

1

HIGH ACCURACY 3D PROCESSING OF SATELLITE IMAGERY

A. Gruen, L. Zhang, S. Kocaman

Institute of Geodesy and Photogrammetry, ETH Zurich, CH-8092 Zurich, Switzerland

http://www.photogrammetry.ethz.ch

JACIE Civil Commercial Imagery Evaluation Workshop, March 14-16, 2006, Laurel, Maryland, U.S.A.

outline

- introduction
- sensor modeling of HRSI
- DTM/DSM generation from HRSI
- performance evaluation
- 3D city modeling with HRSI
- conclusions

- High-resolution PAN & MS imagery
 - + Quickbird (0.7 m)
 - + IKONOS (1.0 m)
 - + SPOT (2.5-10 m)
 - + ALOS / PRISM (2.5 m)
- More than 8-bit images, higher dynamic range
- Along- / cross-track stereo;

Possibly multiple view terrain coverage

- Challenge:
 - + Algorithmic redesign
 - + Improvements

More than 8-bit images, higher dynamic range

INTRODUCTION

SENSOR MODELING

DSM GENERATION

CASE STUDIES

• Along- / cross-track stereo;

Possibly multiple view terrain coverage

CASE STUDIES

Photogrammetry Remote Sensing

SAT-PP (<u>Sat</u>ellite Image <u>P</u>recision <u>P</u>rocessing) -- High-Res Satellite Imagery (HRSI): \leq 5 m

- + New Processing Methods / Products for HRSI
- + Joint Sensor Model for IKONOS, QuickBird, SPOT, ALOS/RPISM and etc.
- + Specially Designed Image Matching Procedure for Linear Array Imagery

Functionality of SAT-PP

✓ Project and data management tools, image format conversion and pre-processing, image display / roaming in mono and stereo modes

- ✓ Sensor models (RFM, affine and projective DLT model)
- Orientation of single stereo models
- \checkmark On-line quality control and error analysis via interaction of graphics elements
- \checkmark GCP and tie point measurement in manual and semi-automated modes
- \checkmark Derivation of quasi-epipolar images for stereo mapping and feature collection
- ✓ Automated DSMs generation
- Generation of orthorectified images
- ✓ Mono-plotting functions with DTMs
- ✓ Manual and semi-automatic object extraction in mono/stereo
- ✓ 3D city modeling by using CyberCity Modeler[™]
- ✓ Pansharpening image generation. Fully automated sub-pixel image registration between multispectral and panchromatic imagery

Photogrammetry

Remote Sensina

8

Workflow of SAT-PP

Sensor Modeling and Blockadjustment

- Rigorous sensor model
 - + Physical imaging geometry (nearly parallel projection in along-track and perspective projection in crosstrack); high accuracy; easier for statistic analysis
 - Mathematically more complicated; depends on type of sensors
- Sensor model based on RFM
 - + Given (for IKONOS, Quickbird) and computed RFM parameters (RPCs)

$$px_{n} = \frac{f_{1}(X_{n}, Y_{n}, Z_{n})}{f_{2}(X_{n}, Y_{n}, Z_{n})}$$
$$py_{n} = \frac{f_{3}(X_{n}, Y_{n}, Z_{n})}{f_{4}(X_{n}, Y_{n}, Z_{n})}$$

- Blockadjustment model (Grodecki & Dial; 2003)
 - + Calibrated system with a very narrow FOV; accurate a priori exterior orientation data (HRSI -- OK !)

$$x + \Delta x = x + a_0 + a_1 x + a_2 y = RPC_x(\varphi, \lambda, h)$$
$$y + \Delta y = y + b_0 + b_1 x + b_2 y = RPC_y(\varphi, \lambda, h)$$

- Other simpler sensor models
 - + 3D affine; relief-corrected 2D affine; DLT

ETTH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Sensor model based on RFM

EITH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

INTRODUCTION

SENSOR MODELING

User interface for block adjustment

DSM GENERATION

CONCLUSIONS 11

CITY MODELING

CASE STUDIES

Ellipse fitting method GCP measurement

SENSOR MODELING

DSM GENERATION

CASE STUDIES

Detailed DSM Generation

The approach uses a coarse-to-fine hierarchical solution with an effective combination of several image matching algorithms and automatic quality control.

