

Radiometric Calibration Assessment of Commercial High Spatial Resolution Multispectral Image Products

Civil Commercial Imagery Evaluation Workshop Laurel, MD March 14-16, 2006 David Aaron: Dept of Physics South Dakota State University David.Aaron@sdstate.edu 605-688-6520

3 Presentations:

- South Dakota State University David Aaron
- University of Arizona
 - Kurt Thome
- SSC: Science Systems and Applications, Inc Kara Holekamp

Reflectance Based Calibration Base Process:

- 1. Identify a target area that has uniform reflectance over a multi-pixel area
- 2. During satellite imaging overpass: ground level reflectance measurement
- 3. Hours preceding and subsequent to overpass: continually monitor select wavelengths for direct and diffuse downwelling solar radiance
- 4. From above: Calculate extinction parameters using Langley analysis
- 5. From extinctions and other atmospheric parameters calculate hyperspectral atmospheric model
- 6. Propagate Top of Canopy radiances thru atmosphere via above model
- 7. Band these Top of Atmosphere hyperspectral radiances
- 8. Use satellite image DN counts of target area to calculate gain

Independent Groups make up the JACIE Radiometric Evaluation Team

- Scheduling: Coordinated through SSC
- Diverse locations and collection seasons
 - Collections represent various times of the year
 - Collections thru different atmospheres
- Diverse target set:

Radiance

'dark' targets (vegetation) 'bright' targets (playa) high contrast (tarps)

Spectral response:

vegetation signatures high reflectance natural surfaces flat response manmade targets

Collection Sites Exhibit Varied Surfaces

Note: typical Band 2 and 4 reflectances shown

rye grass: $\rho_{band2} = 0.07 \ \rho_{band4} = 0.35$ gravel pit: $\rho_{band2} = 0.39 \ \rho_{band4} = 0.57$

1000 g/14

Radiometry Groups (cont)

- Similar (but certainly not identical) equipment sets
 - spectroradiometers (primarily Analytic Spectral Devices Field Spec)
 - Sunphotometers, shadowband radiometers, reference panels, etc
 - some common basis but also considerable variation/replication/modification from group to group
- Data collection: Each group has developed their own protocols
- Data reduction: Each group has developed their own techniques
 - Atmospheric modeling:
 - SDSU & SSC: all MODTRAN based
 - UOA RSG: Combination of custom code and MODTRAN

SDSU Satellite Calibration

Physics Department (Satellite Calibration Group):

David Aaron Larry Leigh Sara Landau

Electrical Engineering and Computer Science (Image Processing Lab):

Dennis Helder Jason Choi Tim Ruggles Jim Dewald (see Dennis' slides for a complete list of graduate and undergraduate engineers)

SDSU Radiometry Goals: 2004-2005

Vegetated target collections IKONOS QuickBird OrbView 3 Landsat 5 Landsat 7 AWiFS (2005) EO1 (2004)

Complete re-establishment of full SDSU processing capability Partial 2004 Full 2005 (2001-2003 atmospheric modeling courtesy of UOA and SSC)

SDSU Vicarious Calibration Process:

- 'Simultaneous' satellite imaging and hyperspectral measurement of upwelling radiance at grass target area ("3M" in Brookings SD).
 - ASD FS FR unit 638 with 8 degree optic
 - 18" Spectralon 99% panel, BRDF characterized
- Monitor atmospheric transmittance over time interval including overpass
 - Primary monitor: 10 Channel ASR unit 30
- Use ASR Langley analysis to determine extinction values
 - Supplement with MFR Shadowband units (global/diffuse measurement)
- Populate MODTRAN using extinctions, angles, etc; optimize thru measured ASD values
 - MODTRAN 4.3.2
- Transfer (hyperspectral) Top of Canopy (TOC) to TOA using MODTRAN model
- Band hyperspectral radiances to produce in-band TOA radiance
- Calculate gain by comparing satellite DN to in-band TOA radiance values

2005 SDSU Calibration Collection Summary: Data collections summary (perceived useful collections only)

<u>2005:</u>

•	May 19:	L5	good +: some cumulus later in day		
•	June 22:	QB + AWIFS	okay, some clouds		
•	July 6:	L5	good – considerable cirrus		
•	July 14:	L7	popcorn clouds but probably okay		
•	July 18:	OV (pan)			
•	**July 29:	OV (MS) OV failed de	ecompression, data not retrievable		
•	Aug 1:	OV (MS) + IK	shot thru considerable popcorn cumulus		
•	Aug 23:	L5	okay but lots of cumulus		
Aug 2	29: Katrina				
•	Aug 31:	L7	good - : cumulus just passed by		
•	Sept 16:	L7	very good pm, okay late am		
•	Oct 7:	OV (pan)	excellent		
•	Oct 18:	QB + L7	good		

Year 2005: Added Goal Process Capability

- Pre 2005 Mode: Data processing is primarily 'post season'
- Agriculture applications require 'real-time' reflectance correction
- Pilot analysis of processing streams:
 - Image acquisition
 - Atmospheric correction
 - Image correction
 - Data archiving
- Pilot study of atmospheric correction
 - May 19 pilot run(L5): Less than 1 week for all steps
 - scattered clouds: still implementing auto filter algorithm

"3M" Site Characteristics

- 180 X 160m 'grass' site (approx)
 - rotated 9 degrees off N-S
 - NW corner:
 - Lat: 44°17'31.12383"N
 - Long: 96°45'59.33636"W
 - Elevation 503 m
 - Elevation change = 4.89 meters

