First Impressions of CARTOSAT-1

James Lutes

Presentation Overview

- CARTOSAT-1 Platform Description
- Available Data Products
- Evaluation Procedure Overview
- Evaluation Results

CARTOSAT-1 Payload Overview

Launch Date: May 05, 2005

	Camera				
	Fore (+26 deg)	Aft (-5 deg)			
Spatial Resolution	2.5 m CT 2 8 m AT	2.2 m CT 2 2 m AT			
Spectral Sensitivity	500 – 850 nm	500 – 850 nm			
Quantization	10 bits	10 bits			
Swath Width	29 km	26 km			
Num detectors	12000	12000			
Detector size	7×7 μm	7×7 μm			
Focal length	1945 mm	1945 mm			
Camera FOV	2.4 deg	2.4 deg			
Integration time	0.336 ms	0.336 ms			

CARTOSAT-1 Orbit Characteristics

Nominal Altitude	618 km
Orbits / day	14
Orbit Repetition	126 days
Revisit Time	5 days
Equatorial Crossing	10:30 AM local time
Orbital Eccentricity	0.001
Orbital Inclination	97.87°

CARTOSAT-1 Misc. Notes

- Stereo B/H ratio: ~0.6
- Time between forward & aft collection: ~53 seconds
- Yaw steering needed to achieve stereo coverage
- Can also collect in 'mono' mode with 55 km swath using yaw steering
- 5 day revisit times achieved using cross-track tilt

CARTOSAT-1 Data Products

- Radiometrically corrected (mono or stereo)
 - LGSOWG format with radiometric corrections only
- Orthokit products (mono or stereo)
 - GeoTIFF + RPC
- Georeferenced (map-projected) products
 - LGSOWG, GeoTIFF, Fast Format

Source Data for Evaluation

Typical stereo coverage

- Six Orthokit (GeoTIFF + RPC) stereo pairs used
- All mostly flat, with some rolling hills
- Collected from June through
 November 2005

8

Image Quality

- Generally: good for DEM extraction
- BANDF noticeably softer than BANDA (not just because of resolution difference)
- No streaking/banding, no problems with saturation

Image Quality: Typical Suburban

View1 : BANDA / BANDF

- IO 🛛

BANDA / BANDF Differences

View1 : BANDA / BANDF

4× ▼ Solit ▼ Full Roam ▼ Both ▼ 🗊 🔅 🔯 🔍 🔍 🗂 🗖 🖉 ≼ 🛠 😐 🚺 🕫 🖨 🗇 🗘 🗘

RPC Quality Checks

- RPC files are encrypted!
 - Software vendors are making arrangements with Antrix to license decryption algorithm
- RPC files appear to be based on product datum (not always WGS84)
 - Solution: re-fit RPCs to WGS84 lon, lat, height grid
- LONG_OFF values <u>not</u> normalized to [-180,180]
 - Problem for SOCET SET 5.1
 - Can be fixed by editing RPC.txt file

RPC Quality Checks cont'd

- RPCs may have large quadratic + cubic terms
 - Numerically OK, but doesn't reflect imaging geometry
- Some RPCs contain zero crossings in denominator

$$Line = \frac{N_L(\lambda, \phi, h)}{D_L(\lambda, \phi, h)} \cdot S_L + O_L \qquad Sample = \frac{N_S(\lambda, \phi, h)}{D_S(\lambda, \phi, h)} \cdot S_S + O_S$$

- Causes numerical instability (divide by zero error) in region of the zero crossing
- Solution: re-fit RPCs to avoid zero crossings
- Re-fitting required anyway for conversion to WGS84

Accuracy Evaluation Strategy

- Convert RPCs to usable format
- Check relative accuracy of stereo pair
- Build reference block of IKONOS stereo or overlapping mono with good convergence
- Measure dense grid of tiepoints
- Block adjust CARTOSAT to IKONOS
 - IKONOS scenes held fixed in adjustment
 - Different adjustment strategies used for CARTOSAT

Accuracy Evaluation Strategy cont'd

- Determine tiepoint ground space locations using IKONOS only
- For each CARTOSAT adjustment strategy:
 - Determine tiepoint ground space locations using CARTOSAT-1 only
 - Compute statistics & examine trends in positional differences

GeoEye

Relative Accuracy Assessment

- Significant Y-parallax encountered
 - 5 to 58 pixels
- Scenes not tied together prior to product generation

Relative Correction (Offset Only)

- Noticeable scale difference between BANDA + BANDF (+/- 1.5 pixel)
- Small attitude wobble visible in sample error vs. line

Relative Correction (Offset + Scale)

- Relative scale difference between BANDA + BANDF has been removed
- Corrected scenes can be viewed in stereo with no y-parallax

Absolute Accuracy Assessment

- Three scenarios presented:
 - Relative adjustment but otherwise uncontrolled
 - Relative adjustment followed by offset-only adjustment to IKONOS block
 - Full 6-parameter adjustment to IKONOS block

Uncontrolled Accuracy Checks

- CARTOSAT-IKONOS, IKONOS-IKONOS and CARTOSAT-CARTOSAT tiepoints measured
 - Number of tiepoints obtained varied from 4500 to 31500 depending on scene content
- IKONOS-only block created
 - Scenes held fixed, ground coords of tiepoints computed
 - CARTOSAT data not included at this step

Uncontrolled Accuracy Checks cont'd

- CARTOSAT-only block created
 - Adjustment terms from relative adjustment applied
 - Scenes held fixed with these adjustment terms, ground coords of tiepoints computed
- Ground coordinates compared between blocks
 - Only tiepoints observed in at least 4 images are common to the 2 blocks!
 - Only points with good IKONOS stereo geometry were utilized (check std. dev. of estimated height)

