
Software Risk Identification for Interplanetary Probes

Robert J. Dougherty (1), Periklis E. Papadopoulos. Ph.D.(2)

(1) Lockheed Martin Space Systems, 1111Lockheed Way, Sunnyvale, CA 94089,USA,
Email:robert.j.dougherty@lmco.com
(2) Professor, Mechanical and Aerospace Engineering, San José State University, One Washington Square, San Jose,
CA 95192,USA, Email: ppapado1@email.sjsu.edu

ABSTRACT

The need for a systematic and effective software risk
identification methodology is critical for interplanetary
probes that are using increasingly complex and critical
software. Several probe failures are examined that
suggest more attention and resources need to be
dedicated to identifying software risks. The direct
causes of these failures can often be traced to systemic
problems in all phases of the software engineering
process. These failures have lead to the development
of a practical methodology to identify risks for
interplanetary probes. The proposed methodology is
based upon the tailoring of the Software Engineering
Institute’s (SEI) method of taxonomy-based risk
identification. The use of this methodology will ensure
a more consistent and complete identification of
software risks in these probes.

1. INTRODUCTION

Software is a critical component for command, control,
and communications in interplanetary probes. Many
probe failures and other problems have been traced to
software errors. Future probe software will become
more complex as it is used to perform novel tasks such
as the optimization of landing and exploration sites.
This software will become increasing difficult to
effectively debug and test and will be prone to new
risks.

The first step of the Software Engineering Institute’s
(SEI) risk management process is risk identification
[1]. The purpose of this step is to anticipate risks
before they materialize as actual problems. For
example, an unclear requirement is a risk, but the
incorrect software implementation due to this lack of
clarity is a problem. Uncertainties and issues can be

transformed into a list of risks that specify the cause of
the concern and its potential impact. For a risk to be
useful once it is identified, it must be clear, concise and
informational within a particular context. This context
describes the circumstances, contributing factors and
related background information of the identified risk.

Risks that are not identified are not available during the
risk management process to analyze and mitigate. The
identification of risks is therefore the most important
step in this process. Risks identified late in the
software development process may require additional,
expensive software rework and testing. Risks that are
not identified can have catastrophic consequences.

Certain software risks can be identified by analyzing
and applying lessons learned from previous missions
and by proactively anticipating new risks from
evolving technologies. Historically, risks have often
been identified in a reactive mode - in response to a
failure, change, or problem. These reactive risk
identification methods may detect historical problems,
but will not adequately detect latent risks from new
technologies. The detection of these types of risks in
interplanetary probes is essential to a successful
mission.

2. UNIQUE ASPECTS OF SPACE PROBE
SOFTWARE

Many software risks found in interplanetary probes are
common to all software applications. These risks can
be avoided through a careful and thorough application
of best software engineering practices. However,
certain factors make space, and more specifically
probe, software different from other software.

59

Early space software had few commands placed in
small memories, and the development process was
poorly documented and idiosyncratic. Software size
and complexity has greatly increased since then.

Interplanetary probes now contain and are a part of
complex systems that have embedded computers that
must interact with sensors, ground systems, and other
on-board computers. The interactions and coupling of
the software systems have critical time-dependent
processes. Probe software is also becoming more
autonomous and can compensate for mission impacting
problems and limitations through self-diagnosis error
detection and correction routines.

These new capabilities are increasing the probe's
software complexity, making it impossible for a single
person to understand all the software components and
their interactions. Many of the interactions among the
software systems and onboard hardware are essential to
mission success. An error in any one of a number of
flight parameter values, lines of code, or software
interfaces could translate into a total mission loss.

Interplanetary probe software is only used once
operationally. Since no two missions are exactly the
same, field data from longer-term usage of the software
is unavailable to help identify risks. Therefore,
complete and accurate models, simulations and testing
are important for a successful mission.

The software factors previously noted are common to
all space software. The software unique to probes is
the entry, descent and landing software that controls
the most perilous phases of the mission. This software,
for example, may need to make important autonomous
realtime decisions to select a landing site that could
include altitude ranges, surface slopes, number and size
of rocks, temperature, and winds. The software will
need to balance scientific objectives with safety
objectives to optimize the site location.

3. MISSED OPPORTUNITIES

Risk identification processes are often believed to be
adequate until a problem occurs. Accident
investigations have shown that the reasons for many
software problems are systemic issues that fall outside
of the traditional risk identification processes [2]. The

root causes of many space accidents are surprisingly
simple and seemingly avoidable.