Differential GPS values measured by the Stennis GRIT Staff

- Maintenance mowing
 - 6 ft rotary mower (rough, not finish cut) for easternmost 2/3 of site
 - western 1/3 of site, finish cut

(target area for high resolution MTF collection)

• To accommodate AWiFS, new markers in unmowed area

3M Site Oct 7,2005 (OrbView)

Oct 7, 2005 Initially cloudy but clear at overpass

Ground data collection

ASD FS FR with 2 meter cable

- 8 deg optic on pole held 1.5 to 2 m above ground
 - Nadir view (~25cm diameter sample area)
- Collect while walking ASD along 150 m N-S rows
 - 20 spectra/file, 10 files/save
 - Results in 60 files per row so about 600 files per collection
 - ~ 20 minutes for 10 row collection
- White reference at end of each row pair (north end)

Brookings '3M' Grass Site Shown with targets deployed

Standard ASD Data Acquisition Paths (note: When SSC tarps deployed, Row 2 is skipped)

MTF Tarp collection (SSC 3.5 and 52% tarp sets)

Generally tarps are laid out EW with 3.5% to E Nominal collection:

- Start at N center (White ref) and sample 'in' ~1m from edge.
- Sample tarp edge perimeter CCW

 spectra/file, either 3 or 5 files per save
 saves per 'side' (each tarp set)
 second WR when get to S center
 third WR when return to N center
- Radiance values are BRDF corrected as part of standard analysis

MTF tarp data collection 'walk' paths and file numbers for standard 3 files/save

N

2004 SDSU Calibration Collection Summary:

Data collections summary (useable collections only)

We weren't at all happy in 2004 May thru Aug 20, ~5 'clear' days at noon (and none of these coincided with overpasses)

<u>2004</u>

- June 28: L7 + E01 Scattered clouds used Schiller trapped light model
- Aug 30: QB + OV
- Sept 29: **L7** + EO1
- Oct 5: QB
- Oct 8: OV

2005 SDSU Calibration Collection Summary: Data collections summary (perceived o.k. collections only)

<u>2005:</u>

- May 19: L5
- June 22: QB + AWiFS
- July 6: L5
- July 14: L7
- July 18: OV (pan)
- Aug 1: OV (MS) + IK
- Aug 23: L5
- Aug 31: L7
- Sept 16: L7
- Oct 7: OV (pan)
- Oct 18: QB + L7

good +: some cumulus later in day okay, some clouds good – considerable cirrus popcorn clouds but probably okay

shot thru considerable popcorn cumulus okay but lots of cumulus

good - : cumulus just passed by very good pm, okay late am excellent good

VICARIOUS CALIBRATION RESULTS SDSU 2005

Aug 1, 2005 IKONOS

IKONOS Results:

Only one data collection performed at SDSU 2004-2005

- Aug 1, 2005: Site was 'shot between the clouds' (IKONOS + Orbview)
- Attempted a 'light trapping' model but results to date show too large an uncertainty to be reportable.

Note: Aug 1, 2005 also an OrbView (MS) overpass

QUICKBIRD

VICARIOUS CALIBRATION RESULTS SDSU 2004 AND 2005

June 22, 2005 QuickBird

3M Site: Oct 18, 2005 QuickBird

QuickBird Band Gains: 2004-2005

Basic Radiance(W/m² sr μ m) to DN ratio

3M Grass	Band 1	Band 2	Band 3	Band 4
Aug 30 2004	0.234	0.156	0.174	0.122
Oct 5 2004	0.232	0.146	0.174	0.135
Jun 22 2005	0.236	0.149	0.183	0.123
Oct18 2005	0.227	0.146	0.179	0.130
52% Tarps				
Jun 22 2005	0.256	0.165	0.193	0.141
Oct18 2005	0.263	0.165	0.196	0.143
3.5% tarps				
Jun 22 2005	0.230	0.146	0.174	0.116
Oct18 2005	0.220	0.131	0.150	0.083

average	0.237	0.151	0.178	0.124
standard deviation (1 sigma)	0.015	0.011	0.014	0.019

QuickBird Band 1 Gain: Forced Zero Intercept SDSU 2004-05 data

QuickBird Band 2 Gain: Forced Zero Intercept SDSU 2004-05 data

QuickBird Band 3 Gain: Forced Zero Intercept SDSU 2004-05 data

QuickBird Band 4 Gain: Forced Zero Intercept SDSU 2004-05 data

QuickBird Band Gains SDSU 2004-05 data

VICARIOUS CALIBRATION RESULTS SDSU 2004 AND 2005

Oct 7, 2005 OrbView (pan)

OrbView Band Gains: 2004

Basic Radiance(W/m² sr μ m) to DN ratio

3M Grass	Band 1	Band 2	Band 3	Band 4
Aug 30 2004	0.317	0.304	0.269	0.172
Oct 8 2004	0.310	0.295	0.256	0.183

average	0.314	0.300	0.263	0.177
standard deviation (1 sigma)	0.014	0.014	0.015	0.009

OrbView Band 1Gain: Forced Zero Intercept SDSU 2004 data

OrbView Band 2 Gain: Forced Zero Intercept SDSU 2004 data

OrbView Band 3 Gain: Forced Zero Intercept SDSU 2004 data

OrbView Band 4 Gain: Forced Zero Intercept SDSU 2004 data

OrbView Band Gains: Forced Zero Intercepts SDSU 2004 data

Acknowledgements:

The SDSU team would like to thank:

- NASA NNS04AB66C
- NASA EPSCoR NCC5-588