The new characteristics provided by the IKONOS and Quickbird imaging systems, i.e. the multiple-view terrain coverage and the high quality image data, are also efficiently utilized.

It was originally developed for multi-image processing of the very high-resolution TLS/StarImager aerial Linear Array images. Now it has been extended and has the ability to process other linear array images as well.

Workflow of Automated DSM Generation

s 14

Automated DSM Generation Procedure

- Multiple image matching
 - + Matching guided from object space
 - + Simultaneously multiple images (>= 2) with

Geometrically Constrained Cross-Correlation

- Matching with multiple primitives --- points + edges
- Self-tuning matching parameters
- High matching redundancy
- Efficient surface modeling
 - + TIN (from a constrained Delauney triangulation method)
- Coarse-to-fine Hierarchical strategy

INTRODUCTION

Matching guided from object space

SENSOR MODELING

Strip-1: Backward Image

Strip-2: Backward Image

Strip-2: Forward Image

Strip-3: Forward Image

Strip-2: Nadir Image

Strip-4: Backward Image

Strip-4: Forward Image

Strip-4: Nadir Image

CONCLUSIONS

DSM GENERATION

CASE STUDIES

CITY MODELING

Self-tuning matching parameters

Strip-2: Forward Image

Strip-2: Nadir Image

Strip-2: Backward Image

DSM GENERATION

CASE STUDIES

ETH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

IKONOS Triplet,

Photogrammetry _ Remote Sensing

	<u>RPC + 2 Translates</u>								
G	CPs(CPs)	RMSE-X	RMSE-Y	RMSE-Z					
	0 (124)	2.75	2.00	1.97					
	1 (123)	0.48	0.35	0.90					
	4 (120)	0.49	0.36	0.86					
	124 (0)	0.45	0.33	0.81					

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

IKONOS Triplet,

Hobart, Australia

ET

Photogrammetry _ Remote Sensing

	<u>RPC + 2 Translates</u>								
G	CPs(CPs)	RMSE-X	RMSE-Y	RMSE-Z	7				
	0 (124)	2.75	2.00	1.97					
	1 (123)	0.48	0.35	0.90					
	4 (120)	0.49	0.36	0.86					
	124 (0)	0.45	0.33	0.81					

CASE STUDIES

ETH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

IKONOS Triplet,

Hobart, Australia

Photogrammetry _ Remote Sensing

	RPC + 2 Translates							
G	CPs(CPs)	RMSE-X	RMSE-Y	RMSE-Z				
	0 (124)	2.75	2.00	1.97				
	1 (123)	0.48	0.35	0.90				
	4 (120)	0.49	0.36	0.86				
	124 (0)	0.45	0.33	0.81				

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

IKONOS Triplet,

Hobart, Australia

ET

Photogrammetry _ Remote Sensing

	RPC + 2 Translates								
G	CPs(CPs)	RMSE-X	RMSE-Y	RMSE-2	Z				
	0 (124)	2.75	2.00	1.97					
	1 (123)	0.48	0.35	0.90					
	4 (120)	0.49	0.36	0.86					
	124 (0)	0.45	0.33	0.81					

DSM GENERATION

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich Remote Sensing Automatic DTM/DSM Generation (IKONOS, Hobart, Australia) + The strip encompassed buildings and suburban housing in central and southern Hobart; accuracy 0.25 m + 111 GCPs as reference: RMSE-Z: 0.9 m; Mean: -0.3 m; Absolute max.: 2.9 m + LIDAR DSM as reference (ca. 252000 points): RMSE-Z: 2.7 m; Mean: -0.2 m; Absolute max.: 29.6 m Raster DSM (5 m Spacing)

INTRODUCTION

SENSOR MODELING

DSM GENERATION

CASE STUDIES

CITY MODELING

22

Photogrammetry

Photogrammetry Protes Sensing

SPOT5-HRS, Bavaria, Germany

<u>RPC + 2 Translates</u>									
GCPs(CPs)	RMSE-X	RMSE-Y	RMSE-Z						
0 (43)	23.11	25.17	75.76						
1 (42)	4.69	4.38	2.26						
4 (39)	4.68	4.35	2.25						
43 (0)	4.63	3.66	2.20						

