)			
	University of California, San Diego (http://www.u	csd.edu): Center for Magnetic Recording Research			
	University of Florida (http://www.ufl.edu): Adair l	Research Group			
	University of Illinois, Urbana-Champaign: Microtr	ribodynamics and Tribology Laboratory			
	(http://www.mie.uiuc.edu/content/asp/research/la	aboratories/tribology_and_mircro-tribology_laboratory.asp)			
	University of Maine: Laboratory for Surface Scien	ce and Technology (LASST) (http://www.umaine.edu/lasst/)			
	University of Notre Dame: Tribology/Manufacturi	ng Laboratory			
	(http://ame.nd.edu/facilities/TribologyLab.html)				
	University of Pittsburgh (http://www.pitt.edu): Tri	bology Lab			
	Western Michigan University: Tribology Laborato	ry			
	(http://www.mae.wmich.edu/labs/Tribology/Trib	oology.html)			
Commercial	Analysts, Inc. Home Page	Insight Services (http://www.testoil.com)			
organizations	Ashland Chemical (http://www.ashchem.com)	Kline & Co. Consultancy (http://www.klinegroup.com)			
	Blackstone Laboratories	Lubriquip (http://www.lubriquip.com)			
	(http://www.blackstone-labs.com)	Micro Photonics Inc. (http://www.microphotonics.com)			
	Butler Machinery Co. (http://www.butler-	National Tribology Services (http://www.natrib.com)			
	machinery.com/index.asp): Fluids	Noria—OilAnalysis.Com (http://www.oilanalysis.com)			
	Analysis Lab	OMS Laboratories, Inc.			
	CETR: Center for Tribology, Inc.	(http://members.aol.com/labOMS/)			
	(http://www.cetr.com)	PdMA Corporation (http://www.pdma.com)			
	Computational Systems, Inc.	Petrolab Corp.			
	(http://www.compsys.com)	(http://www.petrolab.com/pages/petrolab/default.asp)			
	CTC Analytical Services	Predict/DLI—Innovative Predictive Maintenance			
	(http://www.ctclink.com/public/FLhome.cfm?	(http://www.frontlineworldwide.com/prod04.htm)			
	CFID=358369&CFTOKEN=64020916)	Predictive Maintenance Corporation			
	Engineered Lubricants Co. (http://englube.com)	(http://www.pmaint.com)			
	Falex Corporation (http://www.falex.com/)	RohMax (http://www.rohmax.com/en/oiladditives)			
	Falex Iribology NV (http://www.falexint.com)	Saftek (http://www.saftek.net): Machinery Maintenance			
	FEV Engine Technology, Inc.				
	(http://www.fev- et.com)	Savant Group (http://www.savantgroup.com)			
	F.L.A.G. (Fuel, Lubricant and Grease)	Spectroinc. Industrial Tribology Systems			
	Eluitor International (http://www.flagsearch.com)	(http://www.spectroinc.com)			
	Fullec International (http://www.hullec.com)	Tannis Co. (http://www.savanigroup.com/tannas.snt)			
	Herguin Laboratories (http://www.nerguth.com)	Tribalagy Consultant			
	(http://www.hydroulioranair.net)	(http://mambara.gol.gom/waaraangul/waar/waar.htm)			
	(http://www.nyurauncrepair.net)	(http://members.aoi.com/wearconsui/wear/wear.ntm)			
	(http://www.hysitron.com)	111 (IIII)//WWW.III-US.COM) Waarahaak International (http://www.waarahaak.aam)			
	(http://www.nyshton.com) Hula America	Wedeven Associates Inc. (http://www.wedeven.com)			
	ICIS-LOR Base Oils Pricing Information	weueven Associates, inc. (http://www.weueven.com)			
	(http://www.hysitron.com)				
	(IIUD.//WWW.IIVSIIFOI.COM)				

^aSource: Center for Surface Engineering and Tribology—Tribology Link, http://www.csetr.org/link.htm.

