Software for automated imageto-image co-registration

Cody A. Benkelman, PI Heidi Hughes, President Spatial Technologies, LLC Cape Canaveral, Florida

Poster presentation created for The Civil Commercial Imagery Evaluation Workshop March 14-16, 2006

Software for automated imageto-image co-registration

This presentation represents an *interim status report*. Our SBIR Phase II project is in its second year, and is scheduled for completion at the end of 2006.

Supported by: NASA SBIR Program Phase I: 2003 Phase II: 2004 – 2006 Contract #NNS05AA07C NASA Stennis Space Center COTR: Bill Graham

Basic Premise

- In spite of excellent quality in state of the art orthorectification software, camera models, and digital elevation models, two orthorectified images of the same area often exhibit minor errors relative to each other.
- Although the <u>absolute</u> geometric accuracy is typically excellent, the <u>relative</u> accuracy of the image-to-image coregistration can be improved. For automated change detection at the scale of one pixel, the relative accuracy of two independently created orthophotos is often inadequate.
- The fundamental goal of this SBIR Project is to develop software that applies multiple techniques to achieve subpixel precision in the co-registration of image pairs.

Project Objectives

- Develop software to fine-tune image-toimage co-registration, presuming images are orthorectified prior to input.
- Create a reusable software development kit (SDK) to enable incorporation of these tools into other software.
- Provide automated testing for quantitative analysis.

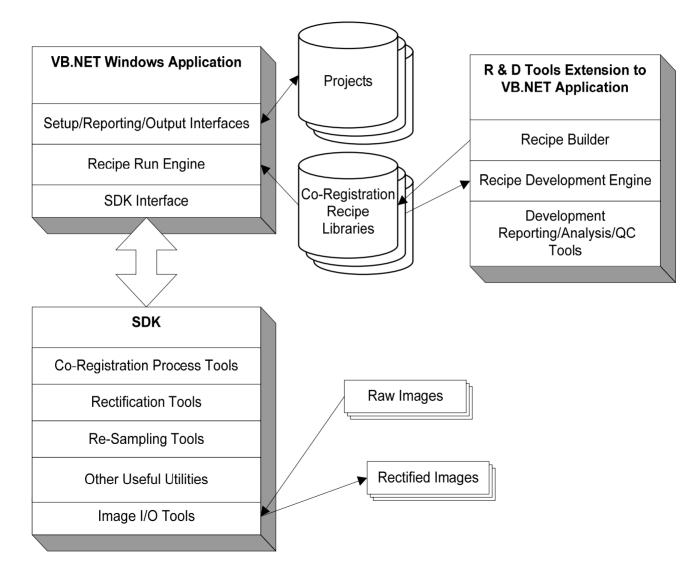
Project Deliverables

• Software development kit (SDK), developed in C++ (ANSI standard)

- Windows application
 - For automated testing (.NET framework)
 - Example application for SDK implementation

Features & Benefits of image co-registration tools

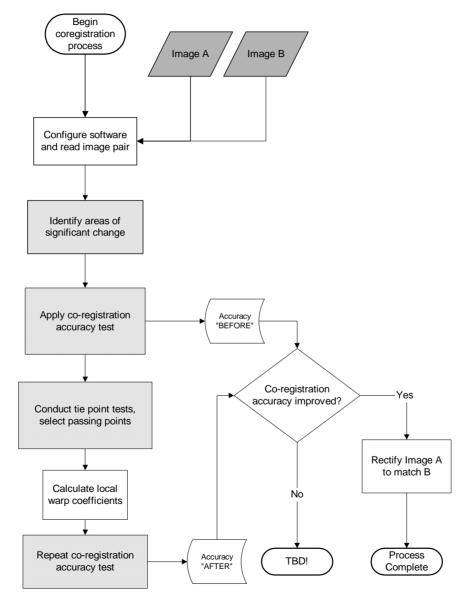
FEATURES


- Will provide for very accurate (sub-pixel) image-to-image co-registration, assuming input image data is *already* well registered.
- SDK will allow incorporation of these tools into other software.
- Test system (Windows .NET compliant) will provide ability to compare effectiveness of alternative methods.