The first U.S. interplanetary mission was Mariner 1in
1962. This was intended to be the first planetary flyby
and was destined for Venus. However, the spacecraft
was destroyed shortly after liftoff after it had gone off-
course. The Post Flight Review Board later attributed
the error to an omission of a hyphen in the code, which
allowed incorrect guidance signals. It is interesting to
note that the Soviet Union attempted four planetary
missions prior to Mariner 1, which were all failures [3].
Both of these early space programs had more failures
than successes.

The following three missions illustrate missed
opportunities to find critical problems prior to launch.
Although not discussed here, secondary and less
probable causes of accidents also need to be
understood and their lessons applied to future missions.
These lessons should become part of the feedback loop
to the risk management process to inform the space
community of new risks. Of course, populating a risk
database following an accident is not the preferable
method of identifying risks.

3.1 Mars Climate Orbiter (MCO)

The Mars Climate Orbiter (MCO) was lost in 1998
when it entered the thin Martian atmosphere at a lower
elevation than expected during an aerobraking
sequence. According to the investigation board, the
root cause of this accident was the failure to use metric
units for the thruster performance data as described in
the software interface specification. This resulted in a
navigation error that placed the spacecraft at about a 57
km periapsis, instead of the intended 140-150 km. This
altitude was too low for the spacecraft to survive [4].

3.2 The Mars Polar Lander (MPL)

This probe was launched in 1999 and failed in the
entry, deployment, and landing (EDL) sequence on
Mars. The legs of the probe had Hall Effect sensors
that were programmed to shut down the descent
engines within 50 milliseconds after touchdown on the
planet. It was determined that the most probable cause
of the accident was that the software interpreted the leg
deployments as a touchdown, shutting off the engines.
The vehicle then likely dropped about 40 meters and
was destroyed. Although the Hall effect is well

60

understood, the software requirements were not flowed
down properly to the software engineers.[5].

3.3 Solar Heliospheric Observatory (SOHO)

SOHO was launched in 1998 to study the solar
atmosphere, corona and wind. Although not an
interplanetary probe, it is relevant as another example
of the risks common to all space software. Two
months after completing a successful two-year primary
mission in 1998, contact with SOHO was lost. The
NASA/ESA Investigation Board concluded that there
were no anomalies on-board the vehicle, but instead the
problems had been caused by a number of ground
errors that led to a significant loss of spacecraft
attitude. The loss was caused by operational errors, the
failure to adequately monitor the vehicle's status, and a
decision to disable part of the on-board autonomous
failure detection system. These multiple, avoidable
factors created the circumstances that directly caused
the errors [6].

.

4 ROOT AND AUXILIARY CAUSES

Many software failures are the result of the systemic
factors listed below. Systemic factors look beyond the
particular technical causes for an accident and describe
or identify the underlying reason or root cause for the
problem. Although the risks associated with some of
these factors are difficult to quantify, they can still be
incorporated into a risk management plan to help
ensure that a similar problem is not repeated. Various
systemic software risk factors have been listed in the
past [2, 7]. These factors have been divided into
technical and non-technical categories. The non-
technical category includes communication,
management and organizational factors. The technical
category includes causes related to software
engineering.

4.1 Non-Technical Factors

4.1.1 Complacency

One factor that results in increased risk is the
complacency due to past successes and the feeling that
risk decreases over time because the software has
become more "mature." This complacency can cause
safety requirements to be relaxed and increased risks to
be inadvertently accepted. One example is the risk
resulting from a reduction in the monitoring of the

software development and testing process. Typically
reductions in safety, quality assurance, operations and
training can lead to such failures. Warning signs often
occur before accidents, but are often unreported or not
acted upon. The failed MCO, MPL and SOHO
missions were all affected by this culture of
complacency.

4.1.2 The Diffusion of Responsibility

A diffusion of responsibility may result in an
incomplete coverage of issues by an organization. A
program is best served by leadership that demonstrates
a broad understanding of all systems and interfaces,
and by qualified individuals that take responsibility for
each system, subsystem and interface. Reviews and
technical discussions should have representatives from
all affected disciplines. Software engineers need to
interact with other disciplines to understand the source
of their software requirements and to identify gaps that
may not have been properly communicated to them.
However, under principles of good management, only
one individual can ultimately be responsible for each
and every decision and that individual needs to feel
accountable for his or her decisions.