TABLE VII.—Concluded."					
Organizations	Institutions				
Government	Air Force Research Laboratory: Tribology and Coatings				
sites	(http://www.ml.afrl.af.mil/tech/tech-mlb-tribcoat.html)				
	Argonne National Laboratory (http://www.anl.gov/): Tribology Section				
	NASA Glenn Research Center: Tribology & Surface Science Branch				
	(http://www.grc.nasa.gov/WWW/SurfSci/)				
	NASA Marshall Space Center (http://www.nasa.gov/centers/marshall/home/): Space Components				
	Naval Research Lab: Tribology Section—NRL Code 6176 (http://stm2.nrl.navy.mil/%7Ewahl/6176.htm)				
	National Institute of Standards and Technology: Nanotechnology is BIG at NIST				
	(http://www.nist.gov/public_affairs/nanotech.htm)				
	Oak Ridge National Laboratory (ORNL): Tribology (Friction, Lubrication and				
	Wear Analysis) Test Systems (http://html.ornl.gov/mituc/tribol.htm)				
	Southwest Research Institute (SwRI) (http://www.swri.org): Engine Technology Section, Petroleum				
	Products Research (http://www.swri.org/4org/d08/petprod/)				

^aSource: Center for Surface Engineering and Tribology—Tribology Link, http://www.csetr.org/link.htm.

Many of the properties of solid lubricants and coatings are actually surface properties. For example, friction, adhesion, bonding, abrasion, wear, erosion, oxidation, corrosion, fatigue, and cracking are all affected by surface properties (refs. 1 to 3). By depositing thin films, producing multilayered coatings, and modifying surfaces, designers can enhance performance, that is lower surface energy, adhesion, and friction, and increase resistance to abrasion, wear, erosion, oxidation, corrosion, and cracking, as well as improve compatibility with the lunar and Martian environments (refs. 4 to 7).

In order to understand surface properties, and ultimately to provide better surfaces and lubrication, researchers must study the physical and chemical characteristics of a material surface obtained by a given process. A number of tools are now available for surface analysis of any solid surface (refs. 41 and 42). Because the surface plays such a crucial role in many processes, surface analyses and their tools have become important in a number of scientific, industrial, and commercial fields (refs. 11 to 21). For example, the editors of Research & Development Magazine surveyed the thin-film research community in August 2001 to determine their level of involvement with thin-film characterization tools and their immediate research concerns (ref. 22). The survey indicated that thin films and coatings are commonly used in components and devices to improve mechanical properties, material performance, durability, strength, and resistance in basic industries, such as industrial coatings (21 percent of researchers' response), nanotechnology (19 percent), optical components (19 percent), plastics (17 percent), ceramics (15 percent), biomedical technology (10 percent), instrumentation (10 percent), microelectromechanical systems (10 percent), and disk drives (6 percent). Furthermore, according to the survey, the most widely used tools for examining thin films and coatings are optical microscopy (60 percent), scanning electron microscopy (56 percent), energy-dispersive x-ray spectroscopy (29 percent), Fourier transform infrared spectroscopy (29 percent), surface profilometry (29 percent), x-ray diffraction (27 percent), Auger electron spectroscopy (25 percent), ellipsometry (23 percent), scanning prove microscopy (19 percent), transmission electron microscopy (19 percent), thermal analysis (15 percent), x-ray photoelectron spectroscopy (12 percent), confocal microscopy (10 percent), and secondary ion mass spectroscopy (8 percent).

Surface analysis is important for verifying the success of the surface preparation process, including a coating process or surface treatment for controlling the surface quality of solid lubricants and coatings as well as for identifying surface contamination that can either enhance or inhibit the surface effects of solid lubricants and coatings. Selecting the proper analytical tool and method is crucial to obtaining the right information. To select the proper tool, researchers must know the specimen size, sampling area, sampling depth, spatial resolution, detection sensitivity, whether quantitative or qualitative results are desired, whether destructive or nondestructive analysis is desired, and many other factors. Each technique has its strengths and weaknesses. Therefore, no single tool can provide the answers to all problems. In many cases, it will be necessary to use multiple tools to reach an answer.

Concluding Remarks

The success of habitats and vehicles, and ultimately, of the human exploration of and permanent human presence on the Moon and Mars, is critically dependent on the correct and reliable operation of many moving mechanical assemblies and tribological components. The coefficient of friction and lifetime of any lubricant generally vary with the environment; and lubricants have very different characteristics under different conditions. It is essential, therefore, to select the right lubrication technique and lubricant for each mechanical and tribological application. Several environmental factors are hazardous to performance integrity on the Moon and Mars. Potential threats common to both the Moon and Mars are low ambient temperatures, wide daily temperature swings (thermal cycling), solar flux, cosmic radiation, and large quantities of dust. The surface of Mars provides the additional challenges of dust storms, winds, and a carbon dioxide atmosphere. Solid lubricants and coatings for lunar and Martian applications, where liquid lubricants are ineffective and undesirable, are needed, and they must perform well in the extreme environments of the Moon, Mars, and space, as well as on Earth, where they will be assembled and tested. No solid lubricants must be designed and validated for these applications.

