

On-Orbit MTF Measurement and Product Quality Monitoring for Commercial Remote Sensing Systems

March 16th, 2006 Steven Person

Engineered for life

Outline

- Problem Definition
- Technique Overview
- Validation
- Current Software Implementation
- Product Quality Monitoring Architecture

Problem Definition

- Determine the MTF of an on-orbit satellite using in-scene targets:
 - Slant Edge
 - Line Source
 - Point Source
 - Radial Target
- Attempt to facilitate the MTF calculation by automatically locating targets of opportunity.
- Incorporate MTF results into a product quality monitoring architecture.

Relation Between MTF Components

 Initialization and opportunistic targets are chosen that represent the MTF in the spatial domain.

Ideal targets have simple mathematical relationships.

Review of Potential Targets for MTF Calculation

Method	Approach	Advantage	Disadvantage
Edge Gradient	 Computes LSF from edge profile Basic approaches are similar but different in ways edge profile is determined 	 ISO has a standard approach Less sensitive to alignment issues Targets easier to implement Good energy at all frequencies 	 Typically uses curve fits for edge profiles Computes LSF indirectly from ESF and uses differentiation Can introduce noise
Pulse Input	 Computes LSF directly from target 	 Less numerical error from MTF 	 Requires knowledge of target width and resolution for reliable results
Point Source	 Computes point spread in x & y directions as a function of intensity and distance across imaged point 	 Provides 2-D MTF 	 Requires confidence about location of point source center Multiple aligned points necessary Various signal-to-noise issues (atmos. effects, neighboring points, single point SNR, etc.)
Radial Target	 Analyzes a series of "pulses" lying on concentric paths about a circle 	 Can provide visual quality assessment Provides contiguous frequencies 	Difficult to implementHigh potential for aliasing

Two Stage Algorithm

Edge Finding

- Input image area is sequentially searched for areas of edge content.
- A set of user modified parameters are defined to constrain located edges:
 - Edge Size
 - Edge Angle
 - Contrast
 - Uniformity of light and dark areas
- Edges that satisfy all criteria are projected to 1D and passed to the MTF algorithm.

MTF Calculation

- MTF is calculated using a method developed by B. Tatian JOSA, Vol. 55, pp. 1014-1019.
- Avoids taking a discrete derivative of the ESF by approximating the MTF as a set of trigonometric series.
- Errors in the algorithm are dominated by:
 - Edge Size
 - Angle
 - SNR

MTF Algorithm Flow

Validation of Current method

- Four images of the Big Spring, TX test target were provided to ITT by DigitalGlobe.
- MTF algorithm was verified by manually selecting one alongscan and one cross-scan edge from each image for processing.
- Full algorithm was used to process a 400x400 pixel area.

Imagery courtesy of DigitalGlobe/Reprinted with Permission

Results of Manual MTF Estimate from Edge Target

Example Run on Test Target Crop

Imagery courtesy of DigitalGlobe/Reprinted with Permission

0.2

Frequency

0.3

0.0

0.0

0.1

0.4

0.5

Automatic MTF Estimate from Edge Target

Comparison to DigitalGlobe Results

- Good agreement between the manual estimation and automatic estimation when compared to independent DG results.
- Positive bias in the low frequencies due to small edge size used in computation.

Example Operational Image

 Algorithm executed with a nominal parameter set on image with potential edge content.

 Red squares indicate targets used to estimate along-scan MTF.

 Green squares indicate targets used to estimate cross-scan MTF.

Imagery courtesy of DigitalGlobe/Reprinted with Permission

Results from Extracted Test Image

- Cross-scan bias observed in individual edges used to estimate MTF.
 - Possibly due to unobserved roof structure.

Roof Edge Example

Manual Edge Crop

Imagery courtesy of DigitalGlobe/Reprinted with Permission

- Further investigation shows nothing unusual about edge.
- Presents a difficult problem for automatic edge detection routine.

0.0

Prototype Software Implementation

- The current software implementation attempts to address the edge selection issues.
- Coded in IDL as a plug-in to ENVI.
- Allows user to manipulate imagery with built-in ENVI functionality and select Regions of Interest within an image where edge content appears.
- ROIs are imported into a separate GUI for processing and result display.

Screen Shot of MTF Measurement Toolkit

- Facilitates quick processing of data for time critical results or repetitive monitoring.
- Using a system with a known MTF the Toolkit can identify regions around the globe that approximate "ideal edges".

Imagery courtesy of DigitalGlobe/Reprinted with Permission

Areas for Future Improvement and Investigation

- Investigate alternate edge finding techniques.
 - Methods which include the least false positives.
 - Region growing techniques to increase number of samples along an edge.

 Investigate benefit of aggregation in the spatial domain vs. the frequency domain.

 Incorporate a database function that allows for tracking and trending of results.

Relative Edge Response Relation to Image Quality

$$NIIRS = A_0 - a \log(GSD) + b \log(RER) - A_1 H - A_2 \left(\frac{G}{SNR} \right)$$

- RER is easily calculated along with the MTF using the same algorithm.
- RER is the second largest contributing factor to the General Image Quality Equation (GIQE).

Two possible PQ Monitoring Architectures

- Develop full GIQE model to monitor NIIRS ratings.
- Flag images which fall No outside the historical distribution of NIIRS ratings.
- Identify shifts in histogram mean.

- Monitor each parameter of the GIQE separately.
- Calculate a baseline mean with confidence bounds.
- Indicate when a parameter falls outside of the baseline behavior.