4.1.3 Information Transfer

A clear communication path is needed to transfer
important information among project team members.
However, a filter is also needed to avoid information
overload. Excessive information can confuse or bury
more important information. This problem has been
exacerbated by email and inexpensive data storage.
The transfer of critical information should be handled
in a formalized manner to ensure that the message is
clear, that the impact and significance is understood by
the recipient, and that the issue is properly managed.
The use of voice mail and email may provide an
illusion that a problem is being actively managed, but
the casual nature and volatility of both these
communication methods may interfere with an
effective communication process.

4.1.4 Employee Turnover

The loss of key technical and management personnel
contributes to risk as project continuity is lost and the
experience base shrinks. This problem has become
worse as new programs replace legacy programs, the
aging aerospace workforce moves toward retirement,
cost cutting measures reduce the number of employees
on a program, and aerospace employees are lost to

61

higher-paying non-industry companies and projects. It
is an enormous challenge in the industry to find key
individuals with the right experience and training for
the new positions created by these trends.

4.1.5 Legacy Software, Reuse and COTS

The use of Commercial off-the-shelf (COTS), reused,
or legacy software is generally believed to reduce risk
and the cost of software development because of its
previous usage and testing. However, a hidden risk can
be that the internal architecture and code in the
software is not an exact match for the new probe
application. For example, the software may have been
developed for a different environment and worked
correctly with the original, but not current, set of
requirements. The behavior of such software may not
be linear or stable in the new environment. COTS or
third party software is especially a concern because the
source code may be proprietary. The developer may
not have access or understand the internals of the
software except from limited vendor information.
Software engineers must understand the assumptions
and limitations of any COTS or legacy code before
adoption. An independent verification and validation
(IV&V) program is especially important to reduce risk
for this type of software.

4.1.6 Requirements Creep and Unneeded Code

Requirements creep occurs when features are added to
the software that are not true requirements. Instead of
converting these features to actual requirements, or
removing them, the inadequately documented features
are left in the software. Often requirements from a
previous mission are retained under the assumption that
removing the unnecessary software code would create
a higher risk than leaving the code unchanged.
However, this unneeded code increases complexity
during development and increases the possibility of
untested states.

4.2 Technical Factors

4.2.1 Inadequate Engineering

Software activities are sometimes inadequate due to a
lack of resources or critical processes that are flawed.
One such problematic process is the incorrect flow-
down of system requirements. A variety of other
inadequacies and engineering problems include:
interfaces that are defined after the software coding has

already begun, programmers who do not have the
systems experience or science background to
understand the problem they are solving, inconsistent
or incomplete error handling, and testing that does not
cover all of the possible exceptions. The example of
the MPL failure discussed earlier illustrates inadequate
engineering; i.e. there was no reasonableness check for
the altitude when the descent engines were turned off.

4.2.2 Inadequate Reviews

Every review needs to have a clear goal and outcome.
The responsibilities of all review participants should be
clearly understood. Quality Assurance (QA), for
example, should not approve documents or processes
by merely checking signatures without understanding
the real quality of the documents. QA also needs to
ensure that peer reviews take place and that a “second
set of eyes” reviews processes, coding, and parameters
at appropriate points in the development process. It is
often the case that a second review by a qualified
person will be sufficient to greatly increase quality.
However, by itself, QA cannot ensure that all critical
software values, analyses and processes are correct.
An independent verification and validation (IV&V)
organization is necessary to double-check all software
engineering work performed. A contributory factor to
the failure of the SOHO mission was that important
reviews were bypassed because of tight schedules and
compressed timelines.

4.2.3 Inadequate Specifications

Many software-related problems are caused by flawed
requirements and their flow-down, rather than by
actual coding problems. Requirements are sometimes
incomplete or unclear, assumptions may be incorrect or
unstated, and system-states may not be understood and
controlled. Good specifications that follow an
effective process and have traceable requirements are
important to minimize risks. The MPL accident report
suggested that the software engineers on the project
would have prevented the accident if they had
understood the rationale behind the design.

4.2.4 Inadequate Education

Software engineers are rarely taught safe design
principles, such as eliminating unused functionality,
designing appropriate error detection and correction,
and conducting reasonability checks. In a complex
system such as interplanetary space probes, small
errors can have catastrophic consequences. Education

62

should be on-going so that software engineers continue
to remain current on important advances in their
discipline. A typical undergraduate education does not
typically provide the level of skills needed for
architecting software for complex space systems.