The technology of solid lubrication has advanced rapidly in the past four decades, primarily in response to the needs of the aerospace and automobile industries. Solid lubricants are used where the containment of liquids is a problem and when liquid lubricants do not meet the advanced requirements. Under high vacuum (such as in space), high temperatures, cryogenic temperatures, radiation, dust, clean environments, or corrosive environments, and combinations thereof, solid lubrication may be the only feasible system. The materials designed for solid lubrication must not only display desirable coefficients of friction (0.001 to 0.3) but must maintain good durability in different environments, such as high vacuum, water, the atmosphere, cryogenic temperatures, high temperatures, or dust. Therefore, the successful use of materials and coatings as solid lubricant formulation is best for a chosen application. Issues such as substrate surface pretreatment, materials and coatings compatibility, the mating counterpart material, and potential debris generation must be taken into account during the design of a lubricated device or of moving mechanical assemblies.

References

- 1. Miyoshi, Kazuhisa: Solid Lubrication Fundamentals and Applications, Marcel Dekker, Inc., New York, NY, 2001.
- 2. Campbell, M.E.: Solid Lubricants: A Survey. NASA SP-5059, 1972.
- 3. Lancaster, J.K.: CRC Handbook of Lubrication—Theory and Practice of Tribology. Vol. II, E.R. Booser, ed., CRC Press, Boca Raton, FL, 1984, pp. 269–290.
- 4. Lince J.R.; and Fleischauer, P.D.: Solid Lubrication for Spacecraft Mechanisms. Technical Report A159523, Aerospace Corporation, El Segundo, CA, Technology Operations, June 15, 1997.
- 5. Exploring the Moon and Mars: Choices for the Nation. OTA–ISC–502, NTIS order #PB91–220046, July 1991.
- 6. Oswald, Fred B. ed.: Proceedings of Space Mechanisms Technology Workshop. NASA/CP—2002-211882, 2002. http://gltrs.grc.nasa.gov/cgi-bin/GLTRS/browse.pl?2002/CP-2002-211882.html
- 7. European Space Tribology Laboratory: Focus of Expertise for Space Tribology. http://www.solutionsinengineering.com/ESTL/ Accessed June 2005.
- 8. Artemis Society International: Surface Temperature of the Moon and Mars, ASI W9900029r1.3., 2004. http://www.asi.org/adb/02/05/01/surface-temperature.html Accessed June 2005.
- Dept. Physics & Astronomy, University of Tennessee: Astronomy 161: The Solar System, Atmosphere and Interior. The Martian Atmosphere. http://csep10.phys.utk.edu/astr161/lect/mars/atmosphere.html Accessed June 2005.