BENEFITS

• Improves the accuracy of automated change detection.

- Enables a User with a need for these tools to customize them for their application.
- Enables user to add new technology and determine if it improves the results in *their* application.


Software Architecture

Primary Functions – SDK & Windows Application

- Change Detection
- Identification of tie points
 - (a.k.a. matching points, landmarks, pass points)
- Automatic measurement of initial and final accuracy
- QC tools

Basic Software Flowchart

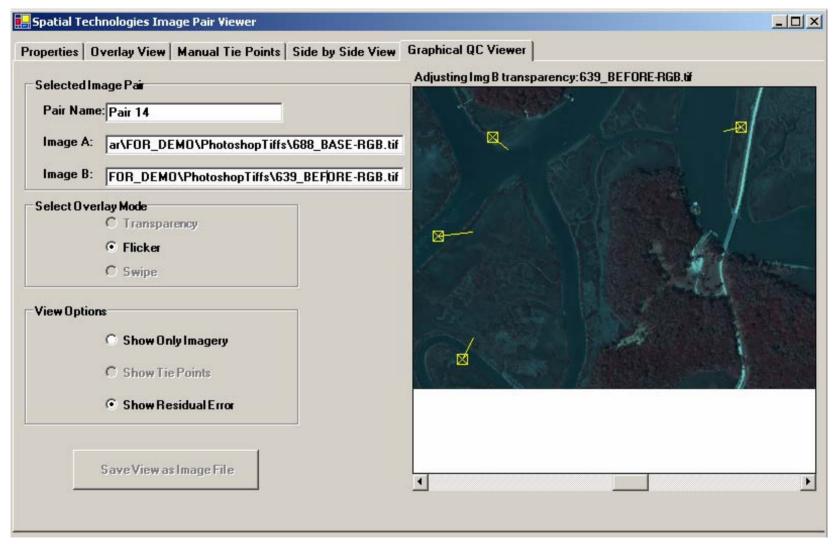


Image Pair QC tools

🖶 Spatial Technologies In	nage Pair Viewer			
Properties Side by Side	View Overlay View Mar	nual Tie Points		
	⊙ Add ◯ Select ∏		nts	
	- 201-0			
12 1 1 1		6 6 6 10	DESCRIPTION OF	
		16 9 10 12		
A SHERE		/ ES		
		Sec. 1988		
100			1000	
	Yes I			51
	N.	3		
		1.1		
		12 100		-
			Sec.	1
			a	6.
an all and				
X: 216.75	Y: 297			
0- 216.75	. 1237			

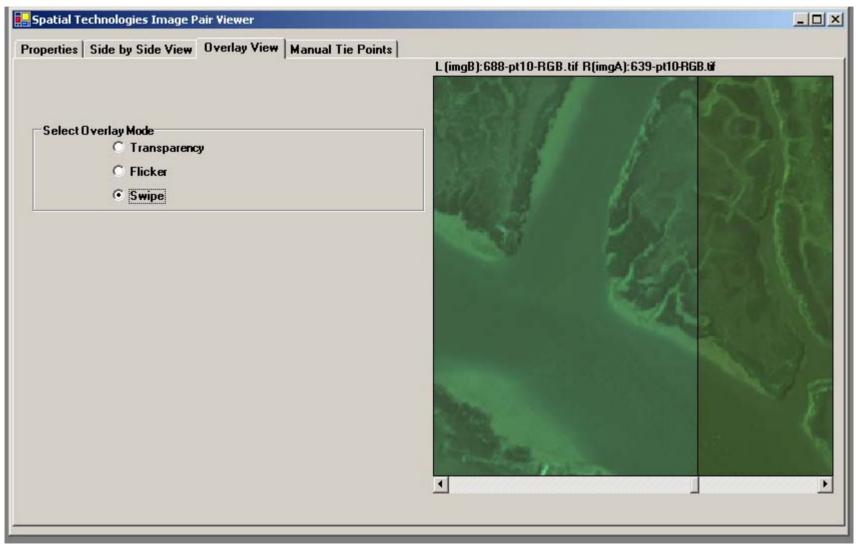
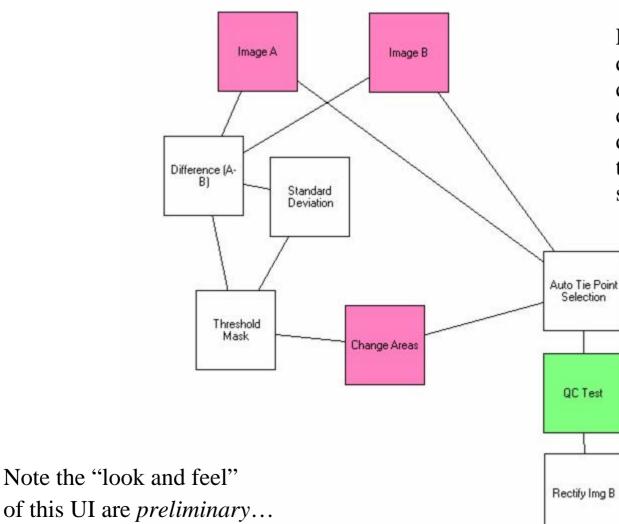