Typical Block Layout

- As much IKONOS stereo as possible
- Rest of block: IKONOS mono with good convergence angles
- ~10 IKONOS scenes per block

BeoEye

Uncontrolled Scenes Longitude Errors

- Bias and cross-track scale error present
- Slight drift with latitude (i.e., time)

Uncontrolled Scenes Latitude Errors

 Slight trend in latitude vs. height caused by overall height bias

ieoEye

Uncontrolled Scenes Height Errors

- Large vertical biases observed
- Cross-track tilt in height

Uncontrolled Accuracy - Summary

Scene	Avg. dLon [m]	Avg. dLat [m]	Avg. dHt [m]	Std. dLon [m]	Std. dLat [m]	Std. dHt [m]	CE90 Hz [m]	LE90 V [m]
J	156.7	360.7	15.7	3.7	1.8	8.2	393.3	20.7
D	79.7	111.0	-116.0	3.2	1.3	4.7	136.8	116.2
R	10.2	114.6	-50.6	3.7	1.4	5.4	115.2	51.4
Α	-66.6	61.3	-139.7	3.2	1.8	4.5	90.7	139.9
Р	-206.1	268.9	-168.8	3.2	2.4	4.3	338.8	168.9
С	-66.9	353.9	-98.9	1.6	1.5	6.4	360.2	99.5

- Large positional biases
- Cross-track scale bias

- Possible yaw errors + drift error
- High-frequency errors
 relatively small

Relative adjustment + offset correction Longitude Errors

- Biases brought to zero mean
- Same general trends

Relative adjustment + offset correction Latitude Errors

Relative adjustment + offset correction Height Errors

1800

Offset Correction - Summary

Scene	Avg. dLon [m]	Avg. dLat [m]	Avg. dHt [m]	Std. dLon [m]	Std. dLat [m]	Std. dHt [m]	CE90 Hz [m]	LE90 V [m]
J	0.49	0.18	-0.88	3.95	1.74	8.26	6.57	13.62
D	0.04	0.19	0.03	2.00	1.49	4.75	3.79	7.82
R	0.84	0.47	0.50	3.39	1.40	5.42	5.65	8.93
Α	-0.01	0.47	2.58	2.34	1.81	4.55	4.51	7.91
Р	0.45	0.05	0.31	2.00	2.45	3.80	4.83	6.26
С	0.60	-0.41	1.49	1.37	1.66	6.32	3.35	10.50

- Biases brought to zero by offset parameters
- Trends still remain

• Representative of areas with little ground control

Affine correction Longitude Errors

eoEye

- All linear trends removed
- High accuracy (w.r.t. ground control) after correction

Affine correction Latitude Errors

GeoEye

1800

Affine correction Height Errors

eoEye[®]

- Note: 'reference' heights come from tiepoints measured in IKONOS scenes
- Results would be better with surveyed ground control

Affine Correction - Summary

Scene	Avg. dLon [m]	Avg. dLat [m]	Avg. dHt [m]	Std. dLon [m]	Std. dLat [m]	Std. dHt [m]	CE90 Hz [m]	LE90 V [m]
J	0.04	-0.01	-0.25	-0.85	1.14	4.92	2.16	8.10
D	0.01	0.14	0.27	0.73	1.24	3.18	2.19	5.24
R	0.30	0.01	-0.45	1.59	1.21	4.27	3.05	7.03
Α	0.07	0.27	0.78	1.10	1.58	3.97	2.93	6.57
Р	-0.14	-0.02	0.01	1.94	1.76	3.19	3.97	5.26
С	0.23	-0.06	1.27	1.34	1.36	6.20	2.91	10.28

- All biases and linear trends removed
- Good horizontal accuracy (~1.5 pixel CE90)
- Vertical accuracy estimate worsened by IKONOS viewing geometry
- Representative of areas with good ground control

Overall accuracy summary

	Uncontrolled		Relative offset	e corr + terms	Affine correction		
Scene	CE90 Hz [m]	LE90 V [m]	CE90 Hz [m]	LE90 V [m]	CE90 Hz [m]	LE90 V [m]	
J	393.3	20.7	6.57	13.62	2.16	8.10	
D	136.8	116.2	3.79	7.82	2.19	5.24	
R	115.2	51.4	5.65	8.93	3.05	7.03	
Α	90.7	139.9	4.51	7.91	2.93	6.57	
Р	338.8	168.9	4.83	6.26	3.97	5.26	
С	360.2	99.5	3.35	10.50	2.91	10.28	
Total	100-400 m CE90		3-7 m CE90		2-4 m CE90		
	20-170	m LE90	6-13	m LE90	5-10 m LE90		

Conclusions

- CARTOSAT-1 RPCs need special handling
- Absolute accuracy of uncontrolled scenes is poor (biases > 300 m)
- Noticeable cross-track scale error
 - +/- 3-4 m across stereo pair
- Most errors are either biases or linear in line/sample
 - These are easy to correct with ground control

Conclusions cont'd

- For low ground control availability, use relative adjustment and offset-only correction:
 - 3-7 m CE90 Horizontal
 - 6-13 m LE90 Vertical
- For better ground control availability (e.g., 6 GCPs), use affine transformation:
 - 2-4 m CE90 Horizontal
 - 5-10 m LE90 Vertical

Riyadh suburb 2005-Jun-16

Est.