EITH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich Photogrammetry Remote Sensing

SPOT5-HRS, Bavaria, Germany

	<u>RPC + 2 Translates</u>								
(GCPs(CPs)	RMSE-X	RMSE-Y	RMSE-Z					
	0 (43)	23.11	25.17	75.76					
	1 (42)	4.69	4.38	2.26					
	4 (39)	4.68	4.35	2.25					
	43 (0)	4.63	3.66	2.20					

N CASE STUDIES

SPOT5-HRS, Bavaria, Germany

	RPC + 2 Translates								
GCPs(CPs)		RMSE-X	RMSE-Y	RMSE-Z					
	0 (43)	23.11	25.17	75.76					
	1 (42)	4.69	4.38	2.26					
	4 (39)	4.68	4.35	2.25					
	43 (0)	4.63	3.66	2.20					

N CASE STUDIES

Photogrammetry Remote Sensing

SPOT5-HRS, Bavaria, Germany

RPC + 2 Translates								
GCPs(CPs)	RMSE-X	RMSE-Y	RMSE-Z					
0 (43)	23.11	25.17	75.76					
1 (42)	4.69	4.38	2.26					
4 (39)	4.68	4.35	2.25					
43 (0)	4.63	3.66	2.20					

DSM GENERATION

N CASE STUDIES

Automatic DTM/DSM Generation (SPOT5-HRS, Bavaria, Germany)

Study area: Bavaria, Germany

- + Area: $120 \times 60 \text{ Km}^2$
- + Height range: ca. 1600 m
- SPOT HRS stereo pair
 - + Acquisition time: 1st October, 2002
 - + 5m / 10m res. In along-/cross-track

Reference data:

- + 81 GPS GCPs (only 41 used)
- + 6 reference DTMs

DTM Name	Location	DTM Spacing (m)	Source	DTM Size	Height Accuracy (m)
DTM-1	Prien	5×5	Laser Scanner	5km × 5km	0.5
DTM-2	Gars	5×5	Laser Scanner	5km × 5km	0.5
DTM-3	Peterskirchen	5×5	Laser Scanner	5km × 5km	0.5
DTM-4	Taching	5×5	Laser Scanner	5km × 5km	0.5
DTM-5-1	Inzell-North	25 × 25	Laser Scanner	$10 \text{km} \times 1.3 \text{km}$	0.5
DTM-5-2	Inzell-Sourth	25 × 25	Contour lines	10 km \times 7.7km	5.0
DTM-6	Vilsbiburg	50 × 50	Photogrammetry	50km × 30km	2.0

INTRODUCTION

DSM GENERATION CA

CASE STUDIES

ES CITY MODELING

Automatic DTM/DSM Generation (SPOT5-HRS, Bavaria, Germany)

Raster DSM (25 m Spacing, $120 \times 60 \text{ km}^2$)

INTRODUCTION

SENSOR MODELING

DSM GENERATION

ION CASE STUDIES

CITY MODELING

CONCLUSIONS

29

Automatic DTM/DSM Generation (SPOT5-HRS, Bavaria, Germany)

Reference DSM (5 m)

SPOT5 DSM (25 m)

Automatic DTM/DSM Generation (SPOT5-HRS, Bavaria, Germany)

Reference DSM (25 m)

SPOT5 DSM (25 m)

Automatic DTM/DSM Generation (SPOT5-HRS, Bavaria, Germany)

Ref. DTM	Terrain Characteristic	No. of Points		Max. Diff.	Min. Diff.	Average (m)	RMSE (m)
		Matched	Reference				
DTM-1	Smooth, weakly inclined	35448	1000000	25.1	-32.9	-2.6	5.7
DTM-2	Smooth, weakly inclined	32932	1000000	29.1	-37.1	-1.2	5.0
DTM-3	Smooth, weakly inclined	33450	1000000	20.7	-17.2	-0.5	3.2
DTM-4	Smooth, weakly inclined	32067	1000000	13.6	-23.1	-2.5	4.7
DTM-5-1	Rough, strongly inclined	10327	21200	19.2	-33.5	-5.8	8.3
DTM-5-2	Rolling, strongly inclined	71795	139200	136.8	-89.3	-4.3	9.5
DTM-6	Rough, weakly inclined	130558	600000	26.8	-27.1	1.5	4.0

