

Multi-Sensor Triangulation of Multi-Source Spatial Data

Ayman Habib, Chang-Jae Kim, and Ki-In Bang Digital Photogrammetry Research Group

http://dprg.geomatics.ucalgary.ca

Department of Geomatics Engineering University of Calgary, Canada

JACIE, March 16, 2006 =

Overview

- Introduction.
- Multi-sensor triangulation.
- Multi-primitive triangulation:
 - Points.
 - Linear features.
 - Aerial features.
- Experimental results.
- Conclusions and future outlook.

- Introduction There is a tremendous increase in data acquisition systems, which are available for the mapping community:
 - Photogrammetric systems:
 - High resolution imaging satellites.
 - Metric analog frame cameras.
 - Metric digital frame cameras.
 - Metric digital line cameras.
 - Medium-format digital frame cameras.
 - LIDAR systems.
 - GPS/INS navigation units.
- These systems provide complementary information.
- We need to provide an integrating environment of these sensors: Multi-Sensor Triangulation (MST).

Photogrammetric Systems

Frame Cameras

LIDAR Systems

ALS 40 (Leica Geosystems)

OPTECH ALTM 3100

Point-Based Triangulation

$$\begin{bmatrix} x_a - x_p - \Delta x \\ y_a - y_p - \Delta y \\ -c \end{bmatrix} = \lambda R^T \begin{bmatrix} X_A - X_0 \\ Y_A - Y_0 \\ Z_A - Z_0 \end{bmatrix}$$

JACIE, March 16, 2006 =

Photogrammetry:

Direct measurement of intermediate points on images

LIDAR:

Plane fitting & intersection

manual identification of LIDAR patches with the aid of imagery **DPRG**

LIDAR:

Manipulation of range and intensity images

Direct incorporation of LIDAR lines as control in the photogrammetric BA

Patch-Based Triangulation

Direct incorporation of LIDAR patches as constraints in the photogrammetric BA

Photogrammetric (A,B,C points) and LIDAR surface patches

Patch-Based Triangulation

Direct incorporation of LIDAR patches as constraints in the photogrammetric BA

Volume of the pyramid: *i*, *A*, *B*, *C* should = 0

$$\begin{vmatrix} X_{i} & Y_{i} & Z_{i} & 1 \\ X_{A} & Y_{A} & Z_{A} & 1 \\ X_{B} & Y_{B} & Z_{B} & 1 \\ X_{C} & Y_{C} & Z_{C} & 1 \end{vmatrix} = \begin{vmatrix} X_{i} - X_{A} & Y_{i} - Y_{A} & Z_{i} - Z_{A} \\ X_{B} - X_{A} & Y_{B} - Y_{A} & Z_{B} - Z_{A} \\ X_{C} - X_{A} & Y_{C} - Y_{A} & Z_{C} - Z_{A} \end{vmatrix} = 0$$

LIDAR point, *i*

Multi-Sensor Triangulation (MST)

- Developed an integrated triangulation system.
 - Multi-sensor: Satellite imagery, aerial imagery, LIDAR and GPS/INS.
 - Multi-primitive: distinct points, linear features, and aerial features.
- Advantages:
 - Takes an advantage of the extended coverage of imaging satellites.
 - Takes an advantage of the high geometric resolution of aerial imaging systems.
 - Utilizes sparse frame imagery to improve the weak geometry of imaging satellites while reducing ground control point requirements.

Uses LIDAR data for photogrammetric geo-referencing.

Upper Block

Middle Block

DSS: Middle Block

234000

23400 TANG TANG TANG TANG TANG TANK

73500

31600

Lower Block

DSS: Lower Block

Stereo-IKONOS with GCP Layout

IKONOS scenes and GCP layout over Daejeon, Korea

Examples of Tie Points

Examples of Tie / Control Lines

Example of a Control Patch

No Ground Control Points

# GCP	# Frames	GPS / LIN / PATCH	$\hat{\sigma}_0$	RMSE (m)			
			(mm)	X	Y	Z	Total
0	0	NONE	N/A	N/A	N/A	N/A	N/A
	10	NONE	N/A	N/A	N/A	N/A	N/A
		LIN	0.005	2.105	1.370	1.757	3.065
		РАТСН	0.004	3.582	3.394	2.207	5.406
	10	GPS	0.006	2.109	1.048	1.963	3.066
		GPS + LIN	0.005	2.116	1.358	1.803	3.093
		GPS + PATCH	0.004	2.374	2.580	2.294	4.190