4.2.5 Inadequate Testing

Although the space industry attempts to “test like you
fly, fly like you test,” in reality, simulations and test
environments have limitations and may not be able to
meet that goal. The understanding of these limitations
and testing assumptions are important to reduce risks.
Testing is only as good as the test plan, test equipment,
and the test cases chosen. In addition, testing may not
catch every problem, especially when COTS or legacy
software is being used. The internals of the software
need to be well understood so that assumptions are
known and appropriate test cases can be chosen.
Software is too complex for test cases to be
comprehensive, and instead need to include
representative non-nominal and stressed conditions.
Inadequate testing could be considered a contributing
factor in almost every probe accident.

4.2.6 Inability to Understand Software Risks

Some engineers do not realize the complexity of the
software and believe testing will reveal any latent
problems. The software may be assumed to be correct
unless testing shows otherwise. Practical testing,
however, is limited to a subset of possible states. This
inability to understand software risks also allows the
inclusion of unnecessary software functionality. The
over-reliance on testing to uncover problems and
unused functionality increases risk. The removal or
modification of software fault protection for reasons
like performance also increases risk and have led to
mission failures.

4.2.7 Use of Hardware Techniques for Software

Software is pure design, and its failure modes are
different then physical devices. Software doesn't have
safety margins like hardware - a single bit flip may
cause a mission loss in a poorly designed system. Most
software problems are flaws in the requirements
specification and not in coding errors. Failure modes
are often not clearly defined for software. A statement
like, “Flight software doesn’t execute properly” is too
vague to be useful in identifying risks. Redundancy in
software is no help in mitigating these risks if the
problem is in the hardware. In fact, such software

redundancy may give a false sense of security if the
solution is merely duplicating a design error, and the
additional complexity may actually increase the risk.

5.0 ANTICIPATING FUTURE RISKS

Lessons learned and accident reports are useful in
understanding and avoiding past errors, but latent
software risks are always a concern. Increased
software complexity and new technologies increase
these risks. A compilation of potential risks of new
software technologies used in a probe can be used to
address and mitigate these risks. New modeling and
analysis tools also will be needed as these technologies
are introduced in the future.

6.0 THE MODIFIED TAXONOMY-BASED
RISK IDENTIFICATION METHODOLOGY

There are several commercial and government software
tools that are advertised to help identify risks - none of
them do so effectively. They instead allow risks
already identified to be classified according to areas
like severity and probability as part of an overall risk
management process.

6.1 Risk Identification Methods

There are many ways to identify risks - all of them can
be useful, but each is limited in the number and types
of risks that they can effectively identify. Here are six
approaches to identify risks:

1. Identification Based on Experience – The
engineers, scientists and others who have the
most experience and understand the details of
the probe are the best suited to identify its
risks. A process can be developed to allow
these experts to report risks.

2. Identification Based on Historical Data –
After each mission, the data is analyzed by the
various subsystems and risks are identified
either directly or by analogy. Applicable risks
are identified and tracked for each mission.
NASA, for example, maintains a Lessons
Learned/Best Practices database that may be
useful in identifying risks. Data from as many
sources as possible should be compiled for a
comprehensive list of possible risks.

3. Brainstorming – All stakeholders may add
value to the risk identification process. The

63

synergy of a diverse group may help expose a
new risk.

4. Voluntary Risk Reporting – A method of
reporting risks, anonymously if desired,
should be in place. Potential risks that are
submitted are analyzed for applicable
missions. This provides an avenue for risks to
be identified that may be politically unpopular
or without another outlet to be raised.

5. Reviews – Requirements, code and other
reviews and working groups are common
methods of identifying risks.

6. Testing – Testing can expose flaws in both
processes and assumptions and is a primary
method of risk identification, although it is
preferable for risks to be exposed earlier in the
software development cycle.

6.2 The SEI Taxonomy-Based Risk Identification
Method

A systematic method to ask the right risk-related
questions is needed that can be tailored for a particular
interplanetary probe. A process needs to be in place
that goes beyond assigning blame, and instead
concentrates on helping understand the sources of
risks. One method is based on the Software
Engineering Institute's (SEI) Taxonomy-Based Risk
Identification method (SEI/CMU Technical Report
CMU/SEI-93-TR-6 ESC-TR-93-183).

The SEI Taxonomy-Based Risk Identification method
is a process to identify risks associated with the
development of a software-dependent project in a
systematic and repeatable way. It has been tested in
both government and civilian projects and shown to be
useful, usable, and efficient. In general, the method
consists of a series of questions that helps surface risks
by using an interviewing process with subsets of the
project team.