DSM Accuracy (All Reference Data)

DSM Accuracy (Without Trees)

Ref. DTM	Terrain Characteristic	Max. Diff.	Min. Diff.	Average (m)	RMSE (m)
DTM-1	Smooth, weakly inclined	15.4	-23.7	-1.7	4.6
DTM-2	Smooth, weakly inclined	29.1	-31.7	0.2	3.6
DTM-3	Smooth, weakly inclined	20.7	-13.6	0.1	2.9
DTM-4	Smooth, weakly inclined	10.5	-18.4	-1.2	3.2
DTM-5-1	Rough, strongly inclined	19.1	-13.3	-1.7	4.9
DTM-5-2	Rolling, strongly inclined	49.8	-66.8	-1.3	6.7
DTM-6	Rough, weakly inclined	26.8	-25.9	2.1	4.4

IKONOS Images, Thun, Switzerland

Sub-pixel accuracy in planimetry; ca. pixel accuracy in height

Comparison of sensor models for the IKONOS stereo pair. CPs are check points. M_RPC1: RPCs+2 translations; M_RPC2: RPCs+6 affine parameters; M_3DAFF: 3D affine transformation

Sensor Model	GCPs	CPs	x-RMSE [m]	y-RMSE [m]	z-RMSE [m]	max. ∆x [m]	max. ∆y [m]	max. ∆z [m]
M_RPC1	22	(1))	0.49	0.57	0.93	1.02	0.97	2.08
M_RPC2	22	-	0.48	0.57	0.83	1.01	0.96	1.82
M_3DAFF	22	10.71	0.62	0.56	0.70	1.36	0.96	1.36
M_RPC1	18	4	0.50	0.57	0.93	1.04	0.96	1.94
M_RPC2	18	4	0.48	0.57	0.84	1.01	1.09	2.00
M_RPC1	12	10	0.50	0.57	0.93	1.13	0.92	2.10
M_RPC2	12	10	0.50	0.57	0.84	1.12	0.96	1.74
M_RPC1	5	17	0.50	0.58	0.93	1.02	0.96	2.00
M_RPC2	5	17	0.48	0.57	0.83	1.00	0.96	1.82

Comparison of sensor models and number of GCPs for the IKONOS triplet. CP are check points.

Sensor Model	GCPs	CPs	x-RMSE [m]	y-RMSE [m]	z-RMSE [m]	max. ∆x [m]	max. ∆y [m]	max. ∆z [m]
M_RPC1	22	100	0.32	0.78	0.55	0.73	1.50	0.78
M_RPC2	22	(33 4 3 (0.32	0.78	0.55	0.95	1.53	0.78
M_3DAFF	22	272	0.35	0.41	0.67	0.82	0.91	0.80
M_RPC2	18	4	0.33	0.79	0.56	0.80	1.48	1.41
M_RPC2	12	10	0.32	0.82	0.60	0.73	1.64	1.04
M RPC2	5	17	0.44	0.92	0.65	1.04	1.83	1.15

Comparison between M	RPC1 and M_RPC2 using all five image	s with different numbers of GCPs.
▲	_ 0 0	

Sensor Model	GCPs	CPs	x-RMSE [m]	y-RMSE [m]	z-RMSE [m]	max. ∆x [m]	max. ∆y [m]	max. ∆z [m]
M_RPC1	39	-	0.45	0.50	0.93	1.06	0.96	2.07
M_RPC2	39		0.40	0.49	0.79	0.92	0.86	1.82
M_RPC1	5	34	0.45	0.50	0.94	1.10	0.95	1.84
M_RPC2	5	34	0.42	0.67	1.07	1.18	1.41	2.25