- 10. Sternovsky, Z.; and Robertson, S.: Contact Charging of Lunar and Martian Dust Simulants. J. Geographical Res., vol. 107, no. E11, 2002, p. 5105.
- 11. National Space Science Data Center: Lunar and Planetary Science. http://nssdc.gsfc.nasa.gov/planetary/ Accessed June 2005.
- 12. Glossary of Terms in the Field of Friction, Wear, and Lubrication. Research Group on Wear of Engineering Materials, Organization for Economic Cooperation and Development (OECD), Paris, 1969.
- 13. Jost, H.P.: Lubrication (Tribology) Education and Research—A Report on the Present Position and Industry's Needs. Her Majesty's Stationery Office, London, 1966.
- 14. Czichos, H.: Tribology-A Systems Approach to the Science and Technology of Friction, Lubrication, and Wear. Elsevier Scientific Publishing Co., Vol. 1, New York, NY, 1978.
- 15. Peterson, M.B.: Wear Control Handbook. M.B. Peterson and W.O. Winer, eds., Amer. Soc. Mech. Engineers, New York, NY, 1980.
- 16. Devine, M.J.: Proceedings of a Workshop on Wear Control To Achieve Product Durability. AD-A055712, Naval Air Development Center, Warminster, PA, 1976.
- 17. Bennet, L.H., et al.: Economic Effects of Metallic Corrosion in the United States. National Bureau of Standards, SP-511-1-PT-1, 1978.
- 18. Peterson, M.B.: Technical Options for Conservation of Metals: Case Studies of Selected Metals and Products. OTA-M-97, 1979.
- 19. Jost, H.P.: Tribology—Origin and Future. Wear, vol. 136, 1990, pp. 1–17.
- 20. Pinkus, O.; and Wilcock, D.F.: Strategy for Energy Conservation Through Tribology. Amer. Soc. Mech. Engineers, New York, NY, 1977.
- 21. Ku, P.M.: Energy and Materials Conservation Through Tribology. Lubr. Eng., vol. 34, no. 2, 1978, pp. 131–134.
- 22. Wills, J.G.: Lubrication Fundamentals. Marcel Dekker, New York, NY, 1980.
- 23. Booser, E.R. ed.: CRC Handbook of Lubrication-Theory and Practice of Tribology. Vols. I and II, CRC Press, Boca Raton, FL, 1984.
- 24. O'Connor, J.J.; Boyd, J.; and Avallone, E.A., eds.: Standard Handbook of Lubrication Engineering. McGraw-Hill, New York, NY, 1968.
- 25. Kakuda, K., ed.: NSK Technical Journal, 648. Nippon Seiko Co., Tokyo, 1988.
- 26. Engineers Edge: Solutions by Design. Solid Lubrication—Definition and General. http://www.engineersedge.com/lubrication/solid lubrication definition general.htm Accessed June 2005.
- 27. AFRL—Materials & Manufacturing Directorate. Thin Films, Solid Lubricants, and Wear Resistant Coatings Section, http://www.ml.afrl.af.mil/mlb/s-tfslwrc.html Accessed June 2005.
- 28. Balzers Coating Guide. Just a Couple of Thousandths of a Millimetre Make All the Difference. http://www.balzers.com/bhq/eng/01-products-services/02-balinit-coatings/indexW3DnavidW261.php Accessed June 2005.
- 29. Morgan Advanced Ceramics. Diamonex® Products, A Leading Supplier of DLC Coatings and CVD Diamond Products. http://www.diamonex.com Accessed June 2005.
- 30. Surmet, UltraC Diamond.TM http://www.surmet.com/ultrac.html Accessed June 2005.
- 31. Sub-One, A Breakthrough in Interior Surfacing. http://www.sub-one.com/breakthrough.html Accessed June 2005.
- 32. Teer Coatings Ltd., Production Coating Services. Hard, Wear Resistant Coatings. http://www.teercoatings.co.uk/index.php?page=service Accessed June 2005.
- 33. Lelonis, Donald A.; Tereshko, Joseph W.; and Andersen, Cynthia M.: Boron Nitride Powder-A High-Performance Alternative for Solid Lubrication. http://www.advceramics.com/geac/downloads/documents/81506.pdf Accessed June 2005.

- 34. Tiodize, Dry Film Lubricants. http://www.tiodize.com/dryfilmlubricants.html Accessed June 2005.
- 35. Bearing Works, Lubrication. http://www.bearingworks.com/lubrication.htm Accessed June 2005.

- Miyoshi, Kazuhisa; Lukco, Dorothy; and Cytron, Sheldon J.: Oxide Ceramic Films Grown on 55Ni-45Ti for NASA and Department of Defense Applications: Unidirectional Sliding Friction and Wear Evaluation. NASA/TM—2004-212979, 2004. http://gltrs.grc.nasa.gov/cgi-bin/GLTRS/browse.pl?-2004/TM-2004-212979.html
- 37. Miyoshi, Kazuhisa: Durability Evaluation of Selected Solid Lubricating Films. NASA/TM—2001-210360, 2001. http://gltrs.grc.nasa.gov/cgi-bin/GLTRS/browse.pl?2001/TM-2001-210360.html
- Miyoshi, Kazuhisa: Surface Design and Engineering Toward Wear-Resistant, Self-Lubricating Diamond Films and Coatings. NASA/TM—1999-208905, 1999. http://gltrs.grc.nasa.gov/cgibin/GLTRS/browse.pl?1999/TM-1999-208905.html
- 39. Miyoshi, Kazuhisa: Lubrication by Diamond and Diamondlike Carbon Coatings. NASA TM–107472, 1997. http://gltrs.grc.nasa.gov/cgi-bin/GLTRS/browse.pl?1997/TM-107472.html
- 40. Miyoshi, K., et al.: Solid Lubrication by Multiwalled Carbon Nanotubes in Air and in Vacuum. Tribology Lett., vol. 19, no. 3, 2005, p. 191.
- 41. Miyoshi, Kazuhisa: Surface Characterization Techniques: An Overview. NASA/TM—2002-211497, 2002. http://gltrs.grc.nasa.gov/cgi-bin/GLTRS/browse.pl?2002/TM-2002-211497.html
- 42. Miyoshi, Kazuhisa: Surface Analysis and Tools. NASA/TM—2002-211815, 2002. http://gltrs.grc.nasa.gov/cgi-bin/GLTRS/browse.pl?2002/TM-2002-211815.html