Some engineers and scientists may express resistance
to this method because many of the questions are open-
ended and some risks cannot be easily quantified.
Technical people prefer to have a method that can
assign a numerical value to the severity and probability
of risks, but the quantification of some of the identified
risks may be misleading. For example, bringing a new
technical lead into a project certainly introduces risk,
but it is difficult to place a numerical value on a

person's education and experience as compared to the
previous technical lead - to do so would be
meaningless. However systems have been proposed
that quantify every risk in such a way. A list of
questions similar to the SEI risk identification
taxonomy process, for example, has been proposed by
Karolak [8]. He quantifies each risk identification
question with a number between 0 (none) and 1 (all).

The Taxonomy-Based Risk Identification method
consists of 194 questions divided into three main
divisions (Product Engineering, Program Engineering,
and Program Constraints) and 13 further sub-divisions.
The sub-divisions are listed below with a sample
question from each one to illustrate the type and level
of sample questions. The numbers in brackets before
the sample questions are the numbers assigned by SEI.

A. Product Engineering
1. Requirements - [6] Are the external interfaces
completely defined?

2. Design - [16] How do you determine the feasibility
of algorithms and designs?

3. Code and Unit Test - [42] Is the development
computer the same as the target computer?

4. Integration and Test - [51] Are the external
interfaces defined, documented, and baselined?

5. Engineering Specialties - [66] Are safety
requirements allocated to the software?

B. Development Environment

1. Development Process - [85] Is there a requirements
traceability mechanism that tracks requirements from
the source specification through test cases?

2. Development System - [94] Does the development
system support all aspects of the program?

3. Management Process - [106] Are there contingency
plans for known risks?

4. Management Methods - [126] Does program
management involve appropriate program members in
meetings with the customer? (including Technical
Leaders, Developers, Analysts)

5. Work Environment - [139.b] Are members of the
program able to raise risks without having a solution in
hand?

C. Program Constraints

1. Resources - [147] Are there any areas in which the

64

required technical skills are lacking?

2. Contract - [165] Are there dependencies on external
products or services that may affect the product?

3. Program Interfaces - [175] Are the external
interfaces changing without adequate notification,
coordination, or formal change procedures?

6.3 Questionnaire Creation Process

Specific software risks are often known by project
personnel but are not always communicated. Effective
risk identification requires a process and culture of
open communication to encourage all stakeholders to
use their knowledge of the project to help with its
success. The basic risk identification methodology for
a particular probe should be tailored from the generic
SEI Risk Taxonomy Method questionnaire to include
risks peculiar to that probe.

The tailoring of the generic SEI software questionnaire
should follow a systematic process to create a probe-
specific questionnaire:

1. Review each generic risk taxonomy question
and tailor it to the particular space probe
domain.

2. Review the literature for other potential risks
from new technologies used in the probe.
Add or tailor the generic risk taxonomy
questions for these additional risks.

3. Review the literature on lessons learned from
other similar missions. Add or tailor the
generic risk taxonomy questions for these
additional risks. Note that these lessons
learned do not need to be from similar probes
or even from aerospace risks, but may include
any software lesson that can be applied to the
particular probe.

4. Have the Probe's Software Team and other
experts review the list for further
modifications.

These steps will result in a baseline risk questionnaire,
which can be modified on an on-going basis as risks
are identified from reviews and other sources. This
dynamic baseline can also be modified and used as a
starting point for other similar missions.

7.0 P ROCESS FOR A P P L Y I N G T H E

METHODOLOGY

The reviewers must prepare before the interviews are
conducted. If possible, they should understand the
processes that are being used by the organization and
initially assess whether the processes are complete,
accurate, and being followed. This will help facilitate
the interview process.

The following steps describe a process to apply the
proposed methodology after the modified baseline
questions have been completed:

1. Set up Interview Groups

Interview groups should be determined and sorted by
functional area or subsystem. For example, the
interview groups might be divided into command and
control software, mission data software, sequencing
software, guidance and navigation software, flight
parameters, scientific experiment, testing, and IV&V.
There is no single approach or perfect grouping, but it
may prove more efficient to keep personnel together
that work on similar tasks.

Ideally, there would be no reporting relationships in a
particular interview group. Management commitment
is needed for the interview process, but management
should not be present so the interviewees feel they can
speak freely. If possible, groups would be limited to 5
participants [1], although this may be difficult to ensure
in practice.