INTRODUCTION

SENSOR MODELING DSN

DSM GENERATION

CASE STUDIES

JDIES CITY MODELING

ING CONCLUSIONS

IKONOS Images, Thun, Switzerland

Decreasing number of GCPs doesn't decreasing the accuracy significantly

	Comparison of sensor models for the IKONOS stereo pair CPs are check points.									
Ν	M_RPC1: RPCs+2 translations; M_RPC2: RPCs+6 affine parameters; M_3DAFF: 3D affine transformation									
ŝ	Sensor Model	GCPs	CPs	x-RMSE [m]	y-RMSE [m]	z-RMSE [m]	max. ∆x [m]	max. ∆y [m]	max. ∆z [m]	
	M_RPC1	22	(1)	0.49	0.57	0.93	1.02	0.97	2.08	
	M_RPC2	22	-	0.48	0.57	0.83	1.01	0.96	1.82	
	M_3DAFF	22	10.71	0.62	0.56	0.70	1.36	0.96	1.36	
	M_RPC1	18	4	0.50	0.57	0.93	1.04	0.96	1.94	
	M_RPC2	18	4	0.48	0.57	0.84	1.01	1.09	2.00	
- 22	M_RPC1	12	10	0.50	0.57	0.93	1.13	0.92	2.10	
8	M_RPC2	12	10	0.50	0.57	0.84	1.12	0.96	1.74	
	M_RPC1	5	17	0.50	0.58	0.93	1.02	0.96	2.00	
	M_RPC2	5	17	0.48	0.57	0.83	1.00	0.96	1.82	

Comparison of sensor models and number of GCPs for the IKONOS triplet. CP are check points.									
Sensor Model	GCPs	CPs	x-RMSE [m]	y-RMSE [m]	z-RMSE [m]	max. ∆x [m]	max. ∆y [m]	max. ∆z [m]	
M_RPC1	22	10 - 10	0.32	0.78	0.55	0.73	1.50	0.78	
M_RPC2	22	(33 - 31 ()	0.32	0.78	0.55	0.95	1.53	0.78	
M_3DAFF	22	272	0.35	0.41	0.67	0.82	0.91	0.80	
M_RPC2	18	4	0.33	0.79	0.56	0.80	1.48	1.41	
M_RPC2	12	10	0.32	0.82	0.60	0.73	1.64	1.04	
M_RPC2	5	17	0.44	0.92	0.65	1.04	1.83	1.15	

Comparison	ı betwee	n M_	RPC1 and M_	_RPC2 using	all five image	s with differ	ent numbers	of GCPs.
Sensor Model	GCPs	CPs	x-RMSE [m]	y-RMSE [m]	z-RMSE [m]	max. ∆x [m]	max. ∆y [m]	max. ∆z [m]
M_RPC1	39	-	0.45	0.50	0.93	1.06	0.96	2.07
M_RPC2	39	8);	0.40	0.49	0.79	0.92	0.86	1.82
M_RPC1	5	34	0.45	0.50	0.94	1.10	0.95	1.84
M_RPC2	5	34	0.42	0.67	1.07	1.18	1.41	2.25

INTRODUCTION

E

Eidgenössische Technische Hochschule Zürich

SENSOR MODELING DSM (

DSM GENERATION

CASE STUDIES

JDIES CITY MODELING

CONCLUSIONS

IKONOS Images, Thun, Switzerland

Even M_3DAFF could achieve similar results (for IKONOS imagery)

Comparison of sensor models for the IKONOS stereo pair. CPs are check points. M_RPC1: RPCs+2 translations; M_RPC2: RPCs+6 affine parameters; M_3DAFF: 3D affine transformation

Sensor Model	GCPs	CPs	x-RMSE [m]	y-RMSE [m]	z-RMSE [m]	max. ∆x [m]	max. ∆y [m]	max. ∆z [m]
M_RPC1	22	0.70	0.49	0.57	0.93	1.02	0.97	2.08
M_RPC2	22	-	0.48	0.57	0.83	1.01	0.96	1.82
M_3DAFF	22	87.8	0.62	0.56	0.70	1.36	0.96	1.36
M_RPC1	18	4	0.50	0.57	0.93	1.04	0.96	1.94
M_RPC2	18	4	0.48	0.57	0.84	1.01	1.09	2.00
M_RPC1	12	10	0.50	0.57	0.93	1.13	0.92	2.10
M_RPC2	12	10	0.50	0.57	0.84	1.12	0.96	1.74
M_RPC1	5	17	0.50	0.58	0.93	1.02	0.96	2.00
M_RPC2	5	17	0.48	0.57	0.83	1.00	0.96	1.82

