

the Improved Pressure Vessels for Deep **Could Nano-Structured Materials Enable Atmospheric Probes?**

NAGNT

²University of Texas, Pan American, Summer Visiting Fellow at NACNT D. Srivastava¹, A. Fuentes², B. Bienstock³, and J. O. Arnold¹ ¹NASA Ames Center for Nanotechnology (NACNT)/UARC ³The Boeing Corporation, El Segundo Office, CA

2nd International Planetary Probe Workshop, Aug 23-27, 2004,

High Temperature/Pressure in Key X-Environments

Jupiter and Neptune Thermal Structure

Pressure - Temperature Atmospheric ProfilesProvided² by Rich Young, NASA Ames Research Center

Artists Concept of Pioneer-Venus Small "Day" Probe on Venus' Surface. T= 740 K, P=96 bars Sealed Vessel with Xenon at 102 Kpa (15 psia). Operated³ for 68 minutes on Venus' surface - December, 1978

The Case for Use of Nano-Structured Materials **Pressure Vessel Design**

- Pressure vessel structure is a mass driver for probe
- Reduction in structure mass can be used for science

	Pressure	Total*	Pressure Vessel
Probe	Vessel	Probe	Structure Mass
	Mass (kg)	Mass (kg)	Fraction (%)
Pioneer Venus	67	102	CC
Large Probe	70	641	22
Pioneer Venus	Ç		
Small Probe	0	0	00

* Excludes deceleration module mass

Carbon based Nanomaterials

http://cnst.rice.edu/images/allotropes.jpg

Nanotube production & purification

Micrographs illustrating purification of multiwalled nanotube sample

MWNTSD = 2.5 - 30 nm

Ebbesen et al., Nature 367, 519 (1994)

Elastic properties: $E = \sim 1.2$ TPa

$$(E = k/a)$$

- Plastic/Fracture properties: compression & tension yield strain $\ge 15 - 20\%$ (?)
- Strain rate?
- Defects?
- Mechanisms?
- Applications?
- Superstrong Material: $\sigma_V = 750 1000$ GPa!
- Diamond (50 GPa), WC (6 GPa), Steel (0.5-2 GPa) T

CNT-composites: Example (Polymer)

SEM images of epoxy-CNT composite

(L.S.Schadler et.al., Appl. Phys. Lett. V73 P3842, 1998)

SEM images of polymer (polyvinylacohol) ribbon contained CNT fibers & knotted CNT fibers

(B. Vigolo et.al., Science, V290 P1331, 2000)

Effect of Loading sequence on Composite with 8% by volume

Simulations of CNT-Polyethylene Composites

TEM images of alignment of CNTs in a polymer matrix by stretching

D. Srivastava, C. Wei and K. Cho, Appl. Mech. Rev. (2003)

 $(L/D \sim 2, Np=10)$

-Young's modulus of CNT composites 30% higher than polymer matrix

-Stretching treatments enhance Y by 50%

Models for Particulate Reinforced Composites

Mittal et.al., NASA Technical Report, 1996

Micromechanics Models for for Particulate Reinforced Composites

$$\rho_{pc} = V_f \rho_f + (1 - V_f) \rho_m$$

$$E_{pc} = \frac{V_f^{0.67} E_m}{1 - V_f^{0.33} (1 - \frac{E_m}{E_f})} \frac{\text{where}}{1 - V_f^{0.33} (1 - \frac{E_m}{E_f})}$$
Eastic Modulus of Composite

$$K_{pc} = \frac{V_f^{0.67} K_m}{1 - V_f^{0.33} (1 - \frac{K_m}{K_f})} + (1 - V_f^{0.67}) K_m$$
 Thermal Conductivity of Composite

Where V_f is volume fraction

Assumption: Ideal Interface – perfect bonding at the interface

NACNT

Halpin-Tsai Equations

$$rac{E}{E_m} = rac{1+\xi\eta V_f}{1-\eta V_f}$$

where
$$\eta = rac{(E_f / E_m) - 1}{(E_f / E_m) + \xi}$$

where
$$\xi$$
 is a measure of fiber reinforcement depends on fiber geometry, packing geometry, and loading conditions at the interface

with $\xi = 2I/d$ for longitudinal modes and = 2 for transverse modes

For limiting cases, the measure of fiber reinforcement could be 0 (series model) or infinity (parallel model).

Critical length for discontinuous composite

 $l_c = \frac{\sigma_f d}{\tau_c}$

- where $\, {\cal T}_{_C} \,$ Is the shear strength of the bond at the interface
- and $\, {\pmb \sigma}_f \,$ is the tensile strength

$$TS_{comp} = TS_f V_f \left(1 - \frac{l_c}{2l} \right) + TS_m \left(1 - V_f \right)$$
 for $l > l_c$

$$TS_{comp} = \left(\frac{l\tau_c}{d}\right)V_f + TS_m(1-V_f)$$
 for $l < l$

C

Ti + SWNT Composites: Thermal/Mechanical

Ti + SWNT Composites: Thermal/Mechanical

Ti + SWNT Composites: Tensile Strength

Ti + SWNT Composites: Tensile Strength

Nano-structured Shell for Pressure Vessels

Nano-enabled Spherical Shell Compressional Loading and Temperature

- 0.35 Fullerene / 0.65 Ti Composite Modulus (+100%) Density (-25%) Th Cond. (-50%)
- 0.35 CNT / 0.65 Ti Composite Modulus (+250%) Density (-25%) Th Cond (L) (x 15-20) Th Cond (L) (x 0.75) Th Cond (T) (x 0.75) Tensile S (X 20 L > Lc) Tensile S (X 40 L < Lc)
- These are upper-limits for stiffness and thermal conductivity estimates: Assumption: micro-mechanical models with mostly perfect interfaces