Side by side tie point view

Image Pair QC tools

Residual tie point error view

Image Pair QC tools

Overlay view


Reporting Functions

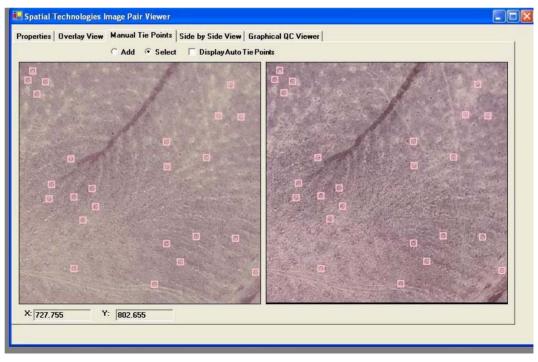
Project Pair(s)	Add Pair 1 Delete Image: state	Spatial Reports
Image A: ChangeExamples\639-pt10-RGB.tif Image B: ChangeExamples\688-pt10-RGB.tif	File Name:	Browse

Added Functions – Development & Validation Tools

- Recipe Builder
 - For algorithm development
 - Intuitive GUI for linking core processes together into complex algorithms
 - User can query & modify process data
- Recipe Validation
 - Batch processing of recipes against multiple input datasets, for statistical analysis

"Recipe Builder"

Each process can be queried (input & output data, configuration data) for testing, and data may be modified to alter the results of subsequent processes.


Recipe Validation

	n				
Recipe To Run:	ExampleProcesses.TestRecipe				
Description	Exercise Basic Processes				
rocessing Prop Pairs to Proces		Processing Location Setting			
BeforeProcessing AfterProcessing BeforeVsAfter		Automatic C Truth TPs			
DEIDIGAZAI(GI		 Change Area Location Setting Automatic C Truth Areas 			
	All Select None	Reporting Setting © Simple © Detailed			
Select					
Select	Run Recip	e			

"Recipes" (integrated algorithms) may be executed with multiple input pairs to compare results and validate the recipe.

Preliminary Results

- Example #1:
 - Subset of orthorectified air photo pair (Source: USDA APFO).
 - Relative Error (RMS): 2.95 meters
 - After processing? *TBD*

Target markets for software and/or services

- Industries:
 - Defense
 - Agriculture
 - Environment
 - Urban planning/Local Government
 - Medical imaging?
 - Machine vision/automated inspection?

Project Collaborators

- Dr. Doug Stow (San Diego State University)
- Dr. Ardeshir Goshtasby (Wright State University)
- Dr. John Dwyer (USGS LP-DAAC)

• Seeking more... (See next slide)

Goals for JACIE workshop March 14-16, 2006

- Identify agencies interested in using image co-registration tools:
 - Validate software requirements.
 - Provide image data for testing.
 - Assist with BETA testing.
 - Utilize software when complete.