Comparison of sensor models and number of GCPs for the IKONOS triplet. CP are check points.									
Sensor Model	GCPs	CPs	x-RMSE [m]	y-RMSE [m]	z-RMSE [m]	max. ∆x [m]	max. ∆y [m]	max. ∆z [m]	
M_RPC1	22		0.32	0.78	0.55	0.73	1.50	0.78	
M_RPC2	22	-	0.32	0.78	0.55	0.95	1.53	0.78	
M_3DAFF	22	0.70	0.35	0.41	0.67	0.82	0.91	0.80	
M_RPC2	18	4	0.33	0.79	0.56	0.80	1.48	1.41	
M_RPC2	12	10	0.32	0.82	0.60	0.73	1.64	1.04	
M_RPC2	5	17	0.44	0.92	0.65	1.04	1.83	1.15	

Comparison between M_RPC1 and M_RPC2 using all five images with different numbers of GCPs.								
Sensor Model	GCPs	CPs	x-RMSE [m]	y-RMSE [m]	z-RMSE [m]	max. ∆x [m]	max. ∆y [m]	max. ∆z [m]
M_RPC1	39	1	0.45	0.50	0.93	1.06	0.96	2.07
M_RPC2	39	10.73	0.40	0.49	0.79	0.92	0.86	1.82
M_RPC1	5	34	0.45	0.50	0.94	1.10	0.95	1.84
M_RPC2	5	34	0.42	0.67	1.07	1.18	1.41	2.25

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

INTRODUCTION

SENSOR MODELING DSM (

DSM GENERATION

CASE STUDIES C

CITY MODELING

Study area: town of Thun, Switzerland

- + Area: $17 \times 20 \text{ Km}^2$
- + Height Range: 1600 m

IKONOS Geo Product

IKONOS Image	Acquisition Date	Scanning mode	Sensor- Azimuth [°]	Sensor- Elevation [°]
Thun_49_000	2003-Dec-11	Reverse	140.35	62.78
Thun_49_100	2003-Dec-11	Reverse	66.41	63.56
Thun_51_000	2003-Dec-25	Reverse	180.39	62.95
Thun_51_100	2003-Dec-25	Reverse	72.206	82.15
Thun_54_000	2003-Dec-25	Forward	128.17	82.62

Reference

+ 2m spacing LIDAR DSM as reference

accuracy: 0.5 m (1 σ) for open areas;

1.5 m for vegetation & build-up areas

+ 50 GPS GCPs (only 39 used)

DSM GENERATION

CASE STUDIES

ETH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

37

EITH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Z_diff = LIDAR_DSM_Z - Interpolation(IKONOS_DSM)

DSM accuracy evaluation results (triplet part of test area).								
O-Open areas; C-City areas; T-Tree areas; A-Alpine areas.								
Area	No. of compared points	Mean (m)	RMSE (m)	< 2.0 m	2.0-5.0 m	> 5.0 m		
O+C+T+A	29,210,494	-1.21	4.80	60.7%	16.8%	21.3%		
O+C+A	17,610,588	-1.11	2.91	77.0%	13.9%	10.1%		
O+A	14,891,390	-1.24	2.77	79.8%	12.2%	8.0%		
0	11,795,795	-1.00	1.28	90.3%	8.5%	1.2%		
					10 [°]			
	DSM accuracy e	valuation re	esults (stereo	part of test a	rea).			
Area	No. of compared points	Mean (m)	RMSE (m)	< 2.0 m	2.0-5.0 m	> 5.0 m		
O+C+T	20,336,024	0.45	4.78	57.7%	21.3%	20.9%		
O+C	13,496,226	-0.33	3.38	68.7%	20.8%	10.3%		
0	3,969,734	-0.97	1.54	83.0%	15.0%	2.0%		

Z_diff = Matched_POINT_Z - Interpolation(LIDAR_DSM)

(dense LIDAR points --> Less surface modeling errors)

- + Point number: ca. 14,327,000
- + RMSE: 3.30 m
- + Mean: -0.32 m

SENSOR MODELING

Semi-automated Feature Extraction with SAT-PP

- Currently available for some kind of objects, such as points, lines and polygons
- The user only needs to measure, for example, the outlines of buildings in one image. The correspondences of building outlines in other images are computed automatically.
- User intervention is possible for editing the polygon/line nodes when mismatching occurs

An extracted building from an IKONOS stereopair. The left building is measured manually and the right one is matched automatically.