138 Control Lines & 139 Control Patches

Scan line direction

Configuration of 5 GCP

DPRG Digital Photogrammetry= Research Group Scan line direction

JACIE, March 16, 2006 =

-

5 Ground Control Points

# GCP	# Frames	GPS / LIN / PATCH	$\hat{\sigma}_0$	RMSE (m)			
			(mm)	X	Y	Z	Total
5	0	NONE	N/A	N/A	N/A	N/A	N/A
	10	NONE	0.006	1.907	1.084	3.7474	4.342
		LIN	0.005	1.786	1.115	1.717	2.716
		РАТСН	0.004	1.670	1.009	1.759	2.628
	10	GPS	0.007	1.805	1.024	1.770	2.727
		GPS + LIN	0.005	1.733	1.112	1.717	2.681
		GPS + PATCH	0.004	1.647	1.008	1.786	2.631

138 Control Lines & 139 Control Patches

Scan line direction

Configuration of 7 GCP

7 Ground Control Points

# GCP	# Frames	GPS / LIN / PATCH	$\hat{\sigma}_0$	RMSE (m)			
			(mm)	X	Y	Z	Total
7	0	NONE	0.005	1.442	1.608	3.290	3.936
	10	NONE	0.006	1.568	1.029	2.392	3.039
		LIN	0.005	1.738	1.130	1.722	2.696
		РАТСН	0.004	1.516	1.025	1.774	2.549
	10	GPS	0.007	1.657	1.025	1.747	2.618
		GPS + LIN	0.005	1.783	1.132	1.724	2.726
		GPS + PATCH	0.004	1.578	1.024	1.792	2.598

138 Control Lines & 139 Control Patches

Scan line direction

Configuration of 40 GCP

40 Ground Control Points

# GCP	# Frames	GPS / LIN / PATCH	$\hat{\sigma}_0$	$\hat{\sigma}_0$ RMSE (m)			
			(mm)	X	Y	Z	Total
40	0	NONE	0.011	1.092	0.870	1.450	2.013
	10	NONE	0.008	1.129	0.863	1.528	2.087
		LIN	0.006	1.173	0.921	1.495	2.112
		РАТСН	0.004	1.110	0.845	1.475	2.030
	10	GPS	0.008	1.122	0.859	1.563	2.107
		GPS + LIN	0.006	1.143	0.934	1.498	2.103
		GPS + PATCH	0.004	1.095	0.846	1.478	2.026

138 Control Lines & 139 Control Patches

Scan line direction

JACIE, March 16, 2006 =

Original Image

Digital Photogrammetry= Research Group

Ortho-Photo Generation

True Ortho-Photo Generation

Generated Ortho-photo

Differential Rectification

JACIE, March 16, 2006

Generated Ortho-photo

True Ortho-photo

JACIE, March 16, 2006

Concluding Remarks

- The introduced methodologies are successful in:
 - Using LIDAR features for photogrammetric georeferencing.
 - Line-based and patch-based photogrammetric geo-referencing using control derived from LIDAR data.
 - Delivering a geo-referenced imagery of the same quality as point-based geo-referencing procedures.
 - Taking advantage of the synergistic characteristics of spatial data acquisition systems.
- The triangulation output can be used for the generation of 3-D perspective views.

Recommendations for Future Work

- Automated segmentation of LIDAR data to extract the patches and linear features.
- More investigation into using the outcome from the geo-referencing procedure for the verification of the system calibration.
- Utilize the raw LIDAR measurements in the patch-based photogrammetric geo-referencing.
 - Such a utilization will allow for LIDAR system calibration.
- Quality assurance and quality control procedures for LIDAR data.

3-D Perspective View

Digital Photogrammetry= Research Group