References

- Dai, X., and S. Khorram, "The effects of image misregistration on the accuracy of remotely sensed change detection," *IEEE Trans. Geoscience and Remote Sensing*, vol. 36, no. 5, pp. 1566-1577, Sept. 1998.
- Ding, L., and A. Goshtasby, "Registration of multi-modal brain images using the rigidity constraint," 2nd IEEE Int'l Sym. Bioinformatics & Bioengineering, Nov. 4–6, 2001, pp. 1–6.
- Cole-Rhodes, Arlene, Kisha Johnson, Jacqueline Le Moigne, "Multiresolution registration of remote sensing images using stochastic gradient," Proc. SPIE Vol. 4738, p. 44-55, Wavelet and Independent Component Analysis Applications IX; Harold H. Szu, James R. Buss; Eds. Mar 2002
- Coppin, P. R., and Bauer, M. E., "Digital change detection in forest ecosystems with remote sensing imagery." *Remote Sensing Reviews*, 13: 207-234, 1996.
- Coulter, L., D. Stow, and S. Baer, in press. "A Frame Center Matching Technique for Precise Registration of Multitemporal Airborne Frame Imagery: Methods and Software Approaches," *IEEE Transactions of Geoscience and Remote Sensing*.

References - continued

- Goshtasby, A. Ardeshir, "2-D and 3-D Image Registration : for Medical, Remote Sensing, and Industrial Applications (Hardcover)"
- Goshtasby, A. Ardeshir, "Registration of Images with Geometric Distortions," *IEEE Trans. Geoscience and Remote Sensing*, vol. 26, no. 1, 1988, pp. 60-64.
- Goshtasby, A. Ardeshir, "Image Registration by Local Approximation Methods," *Image Vision Computing*, vol. 6, no. 4, 1988, pp. 255-261.
- Goshtasby, A. Ardeshir, "Transformation Functions," Proceedings of the 26th annual conference on Computer graphics and interactive techniques. SIGGRAPH Course on Image Registration and Image Warping, 1999.
- Jensen, John R., "Urban change detection mapping using Landsat digital data," *The American Cartographer*, vol. 8, pp. 127-147, 1991.
- Lambin, E. F., and Strahler, A. H., (1994), "Indicators of land-cover change for change-vector analysis in multitemporal space at coarse spatial scales," *International Journal of Remote Sensing*, 15: 2099-2119.

References - continued

- Singh, A. "Digital change detection techniques using remotely-sensed data," *International Journal of Remote Sensing*, 10/6:989-1003, 1989.
- Stow, Douglas A., and D. Chen, "Sensitivity of multitemporal NOAA AVHRR data of an urbanizing region to land-use/land-cover changes and misregistration," *Remote Sensing Env.*, vol. 80, pp. 297-307, 2002.
- Stow, D., L. Coulter, and Sebastian Baer, in press. "Frame Center Matching Approach to Registration for Change Detection," *International Journal of Remote Sensing*.
- Townshend, J. R. G., C. O. Justice, C. Gurney, and J. McManus, "The impact of misregistration on change detection," *IEEE Trans. Geosci. Remote Sensing*, vol. 30, no. 5, pp. 1054-1060, Sept., 1992.
- Verbyla, D.L., and S. H. Boles, "Bias in land cover change estimates due to misregistration," *Int. J. Remote Sensing*, vol. 21, no. 18, pp. 3553-3560, Dec., 2000.
- Wehn, H.W. and P.M. Wort, "Accurate Automatic Coregistration of Remote Sensing Imagery" Proceedings of the International Symposium on Spectral Sensing Research '95, Melbourne Australia. 1995.

Contact information

• Principal Investigator

Cody A. Benkelman ASPRS Certified Mapping Scientist - Remote Sensing (# RS 144) Telephone: (406) 270-1176 Email: <u>benkelman@spatialtechnologies.net</u>

• Company President

Heidi Hughes Telephone: (321) 427-8935 Email: <u>heidi@spatialtechnologies.net</u>