CyberCity Modeler approach,

from stereo images and laser data

SENSOR MODELING

DSM GENERATION

ON CASE STUDIES

TEXTURING

- Texture library
- Not realistic
- Regional texture types
- Automatic

- (Oblique-) Aerial Imagery
- Realistic
- Automatic

- Digital Photographs
- Realistic / High resolution
- Manually applied

INTRODUCTION

SENSOR MODELING

DSM GENERATION

CASE STUDIES

CITY MODELING

44 **CONCLUSIONS**

3D Object Extraction From IKONOS Imagery

Input & Data Pre-processing

IKONOS Melbourne Stereopair

7x7 km area

elevation range of less than 100 m

32 GPS-surveyed ground measured semi-automatically by ellipse-fitting method

	Left stereo	Right stereo
Date, time (local)	16/7/2000, 09:53	16/7/2000, 09:53
Sensor azimuth (°)	136.7	71.9
Sensor elevation (°)	61.4	60.7
Sun azimuth (°)	38.2	38.3
Sun elevation (°)	21.1	21.0

orientation was based on the supplied RPCs parameters (from Space Imaging) plus additional 6 affine transformation parameters in image space. the RMSEs of orientation are 0.4 meters in planimetry and 0.9 meters in height.

Swiss Federal Institute of Technology Zurich **3D Object Extraction From IKONOS Imagery**

INTRODUCTION

ЕП

Eidgenössische Technische Hochschule Zürich

SENSOR MODELING

DSM GENERATION

CASE STUDIES

CITY MODELING

46 **CONCLUSIONS**

ETH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

3D Object Extraction From IKONOS Imagery

Measurement area overview

Remote Sensing

Photogrammetry _

INTRODUCTION SENSOR MODELING DSM GENERATION CASE STUDIES CITY MODELING CONCLUSIONS 47

ETH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

3D Object Extraction From IKONOS Imagery Generated 3D city model

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

3D City Modeling from Quickbird

- Quickbird stereo images over Phoenix, USA
 - Acquired on 9 April 2004
 - Along track stereo images
 - GSD: 75cm (mean)
 - Viewing angles: 29°, 27°

NS 49

3D City Modeling from Quickbird

Facade textures from library

INTRODUCTION

SENSOR MODELING

DSM GENERATION

CASE STUDIES

CITY MODELING

50 **CONCLUSIONS**

3D City Modeling from Quickbird

INTRODUCTION

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich 3D City Modeling from Quickbird

INTRODUCTION

ETH

DSM GENERATION

CASE STUDIES

Conclusions

SAT-PP: sophisticated image pre-processing algorithms, a set of sensor models, an image matching approach for DSM generation and feature extraction from HRSI.

Sensor modeling and block adjustment:

Basically three types of sensor-model orientation concepts at our disposal:

- a) rigorous/physical sensor model
- b) Rational Functional Model (RFM) with given RPCs
- c) 2D affine model, possibly with added parameters
- d) 3D affine and DLT models

Precise (sub-pixel) GCP / tie point collection (LSM) in semi-automatic model

Sub-pixel orientation accuracy can be achieved for all models

Conclusions

Automatic DSM/DTM generation:

Reproduces not only general features, but also detailed features of the terrain relief Height accuracy of around 1 pixel in cooperative terrain RMSE values of 1.3-1.5 m (1.0-2.0 pixels) for IKONOS RMSE values of 2.9-4.6 m (0.5-1.0 pixels) for SPOT5 HRS

3D city modeling:

The manual and semi-automatic feature extraction capability of SAT-PP provides a good basis also for 3D city modeling applications with CyberCity-Modeler[™] (CCM).

The tools of SAT-PP allowed the stereo-measurements of points on the roofs in order to generate a 3D city model with CCM. Additional features of CCM allow roof and facade texturing.

The results show that building models with main roof structures can be successfully extracted by HRSI. As expected, with Quickbird more details are visible.

Acknowledgements

- Prof. Fraser, Department of Geomatics, University of Melbourne
- Mr. Volpe, Eurimage S.p.A.
- > Dr. Poli and Dr. Wang, CyberCity AG
- Space Imaging, U.S.A.
- NPOC (National Point of Contact) swisstopo, Bern