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of in gathering and maintaining the data needed, ar collection of information, including suggestions Davis Highway, Suite 1204, Arlington, VA 222	formation is estimated to average 1 hour per re nd completing and reviewing the collection of in for reducing this burden, to Washington Head 202-4302, and to the Office of Management and	formation. Send comments regardin formation. Send comments regardin quarters Services, Directorate for Inf d Budget, Paperwork Reduction Proj	wing instructions, searching existing data sources, ing this burden estimate or any other aspect of this ormation Operations and Reports, 1215 Jefferson ect (0704-0188), Washington, DC 20503.					
1. AGENCY USE ONLY (Leave blank)								
	hnical Memorandum							
4. ITLE AND SOBITLE Solid Lubricants and Coatin Survey	ngs for Extreme Environments: S	State-of-the-Art	. FUNDING NUMBERS					
6. AUTHOR(S)			WBS 106920.01.03.06					
Kazuhisa Miyoshi								
7. PERFORMING ORGANIZATION N	AME(S) AND ADDRESS(ES)	8	. PERFORMING ORGANIZATION REPORT NUMBER					
National Aeronautics and S John H. Glenn Research Ce Cleveland, Ohio 44135–3	pace Administration enter at Lewis Field 191		E-15212					
9. SPONSORING/MONITORING AGE	ENCY NAME(S) AND ADDRESS(ES)	1	0. SPONSORING/MONITORING					
	A 1		AGENCY REPORT NUMBER					
Washington, DC 20546–0	pace Administration 001		NASA TM - 2007-214668					
	Responsible person, Razanisa Miyosin, organization code RAT, 210 455 0750.							
12a. DISTRIBUTION/AVAILABILITY	26. DISTRIBUTION CODE							
Unclassified - Unlimited Subject Category: 27								
Available electronically at http://	//gltrs.grc.nasa.gov							
This publication is available from	m the NASA Center for AeroSpace Inf	formation, 301–621–0390.						
13. ABSTRACT (Maximum 200 words) An investigation was conducted to survey anticipated requirements for solid lubricants in lunar and Martian environments, as well as the effects of these environments on lubricants and their performance and durability. The success of habitats and vehicles on the Moon and Mars, and ultimately, of the human exploration of and permanent human presence on the Moon and Mars, are critically dependent on the correct and reliable operation of many moving mechanical assemblies and tribological components. The coefficient of friction and lifetime of any lubricant generally vary with the environment, and lubricants have very different characteristics under different conditions. It is essential, therefore, to select the right lubrication technique and lubricant for each mechanical and tribological application. Several environmental factors are hazardous to performance integrity on the Moon and Mars. Potential threats common to both the Moon and Mars are low ambient temperatures, wide daily temperature swings (thermal cycling), solar flux, cosmic radiation, and large quantities of dust. The surface of Mars has the additional challenges of dust storms, winds, and a carbon dioxide atmosphere. Solid lubricants must perform well in the extreme environments of the Moon, Mars, and space, as well as on Earth, where they will be assembled and tested. No solid lubricants and coatings and their systems currently exist or have been validated that meet these requirements, so new solid lubricants must be designed and validated for these applications.								
	-							
14. SUBJECI IEKMS	15. NUMBER OF PAGES							
Lubricants; Solid lubricants	16. PRICE CODE							
17. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICAT OF ABSTRACT	ION 20. LIMITATION OF ABSTRACT					
Unclassified	Unclassified	Unclassified						
NSN 7540-01-280-5500			Standard Form 298 (Rev. 2-89)					