2. Divide the Questions

Certain questions are more appropriate for some groups
than others. The questions for each interview group
should be a subset of the total risk identification
questions. A list of questions tailored to each group
should be provided to the group members before the
interviews.

3. Conduct the Interviews

The risk identification session begins with briefing the
participants with the methodology and its purpose.
During the interview, the tailored questions can lead to

65

other issues, concerns and risks. Items of risk noted
during the interviews are used to update the risk
database for the mission and the questionnaire template
for the mission. For practical reasons, the interviews
should not normally last more than 2 hours.

4. Provide Feedback

A summary of the potential issues is provided back to
the participants at the end of the interview, and a hard
copy is subsequently provided to the project manager .

5. Repeat Process

Depending on the size and complexity of the project,
this process may need to be repeated several times to
different groups during the software development life
cycle. If the methodology is only performed once near
the beginning of the project, many risks will still be
unknown, but if it is only performed near the end of the
project, then the risks may be expensive and difficult to
correct.

8.0 TESTING THE METHODOLOGY

The best test of the usefulness of a method is whether it
actually works. The lessons learned from the failed
missions in Section 3 were used to tailor some of the
baseline questions to test the methodology. Obviously
these examples are somewhat contrived since the
problems have already occurred, but they are still
useful to illustrate how the process works and ensures
that these type of systemic problems are addressed and
are less likely to re-occur on future missions.

Risk 1: Complacency because of past mission
successes

Question: Do you feel that your past successes have
reduced your risk of failure?

Risk 2: The constants definition process not well
defined

Question: Are there formal, controlled plans for all
development activities? Are developers familiar with
the plans?

Risk 3: There was a lack of anyone in charge of the
entire process

Question: Is there a qualified person responsible for
every process and the overall processes?

Risk 4: No communication channel for relaying the
problem when discovered

Question: Are the realtime interfaces among the
different organizations sufficient for status and
anomaly resolution?

Risk 5: No formal anomaly reporting and tracking
system

Is there a formal anomaly reporting and tracking
system for all phases of the development and
deployment process?

9.0 CONCLUSION

Early software risk identification is important for the
success of interplanetary probes. Potential risks must
be considered not only from other probe missions, but
also from other sources within the aerospace industry
as well as from other industries. There are currently no
commercial or government products that are
completely adequate for probe software risk
identification. Most available risk management
applications only provide a shell for previously
identified risks.

The SEI risk identification method can be used as a
starting point to create a tailored true risk identification
methodology for interplanetary space probes. The
general software risk questions are tailored through a
series of steps that ultimately provides a mission with a
unique questionnaire for risk identification. A process
to apply the methodology transforms it from a
theoretical suggestion to a practical process for
identifying risks for a particular probe. The software
lessons learned from other missions are incorporated
into the questions to ensure the past problems are not
repeated.

This proposed methodology could replace ad-hoc,
undocumented, incomplete or reactive methods that are
typically used. This methodology will enable a more
consistent identification of risks in interplanetary probe
software systems with an ultimate goal of more
successful missions.

66

10. REFERENCES

[1] Carr, Marvin J., et al. Taxonomy-Based Risk
Identification, Carnegie Mellon University, Pittsburgh,
Pennsylvania, 1993.

[2] Leveson, Nancy G., Systemic Factors in Software-
Related Spacecraft Accidents, American Institute of
Aeronautics and Astronautics, 2001.

[3] Williams, David, Planetary Sciences at the
National Space Science Data Center, 19 May 2004,
NASA Goddard Space Flight Center, 17 August 2004,
<http://nssdc.gsfc.nasa.gov/planetary/chronology.html
>.

[4] Stephenson, Arthur G., Mars Climate Orbiter:
Mishap Investigation Board Phase I Report, NASA,
November 10, 1999.

[5] JPL Special Review Report, Report on the Loss of
the Mars Polar Lander and Deep Space 2 Missions, Jet
Propulsion Laboratory, March 22, 2000.

[6] Joint NASA/ESA Investigation Board, SOHO
Mission Interruption, NASA/ESA, 31 August 1998.

[7] Leveson, Nancy G., The Role of Software in
Spacecraft Accidents, American Institute of
Aeronautics and Astronautics, 2001.

[8] Karolak, Dale W, Software Engineering Risk
Management, IEEE Computer Society Press, Los
Alamitos, California, 1996.

67

